
Exponential time reductions and sparse

languages in NEXP

Piotr Faliszewski ∗

June 25, 2004

Abstract

In this paper we define a many-one reduction which is allowed to work

in exponential time but may only output polynomially many symbols. We

show that there are no NEXP-hard sparse languages under our reduction

unless EXP = UEXP.

Introduction

Sparse languages play a central role in complexity theory. One of the standard
questions regarding complexity classes is wether they have sparse hard/complete
sets with respect to some reducibility type or what consequences would follow
if they had. For example Mahaney [Mah82] showed that there are no NP-
hard languages unless P = NP. The same was done for bounded truth table
reductions by Ogiwara and Watanabe [OW91]. Their result also gives a simpler
proof of the Mahaney’s Theorem. The case of Turing reductions was resolved
by Karp and Lipton [KL82]. Many other beautiful results regarding sparse sets
were obtained – see [CO97] for a survey and more references.

In this paper we analyze the existence of NEXP-hard sparse languages with
respect to a certain exponential time many-one reducibility. The reduction pro-
cedure is allowed to work in exponential time but may only output polynomially
many symbols. Our main result says that if there are sparse NEXP-hard lan-
guages with respect to this type of reduction then EXP = UEXP. The natural
question is wether one can strengthen this to EXP = NEXP.

The definition of the exponential time reduction was motivated by the ob-
servation that in the polynomial time setting the power of the polynomial-time
many-one reductions is comparable with the power of the class P whereas if we
consider EXP and NEXP then the power of the reduction is much smaller than
that of EXP. The introduction of the exponential time reductions makes the
situation more symmetric. Another profit that might come from the exponential
time reductions is that it seems reasonable to expect that there are languages in
NEXP complete with respect to 6e

m but not with respect to standard reduc-
tions. Clearly, if EXP 6= NEXP then such sets would be NEXP-intermediate
(we consider a set NEXP-intermediate if it belongs to NEXP − EXP but is

∗Institute of Computer Science, AGH University of Science and Technology, al. Mickiewi-

cza 30, Kraków, Poland, email: pfali@agh.edu.pl

1

Electronic Colloquium on Computational Complexity, Report No. 64 (2004)

ISSN 1433-8092

not complete with respect to the polynomial time many-one reduction). Ex-
ploring properties of intermediate languages is interesting as on one hand there
are no known natural intermediate languages in many classes and on the other
we strongly suspect their existence (see e.g. [Lad75, BD82]).

1 Preliminaries

We use standard notation, e.g. as in [Pap94, HO02], whenever possible. Without
the loss of generality we assume that all languages are over the alphabet Σ =
{0, 1}. If L is a language then L6n = {x ∈ L : |x| 6 n}. The language L is
called sparse if |L6n| is bounded by some polynomial.

The classes EXP and NEXP contain problems solveable in exponential
deterministic and nondeterministic time respectively (polynomials in the ex-
ponents). The class UEXP is the set of languages decidable in exponential
time by unambiguous nondeterministic Turing machines. A nondeterministic
machine is called unambiguous if on any input at most one computation path
accepts. The relation between EXP and UEXP is the same as between P and
UP.

We assume that every nondeterministic Turing machine considered has the
following property. At every computation step the machine has at most two
nondeterministic choices. Every nondeterministic Turing machine can easily be
converted to satisfy this requirement; every multiple choice can be split into
many binary ones. Therefore, if some computation path of the machine M on
input x requires n steps then this path can be encoded as a binary string of
length n where zeroes and ones represent the nondeterministic decisions made
by the machine.

2 Main result

We start with the formal definition of the exponential time many-one reduction
that we will use in this paper.

Definition 1 We say that a language A exponentially many-one reduces to the
language B, denoted as A 6e

m B, if there is a function f : Σ∗ → Σ∗ such that:

• x ∈ A ⇔ f(x) ∈ B.

• f(x) is computable in exponential time with respect to |x|;

• |f(x)| is polynomial with respect to |x|;

The restriction on the number of symbols that the reduction may output was
given in order to make the reduction transitive. The following theorem states
basic properties of the reduction.

Theorem 2 It holds that:

1. A 6p
m B ⇒ A 6e

m B;

2. A 6e
m B does not necessarily imply A 6p

m B;

3. (A 6e
m B ∧ B 6e

m C)⇒ A 6e
m C.

2

Proof: Property 1 is obviously true as every polynomial-time many-one re-
duction is also an exponential-time reduction.

Property 2 holds because every language in EXP, except for the pathological
cases of ∅ and Σ∗, is complete with respect to the exponential reduction whereas
this is not true for the polynomial time reductions.

Finally, we will show that the reduction is transitive. Let A,B,C be some
languages and f1, f2 be functions witnessing that A 6e

m B and B 6e
m C. Let

p1 and p2 be two polynomials such that it holds that on input x fi halts after
at most 2pi(|x|) steps and outputs at most pi(|x|) symbols. It is now enough
to show that g(x) = f2(f1(x)) exponentially reduces A to C. Clearly, x ∈ A
if and only if h(x) ∈ C. Since |f1(x)| 6 p1(|x|) we have a polynomial bound
on |h(x)| as |h(x)| = |f2(f1(x))| 6 p2(p1(|x|)). Computing h(x) takes at most
2p1(x) + 2p2(p1(x)) which is exponential in |x|. Therefore, A 6e

m C. ¥

Our main result is similar to the Mahaney’s Theorem; however, it works in the
exponential time setting.

Theorem 3 If EXP 6= UEXP then there are no sparse NEXP-hard lan-
guages with respect to the exponential many-one reduction.

Proof: We will do a proof by contradiction. Assume that there is a sparse lan-
guage T such that T is NEXP-hard with respect to the exponential many-one
reductions. Let L be an arbitrary language from UEXP and ML a nondeter-
ministic unambiguous Turing machine that witnesses L ∈ UEXP. We will show
a deterministic exponential time algorithm for L – this will be a contradiction
as we assumed EXP 6= UEXP. Define L′ to be the language:

L′ = {〈x, y, b〉 : x ∈ L, b ∈ {0, 1} is the y’th nondeterministic decision

that ML makes during its work on the string x}.

The number y is encoded in binary. It is easy to see that L′ ∈ NEXP (in fact,
it is in UEXP) and therefore it is exponentially reducible to T . Let f be the
exponential time reduction witnessing that L′ 6e

m T .
We give a description of an algorithm that decides L in exponential time

provided it has access to the oracle T . Later on we will show how the oracle
can be removed without increasing the time complexity of the algorithm beyond
exponential time. Let x be the input string and n = |x|. Without the loss of
generality we assume that on strings of length n the machine ML makes exactly
2p(n) nondeterministic choices on every computation path.

TEST(x)
begin

w := ε;
for y := 1 to 2p(n) do

if f(〈x, y, 0〉) ∈ T then w := w0;
else w := w1;

Accept if and only if w is an accepting computation path of ML on x
end

The TEST procedure checks wether x ∈ L provided a T oracle is available.
If x ∈ L then there is only one accepting computation path of ML and the
procedure finds it bit by bit by querying L′ and verifying the answer with the T

3

oracle. At the end, the computation path w is checked. Clearly, this test passes
if and only if x ∈ L – the TEST procedure correctly decides L.

Let us analyze the time complexity of the algorithm excluding the cost
of T membership testing. Each iteration of the for loop requires computing
f(〈x, y, 0〉). We have that |y| 6 p(n) so, by the definition of the exponential
time reduction, f(〈x, y, 0〉) can be computed in exponential time. There exists
a polynomial q such that |f(〈x, y, 0〉)| 6 q(n). There are exponentially many
iterations so executing the whole loop also takes exponential time. Finally, the
test wether w is an accepting path of ML on x can be performed in exponential
time as well (precisely in time 2O(p(n))).

It remains to show how the T oracle can be removed. Firstly, note that if
we would run the TEST procedure on some x /∈ L then regardless of the oracle
answers the algorithm would reject as the test in the last line would fail.

Secondly, recall that the queries to the oracle are never longer than q(|x|).
Therefore, if we ran the procedure on input x with the oracle T 6q(|x|) then
it would give the correct answer. These observations enable us to remove the
oracle T from the algorithm in the following way.

Let r be a polynomial such that |T 6n| 6 r(n) for all natural n. Such a
polynomial must exists as T is sparse. For the given input string x consider all
the languages Ti with the following properties:

• |Ti| 6 r(q(|x|));

• y ∈ Ti ⇒ |y| 6 q(|x|).

There are only exponentially many such sets and they can easily be enumerated.
We execute the TEST procedure with every Ti as oracle and accept if and only
if at least one of the runs does.

There must be an index j such that Tj = T6q(|x|). Therefore, if x ∈ L
then the TEST procedure executed with Tj as oracle must accept and as a
consequence the whole algorithm accepts. On the other hand, if x /∈ L then the
TEST procedure rejects regardless of the oracle so the whole algorithm rejects.
The algorithm still runs in exponential time as one merely needs to generate
Ti’s and execute TEST(x) exponentially many times. Multiplying exponential
functions gives an exponential function.

Therefore, we have shown a deterministic exponential time algorithm for an
arbitrary language from UEXP. As a result it holds that EXP = UEXP,
contradicting our assumptions. The theorem is proved. ¥

A natural question that arises is wether a stronger version of the theorem holds.
That is, wether the existence of sparse NEXP hard languages with respect to
the exponential time reductions implies EXP = NEXP.

References

[BD82] J.L. Balcazar and J. Diaz. A note on a theorem by Ladner. Information
Processing Letters, 1982.

[CO97] Jin-Yi Cai and Mitsunori Ogihara. Sparse sets versus complexity
classes. In Complexity Theory Retrospective II, pages 53–80. Springer-
Verlag, 1997.

4

[HO02] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity The-
ory Companion. Springer-Verlag, 2002.

[KL82] Richard Karp and Richard Lipton. Turing machines that take advice.
L’enseignement Mathématique, 28(3/4):191–209, 1982.

[Lad75] Richard E. Ladner. On the structure of polynomial time reducibility.
Journal of the ACM (JACM), 22(1):155–171, 1975.

[Mah82] Michael R. Mahaney. Sparse complete sets for np: solution of a conjec-
ture of berman and hartmanis. Journal of Computer System Science,
25, 1982.

[OW91] Mitsunori Ogiwara and Osamu Watanabe. On polynomial-time
bounded truth-table reducibility of np sets to sparse sets. SIAM Jour-
nal on Computing, 20, 1991.

[Pap94] Christos Papadimitrou. Computational complexity. Addison-Wesley
Longman, 1994.

5

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

