Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 62 (2004)

On the P versus NP intersected with co-NP question
in communication complexity

Stasys Jukna, **8

Abstract

We consider the analog of the P versus NP Nco-NP question for the classical
two-party communication protocols where polynomial time is replaced by polylog-
arithmic communication: if both a boolean function f and its negation —f have
small (poly-logarithmic in the number of variables) nondeterministic communica-
tion complexity, what is then its deterministic and /or probabilistic communication
complexity? In the fized (worst) partition case this question was answered by Aho,
Ullman and Yannakakis in 1983: here P = NP Nco-NP.

We show that in the best-partition case the situation is entirely different: here
P is a proper subset even of RP Nco-RP, and NP Nco-NP is no longer a subset of
BPP. This, in particular, resolves an open question raised by Papadimitriou and
Sipser in 1982. We also extend to the best-partition case the result of Rabin and
Yao that NP is not a subset of BPP in the fixed-partition model.

Key words: communication complexity, best-partition protocols, lower bounds
AMS subject classification: 03D15, 68Q17, 68Q15, 68Q10

1 Introduction

Understanding the relative power of determinism, nondeterminism, and randomization
is fundamental in any model of computation. In the Turing machine model this leads
to the well-known P versus NP versus BPP and similar questions. While in this model
such questions remain widely open, some progress was made in several simpler (but still
important) models, like decision trees or communication protocols.

*Current Address: Universitit Frankfurt, Institut fiir Informatik, Robert-Mayer-Str. 11-15, D-60054
Frankfurt am Main, Germany

tOn leave from Institute of Mathematics and Informatics, Akademijos 4, LT-2600 Vilnius, Lithuania

tEmail: jukna@thi.informatik.uni-frankfurt.de

$Research supported in part by a DFG grant SCHN 503/2-1.

ISSN 1433-8092

In the decision tree model when the complexity measure is the depth of a tree we have
that P = NPNco-NP [3, 7, 20]: if both f and —f can be computed nondeterministic
decision trees of depth at most d then f can be computed by a deterministic decision
tree of depth at most d. Nisan [16] has shown that in this case also P = BPP holds: if
f can be computed by a probabilistic bounded error decision tree of depth d then f can
be computed by a deterministic decision tree of depth O(d?).

Interestingly, the situation is different if we measure the size of (the total number
of vertices in) a tree instead of its depth—then P # NP Nco-NP [11]: there are explicit
boolean functions f such that both f and —f can be computed by nondeterministic
decision trees of size at most N but any deterministic decision tree for f has size N8 V)
A similar situation is when the complexity measure of a decision tree is the number of
its non-isomorphic subtrees (this model corresponds to so called read-once branching
programs—just merge isomorphic subtrees): here we also have that P # NP Nco-NP [11],
and even NP Nco-NP ¢ BPP [19].

In this paper we consider similar questions in the classical model of two-party commu-
nication protocols introduced by Yao in [21, 22] (see a survey [14] or monographs [8, 13]
for more information). There are two main types of such protocols: the fixed-partition
type where the protocol must use some prescribed (by an adversary) “bad” partition of
input variables between the players, and best-partition type where the protocol is al-
lowed to choose the “most suitable” for a given function partition of its variables. There
are also three natural modes of communication: deterministic, nondeterministic and
probabilistic. Having these modes and having the (admittedly far-fetched) analogy with
the P versus NP question, one may ask whether, say, NP = co-NP or P = NP Nco-NP
or P = RPN co-RP or NP Nco-NP C BPP in the context of communication protocols; a
systematic study of these classes was started by Babai, Frankl, and Simon in [2]. Here
for convenience (and added thrill, just like in [2]) we use the common names for the
analogs of the complexity classes:

P (resp., NP, BPP and RP) consists of all boolean functions in n variables whose
deterministic (resp., nondeterministic, probabilistic bounded error, and probabilis-
tic one-sided error) communication complexity is polynomial in logn.

It is clear that P € RP € NP N BPP in both the fixed- and the best-partition case.

In the fixed-partition case most of these problems are already solved. In particular,
the following facts are known (of course, this has nothing to do with the relations between
Turing machine classes):

1. NP # co-NP, and hence, P # NP. This can be easily shown using the equality
function EQ(z,y) which tests whether two given binary strings x and y of length
n are equal.

2. BPP ¢ NP and P # RP. This was shown by Rabin and Yao (see [23]): —EQ(z, y)
can be computed by a probabilistic (even one-sided 1/n-error) protocol with only
O(logn) bits of communication.

3. NP ¢ BPP. This was proved by Babai, Frankl, and Simon [2] using the set-
disjointness function DISJ(z,y), which outputs 1 iff > " | z;y; = 0. They proved
that this function has probabilistic communication complexity €2(y/n). This lower
bound was improved to 2(n) by Kalyanasundaram and Schnitger [12]; a simpler
proof was found by Razborov [18]. In [2] it was also shown that (just like in the
case of Turing machines) BPP C 3, N I, where ¥y and II, are the analogs of
classes in the second level of the polynomial hierarchy. The question of [2] on
whether Y, # Il remains open.

4. P = RPNco-RP = NPNco-NP ; BPP. This is a direct consequence of the
following well-known result of Aho, Ullman, and Yannakakis [1]: if f and —f
have nondeterministic communication complexities ny and n-y, then the deter-
ministic communication complexity of f does not exceed O (max{ny, n_s}?). This
result was later improved in different ways. Halstenberg and Reischuk [6] have
strengthened the upper bound to the form O(ny-n-s). Lovasz and Saks [15] have
strengthened this last upper bound by showing that n; can be replaced by the
triangular rank of the corresponding communication matrix of f. The tightness
of the theorem was proved by Fiirer [5] using so-called “list inequality” function.
This was recently improved by Jayram, Kumar and Sivakumar [9] by showing that,
for the iterated set-disjointness function f, even the probabilistic bounded error
communication complexity is Q(ns - n_y).

The best-partition model is more difficult to analyze, and here the situation was
less clear. In particular, such “clean” functions like EQ(z,y) or DISJ(z,y) cannot be
used (at least directly) for separations anymore just because even the deterministic
communication complexity of these functions is constant.

The first separation in the best-partition model was given by Papadimitriou and
Sipser in [17]. Using the triangle-freeness property of graphs and an elegant combina-
torial argument, they proved that NP # co-NP also in this case. The proof was via a
reduction to computing DISJ(z,y) in the fixed-partition case. Using probabilistic argu-
ments, this result was extended in [10] to the case where a protocol is allowed to use
different partitions for different inputs (the logarithm of the number of used partitions is,
however, a part of the complexity): even in this model the triangle-freeness function has
exponentially high nondeterministic communication complexity. This, together with the
fact, proved in [4], that using k + 1 partitions instead of k partitions may exponentially
decrease the number of communicated bits, shows that in the context of communication
complexity the corresponding classes NP and co-NP are indeed very different.

In the same paper [17] (this was one of the first papers to study questions of this type
in communication complexity) Papadimitriou and Sipser asked whether P # NP Nco-NP
for the best-partition protocols. The question is important because it exposes something
about the power of lower bound arguments. That is, fooling set and other arguments,
used for the best-partition protocols, apply not only to deterministic but also to nonde-
terministic protocols. We can prove a lower bound on the deterministic communication

complexity of a function f by arguing about either f or —f. But if both the function and
its negation have low nondeterministic complexity under some partitions of variables,
other arguments are needed to show that the deterministic communication complexity
must be large for any partition.

To our best knowledge this question (as well as other similar questions for best-
partition protocols) remained unsolved. The only result in this direction we are aware
of is the claim in [1] that an appropriate modification of the triangle-freeness func-
tion should separate P from NP Nco-NP in the best-partition case. Unfortunately, the
proof—which should (apparently) involve the argument for the triangle-freeness function
used in [17]—was never published.

2 Our results

In this paper we answer the question of [17]: P # NP Nco-NP for the best-partition
protocols. Actually, we establish even stronger separations, implying that in the best-
partition case the situation is entirely different: here we have that

P G RPNco-RP G NPNco-NP ¢ BPP. (1)

Moreover, we show that the result of Rabin and Yao ([23])—that BPP ¢ NP in the
fixed-partition case—can be extended to the best partition case. Note that the result
of Babai et al. [2]—that NP Z BPP in the fixed-partition case—is already extended to
the best-partition case by the last relation in Eq. (1).

All this is a direct consequence of the following theorem. We adopt the following
convention for discussing different communication complexity measures of f in the best-
partition case: D(f) for the deterministic, N(f) for the nondeterministic, R(f) for the
probabilistic bounded error, and R'(f) for probabilistic one-sided error communication
complexity.

Theorem 2.1. There are explicit boolean functions f, g and h in n? variables such that:
(i) both N(f) and N(—f) are constants but R(f) = Q(n);
(ii) both R'(g) and R'(—g) are O(logn) but D(g) = Q(n).
(iii) R(h) = O(logn) but N(h) = Q(n).

The proofs of these three claims themselves are relatively simple—as it often happens
with the results of this type, most of the work is done by a careful choice of separating
functions.

3 Proofs

Recall that in the best-partition case the players can choose different (most suitable)
partitions for a function and its negation. To visualize the effect of this choice, in all
three cases we define the corresponding separating function f(X) as boolean functions
in n? variables, arranged into an n X n matrix. Hence, inputs for f are 0/1 matrices
A: X — {0,1}. We define f(X) in such a way that a partition of X according to
columns is suitable for computing f, and that according to rows is suitable for —f.

3.1 Proof of Theorem 2.1(i)

We define the boolean function f(X) (let us call it the good matriz function), separating
NP Nco-NP from BPP in the best-partition case, as follows. Say that a row/column z
of such a matrix is good if it contains precisely two 1’s, and bad otherwise. Let f(A) =1
if and only if

(i) at least one row of A is good, and
(ii) all columns of A are bad.
Lemma 3.1. Both N(f) and N(—f) are constants.

Proof. To compute f(X) the players take a partition of X where Alice gets the first
half of the columns and Bob gets the rest. Given an input matrix A : X — {0, 1}, the
protocol first guesses a row 7 (a candidate for a good row). Then, using 3 bits, Alice tells
Bob whether all her columns are bad, and whether the first half of the row r contains
none, one, two or more 1’s. After that Bob has the whole information about the value
f(A), and can announce the answer.

In order to compute —f(X) the players take a partition of X where Alice gets the
first half of the rows and Bob gets the rest. Given an input matrix A : X — {0, 1}, the
protocol first guesses a column ¢ (a candidate for a good column). Then, using 3 bits,
Alice tells Bob whether there is a good row among her rows, and whether the first half
of the column ¢ contains none, one, two or more 1’s. After that Bob again has the whole
information about the value f(A), and can announce the answer. O

In the proof of a lower bound on R(f) we will use the fact (mentioned in the In-
troduction) that in the fixed-partition case, where Alice gets x and Bob gets y, the
set-disjointness function DISJ(z,y), which outputs 1 iff)" | z;3; = 0, has probabilistic
bounded error communication complexity ©(y/n) [2], and even Q(n) [12, 18].

Lemma 3.2. R(f) = Q(n).

Proof. Take an arbitrary probabilistic bounded error protocol for f(X). The protocol
uses some balanced partition of X into two halves where the first half is seen by Alice

and the second by Bob. Say that a column is seen by Alice (resp., Bob) if Alice (resp.,
Bob) can see all its entries. A column is mized if it is seen by none of the two players,
that is, if each player can see at least one its entry. Let m be the number of mixed
columns. We consider two cases depending on how large this number m is. In both
cases we describe a “hard” subset of inputs, i.e. a subset of input matrices on which the
players need to communicate many bits.

Case 1: m < n/2 — 1. Since each player can see at most n/2 columns, we have that in
this case each player will see at least n — (n/2+m) > 1 columns. Take one column seen
by Alice and another column seen by Bob, and let Y be the (n — 3) x 2 submatrix of
X formed by these two columns without the last three rows. We restrict the protocol
to input matrices A : X — {0,1} defined as follows. We first set all entries in the last
three rows to 1. This way we ensure that all columns of A are already bad. Then we set
all remaining entries of X outside Y to 0. The columns x and y of Y may take arbitrary
values.

In each such matrix all columns are bad and, since n > 3, the last three all-1 rows
are also bad. Thus, given such a matrix, the players must determine whether some of
the remaining rows is good. Since all these rows have 0’s outside the columns z and v,
this means that the players must determine whether x; = y; = 1 for some 1 <17 < n —3.
That is, they must compute —DISJ(z,y) which requires 2(n) bits of communication.

Case 2: m > n/2. Let Y be the n x m submatrix of ¥ formed by the mixed columns.
Select from the i-th (i = 1,...,m) column of ¥ one entry z; seen by Alice and one entry
y; seen by Bob. Since m < n and we select only 2m entries, there must be a row r
with ¢ < 2 selected entries. Let Y be the n x (m — t) submatrix consisting of the mixed
columns with no selected entries in the row . We may assume that m — ¢ is odd and
that m —t < n — 2 (if not, then just include in ¥ fewer columns).

Now restrict the protocol to input matrices A : X — {0, 1} defined as follows. First
we set to 1 some two entries of the row 7 lying outside Y, and set to 0 all the remaining
entries of r. This ensures that the obtained matrices will already contain a good row.
After that we set all the remaining non-selected entries of X to 0. Since each obtained
matrix A contains a good row (such is the row r) and all columns outside the submatrix
Y are bad (each of them can have a 1 only in the row r), the players must determine
whether all columns of A in Y are also bad. Since all non-selected entries of Y are set
to 0, the players must determine whether z; +13; < 1 for all s = 1,...,m —t. Hence,
the players must decide whether Z;’;t z;y; = 0, that is, to compute the set-disjointness
function DISJ(x,y)), which again requires Q(m — t) = Q(n) bits of communication.

This completes the proof of Lemma 3.2, and thus, the proof of Theorem 2.1(i). O

3.2 Proof of Theorem 2.1(ii)

We define the boolean function g(X) (let us call it the odd-even function), separating
RPNco-RP from P in the best-partition case, as follows. As before, inputs for g are

n X n matrices; this time we require that n is even. Say that a row/column of such
a matrix is odd (even) if it contains an odd (even) number of 1’s. Let g(A) = 1 if and
only if

(i) A has at least one odd row, and
(ii) all columns of A are odd.

The non-equality function is a function NE(z, y) in 2n variables such that NE(z,y) = 1
iff x # y, i.e. is the strings x and y differ in at least one coordinate. The variables
themselves may not be boolean—they can take their values in any range {0,1,...,m}
with m < n?. We will use a well-known fact (see, e.g., Example 3.9 in [13]) that in the
fixed-partition case, where Alice gets x and Bob gets y, the function NE(z,y) can be
computed with a probabilistic one-sided error protocol by communicating only O(logn)
bits. (We will also use this fact later in the proof of Lemma 3.5.)

Lemma 3.3. Both R'(g) and R'(—g) are O(logn).

Proof. Using the same partitions of X as in the proof of Lemma 3.1, we see that the
computation of the odd-even function g and its negation —g reduces to the computation
of the non-equality function NE(z,y), where z is a string of parities of rows/columns
seen by Alice and y is a string of parities of rows/columns seen by Bob. Indeed, to
compute g it is enough to decide whether z # y (there is an odd row) whereas for —g it
is enough to decide whether x # y @ 1 (there is an even column). O

Lemma 3.4. D(g) = Q(n).

Proof. Take an arbitrary deterministic protocol for g(X) using some balanced partition
of the n X n matrix of variables X. Assume that n is even, and let (as before) m be the
number of mixed columns.

Case 1: m < n/2 — 1. In this case each player can see at least one column. Take one
column seen by Alice and another column seen by Bob, and let Y be the (n — 1) x 2
submatrix of X formed by these two columns without the last row r. We restrict the
protocol to input matrices A : X — {0, 1} defined as follows. We set to 1 all entries in
the last row r, and set to 0 all remaining entries of X outside Y. The columns z and
y of Y may take arbitrary values such that the resulting vectors are even. This way we
ensure that all columns of A are odd. Moreover, the last row r is even since n is even.
Thus, given such a matrix A, the players must determine whether some of the remaining
rows is odd. That is, they must determine whether z # y, which requires Q(n) bits of
communication.

Case 2: m > n/2. Let Y be the n x m submatrix of ¥ formed by the mixed columns.
Select from the i-th (i = 1,...,m) column of ¥ one entry z; seen by Alice and one entry
y; seen by Bob. Since m < n and we select only 2m entries, there must be a row r with

t < 2 selected entries. Let Y be the n x (m — t) submatrix (¢ < 2) consisting of the
mixed columns with no selected entries in this row r. We may assume that m — ¢ is odd
(if not, then just include one column less in Y).

Now restrict the protocol to input matrices A : X — {0, 1} defined as follows. First
we set the part of the row r lying in Y to 0’s and the rest of r to 1’s. Since n is even and
m — t is odd, this ensures that the obtained matrices will already contain an odd row.
After that we set to 0 all the remaining non-selected entries of X. Since each obtained
matrix A contains an odd row (the row r) and all columns outside the submatrix Y are
odd (each of them has a 1 in the row r and 0’s elsewhere), the players must determine
whether all columns of A in Y are also odd. That is, they must determine whether
x; #y; forallt =1,...,m—t. Or equivalently, they must decide whether x =y & 1 for
vectors £ = (z1,...,Zm ¢) and y = (Y1, - .., Ym_t), which again requires Q(m—t) = Q(n)
bits of communication.

This completes the proof of Lemma 3.4, and thus, the proof of Theorem 2.1(ii). O

Note that the requirement that the partitions of the set of variables X are balanced
is not crucial. The same argument works also in the case when the partitions are only
“almost balanced” in a sense that each player gets access to at least a A fraction of all
variables, for some 0 < A(n) < 1/2. The proofs of Lemmas 3.2 and 3.4 remain the same
with only one difference: this time we consider the two cases depending on whether
m < An — 1 or not. Since each player can see at most (1 — A)n rows, we have that in the
first case each player will see at least n — (1 — A\)n — m > 1 rows. The rest of the proof
is the same. The obtained lower bounds on R(f) and D(g) are then of the form Q(An).

3.3 Proof of Theorem 2.1(iii)

We define the boolean function h(X) (let us call it the polynomial function), showing
that BPP & NP in the best-partition case, as follows. Let n be a sufficiently large prime
number, and assume that the rows and columns of the matrix of variables X = {z;;}
are indexed by elements of the field F = {0,1,...,n — 1} of residues modulo n. Set
d = |n/2] — 1 and let P(n,d) be the set of polynomials p(z) of degree at most d over F.
Let h(X) = 1if and only if there exists a polynomial p € P(n,d) such that for alli,j € F,
z;; = 1 iff j = p(d). That is, the function h accepts a given matrix A : X — {0,1} if
and only if the 1’s in A are consistent with some polynomial from P(n,d) (represent the
graph of this polynomial).

In the proof of both upper and lower bounds for A we will use the fact that no two
distinct polynomials of degree at most d over F can take the same values on more than
d distinct elements of F. This is a direct consequence of a fundamental theorem from
algebra that the number of roots of a (non-zero) polynomial is bounded by its degree.

Lemma 3.5. R(h) = O(logn).

Proof. Take a balanced partition of X where Alice gets the first |n/2] of the columns
and Bob gets the rest. Since d = |n/2| — 1, each player has access to more than
d columns. Given an input matrix A : X — {0,1} Alice checks whether there is a
polynomial in P(n,d) which is consistent with all the 1’s in her part of A. If there is no
such polynomial, then Alice tells this to Bob, and the game is over: the input matrix
A is (correctly) rejected. If there is such a polynomial p4(z), then it is unique, because
in this case the polynomial must take the prescribed (by the 1’s in the Alice’s part of
A) values on more than d elements of F. Similarly, either Bob finds no polynomial in
P(n,d) which is consistent with all the 1’s in his part of A (and the game is over) or he
finds such a polynomial pg(z), and this polynomial is also unique. Thus, it remains to
decide whether these two polynomials p4(z) and pg(z) are equal. That is, if z,y € F¢+!
are the strings of coefficients of p4 and pg then the players have only to decide whether
x = y. As mentioned right before Lemma 3.3, this can be done with a probabilistic
bounded error protocol by communicating only O(logn) bits. O

Lemma 3.6. N(h) = Q(n).

Proof. Take an arbitrary nondeterministic protocol for 4(X) whose communication com-
plexity is N(h). This protocol uses some balanced partition of X into two parts where the
first part is seen by Alice and the second by Bob. Given an input matrix A : X — {0, 1},
let a and b denote the corresponding partial assignments to the variables seen, respec-
tively, by Alice and by Bob; hence, h(A) = h(a,b). Let also |a| denote the number
entries set to 1 by a.

To prove the desired lower bound on N(h), let us consider the communication matrix
M of h. This is a 0/1 matrix whose rows are labeled by assignments a to Alice’s part
and columns by assignments b to Bob’s part; the (a, b)-th entry of M is h(a,b). It is a
“folklore observation” that the nondeterministic communication complexity of a boolean
function is equal to the logarithm of the minimum number of all-1 sub-matrices covering
all 1’s of its communication matrix. The number of 1’s in our matrix M is n®*!, just
because we have so many polynomials of degree at most d over F. Thus, it is enough to
give an appropriate upper bound on the the maximum size of (number of entries in) an
all-1 submatrix of M.

Claim 3.1. FEach all-1 submatriz of M lies entirely in one row or in one column of M.

Proof. 1f h(a,b) = 1 then |a|+|b] = n > 2(d+1). Hence, at least one of the assignments,
say a, sets to 1 at least d + 1 variables, implying that h(a, ') = 0 for all b’ # b. O

By this claim, it remains to give a good upper bound on the maximal possible number
of I’s in a line (row or column) of M. Since our polynomials have degree at most d, the
number of 1’s in every row (or column) a cannot not exceed max{1, n¢t'~1%/}. However
for |a| = 0 this trivial upper bound is useless. In order to get a better upper bound we

will use the fact that none of the players can see more than a half of the variables in X.

Set) il

Claim 3.2. For every assignment a there are at most H(|a|) assignments b to the re-
maining variables of X such that h(a,b) = 1.

Proof. Let t = |a|. If ¢t > d+ 1, then h(a,b) = 1 for at most one b. So, assume that
0 <t < d, and that h(a,b) = 1 for at least one b. Say that a column of X is free if
no its entry is set to 1 by a. Since the assignment a sets to 1 precisely ¢ entries of X
and cannot set to 1 more than one entry in any column (for otherwise there would be
no extensions at all), we have n — ¢ free columns. Let s; be the number of entries in the
i1-th free column seen by Bob. Assume w.l.o.g. that s; < ... <s, .

Set r = d+ 1 —t, and let T(sq,...,s,) be the number of all r-tuples (ji,---,jr)
with 1 < j; <s;, fori=1,...,r. Since |a| +r = d + 1, the number T'(sy,...,s,) is an
upper bound on the number of possible extensions b for which h(a,b) = 1. The function

T(s1,...,5s;) achieves its maximum when s; = ... = s, and the s;’s take the maximum

possible value. Since s; < ... < s, and s; + -+ + 5, < n2/2, this implies that
b T

T(s1,...,sr) does not exceed (2(2—2—75)) = H(t). O

Since the function H(t) is non-increasing, Claims 3.1 and 3.2 imply that none of the
all-1 sub-matrices of M can have more than H(0) = (n/2)%*! entries. Hence, N(h) is at
least the logarithm of ndt!/(n/2)4*!, which is d + 1 = Q(n), as desired. O

Acknowledgments

I would like to thank Martin Sauerhoff for helpful comments on a prior draft and Georg
Schnitger for interesting discussions.

References

[1] Aho, A., Ullman, J. and Yannakakis, M. (1983): On notions of information transfer in
VLSI circuits. In Proc. of 15th Ann. ACM Symp. on the Theory of Computing, 133-139.

[2] Babai, L., Frankl, P. and Simon, J. (1986): Complexity classes in communication com-
plexity theory. In Proc. of 27th Ann. IEEE Symp. on Foundations of Comput. Sci., 337—
347.

[3] Blum, M. and Impagliazzo, R. (1987): Generic oracles and oracle classes. In Proc. of
28th Ann. IEEE Symp. on Foundations of Comput. Sci., 118-126.

10

[4]

Duris, P., Hromkovi¢, J., Jukna, S., Sauerhoff, M. and Schnitger, G. (2001): On multi-
partition communication complexity. In Proc. of 18th STACS, Springer Lecture Notes in
Computer Science, vol. 2010, 206-217. Journal version in Information and Computation
(to appear).

Fiirer, M. (1987): The power of randomness for communication complexity. In Proc. of
19th Ann. ACM Symp. on the Theory of Computing, 178-181.

Halstenberg, B. and Reischuk, R. (1993): Different modes of computation, SIAM J. Com-
puting 22:5, 913-934.

Hartmanis, J. and Hemachandra, L. A. (1987): One-way functions, robustness and non-
isomorphism of NP-complete classes. Tech. Rep. DCS TR86-796, Cornell University.

Hromkovié¢, J. (1997): Communication Complexity and Parallel Computing, Springer-
Verlag.

Jayram, T. S., Kumar, R. and Sivakumar, D. (2003): Two applications of information
complexity. In Proc. of 35th Ann. ACM Symp. on the Theory of Computing, 673—-682.

Jukna, S. and Schnitger, G. (2002): Triangle-freeness is hard to detect, Combinatorics,
Probability & Computing 11, 549-569.

Jukna, S., Razborov, A., Savicky, P. and Wegener, 1. (1999): On P versus NPNco-NP for
decision trees and read-once branching programs, Computational Complezity 8:4, 357—
370.

Kalyanasundaram, B. and Schnitger, G. (1987): The probabilistic communication com-
plexity of set intersection. In Proc. of 2nd Structure in Complezity Theory, 41-49. Journal
version in: SIAM J. Discrete Mathematics 5:4 (1992), 545-557.

Kushilevitz, E. and Nisan, N. (1997): Communication Complezity. Cambridge University
Press.

Lovész, L. (1990): Communication complexity: A survey. In Algorithms and Combina-
torics 9 (Springer-Verlag), 235-265.

Lovész, L. and Saks, M. (1993): Lattices, Mobius functions and communication com-
plexity, J. Compu. Syst. Sci. 47, 322-349.

Nisan, N. (1991): CREW PRAMSs and decision trees, SIAM Journal on Computing 20:6,
999-1007.

Papadimitriou Ch. H. and Sipser M. (1982): Communication complexity. In Proc. of
14th Ann. ACM Symp. on the Theory of Computing, pp. 196-200. Journal version in:
J. Comput. Syst. Sci., 28:2 (1984), 260-269.

Razborov, A. (1990): On the distributional complexity of disjointness. In: Proc. of 17th
International Colloquium on Automata, Languages and Programming, Springer Lecture
Notes in Computer Science 443, 249-253. Journal version in: Theoretical Computer
Science 106:2 (1992), 385-390.

11

[19] Sauerhoff, M. (2003): Randomness versus nondeterminism for read-once and read-k
branching programs. In Proc. of 20th Symposium on Theoretical Aspects in Computer
Science, Springer Lecture Notes in Computer Science 2607, 307-318.

[20] Tardos, G. (1989) Query complexity, or why is it difficult to separate NP“ N co-NP4
from P4 by a random oracle A? Combinatorica 9, 385-392.

[21] Yao, A. C. (1979): Some complexity questions related to distributed computing. In Proc.
of 11th Ann. ACM Symp. on the Theory of Computing, 209-213.

[22] Yao, A. C. (1981): The entropic limitations of VLSI computations. In Proc. of 13th Ann.
ACM Symp. on the Theory of Computing, 308-311.

[23] Yao, A. C. (1983): Lower bounds by probabilistic arguments. In Proc. of 24th Ann. IEEE
Symp. on Foundations of Comput. Sci., 420-428.

12

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

