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Abstract

We present an algorithm for learning a mixture of distributions.
The algorithm is based on spectral projection and is efficient when
the components of the mixture are logconcave distributions in R™ and
their means are well-separated. The separation required grows only
with k, the number of components and logn. This improves substan-
tially on previous results, which either focus on the special case of
spherical Gaussians or Gaussians with a separation that has a much
larger dependence on n.

1 Introduction

Mixture models are widely used for statistical estimation, unsupervised con-
cept learning, text and image classification etc. [5, 10]. A finite mixture
model for an unknown distribution is a weighted combination of a finite
number of distributions of a known type. The problem of learning or es-
timating a mixture model is formulated as follows. We assume that we
get samples from a distribution F' on R™ which is a mixture (convex com-
bination) of unknown distributions Fy, Fs, ..., Fi, with (unknown) mixing
weights wy, ws,...,wp > 0 ie., F = ZlewiFi and Ele w;. The goal is
to (a) classify the sample points according to the underlying distributions
and (b) estimate essential parameters of the components, such as the mean
and covariance matrix of each component. This problem has been widely
studied, particularly for the special case when each F; is a Gaussian.

One algorithm that is often used is the EM (Expectation-Maximization)
algorithm. It is quite general, but does not have guarantees on efficiency
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and could even converge to an incorrect or suboptimal classification. A sec-
ond known technique, called “projection pursuit” in statistics, projects the
sample points to a random low-dimensional subspace and then tries to find
the right classification by exploiting the low dimensionality and exhaustively
examining all possible classifications. The trouble is that two different den-
sities may overlap after projection — the means of the projected densities
may coincide (or get closer), making it hard to separate the samples.

1.1 Recent theoretical work

There has been progress in recent years in finding algorithms with rigorous
theoretical guarantees [2, 1, 3, 11], mostly for the important special case
of learning mixtures of Gaussians. These algorithms assume a separation
between the means of each pair of component distributions which depends
on the variances of the two distributions and also on n and k. For a compo-
nent F; of the mixture let y; denotes its mean and o; denote the maximum
standard deviation along any direction in ". In order for the classifica-
tion problem to have a well-defined (unique) solution with high probability,
any two components 4, j must be separated by o; + 0; times a logarithmic
factor; if the separation is smaller than this, then the distributions overlap
significantly and some of the samples have a good chance of coming from
more than one component. Dasgupta [2] showed that if each mixing weight
is Q(1/k) and the variances are within a bounded range, then a separation
of (the Q* notation suppresses logarithmic terms and error parameters)

i — 5] = (07 + o) (n'/?)

is enough to efficiently learn the mixture.
Shortly thereafter, this result was improved by Dasgupta and Schulman
[3] and Arora and Kannan [1] who reduced the separation required to

i — 5] = (07 + o) (n'/%).

In [3], the algorithm used is a variant of EM (and requires some technical
assumptions on the variances), while the result of [1] works for general Gaus-
sians using distance-based classification. The idea is that at this separation,
it is possible to examine just the pairwise distances of the sample point and
infer the right classification with high probability.

The dependence on n is critical; typically n represents the number of
attributes and is much larger than k, the size of the model. Further, the un-
derlying method used in these papers, namely, distance-based classification,
inherently needs such a large separation that grows with n [1].



In [11], a spectral algorithm was used for the special case of spherical
Gaussians and the separation required was reduced to

i — il = (05 + o) (K1/*).

Since k is usually a constant and much less than n, this is a substantial
improvement for the spherical case. The algorithm uses a projection of
the sample to the subspace spanned by the top k singular vectors of the
distribution (i.e., the singular vectors of a matrix, each of whose rows is
one of the iid samples drawn according to the mixture), also called the
SVD subspace. The idea there was that for spherical Gaussians, that the
SVD subspace of the distribution contains the means of the & components.
Hence, after projection to this subspace the separation between the means
is preserved. On the other hand each component is still a Gaussian and the
dimension is only k, and so the separation required is only a function of k.
Further, even for a sample, the SVD subspace is “close” to the means and
this is used in the algorithm.

1.2 New results

Given the success of the spectral method for spherical Gaussians, a natural
question is whether it can be used for more general distributions, in partic-
ular for non-spherical Gaussians. At first sight, the method does not seem
to be applicable. The property that the SVD subspace of the distribution
contains the means is clearly false for non-spherical Gaussians, e.g. see Fig-
ure 1. In fact, the SVD subspace can be orthogonal to the one spanned by
the means and so using spectral methods might seem hopeless.

Figure 1: The SVD subspace W, the plane that minimizes the average
squared distance, might miss the means of the components entirely.

In this paper, we show that this example is misleading and while it
does not contain the means, the SVD subspace is always close (in an aver-



age sense) to the means of the distributions (Theorem 1). As a result, upon
projection to this subspace, the inter-mean distances are approximately pre-
served “on average”. Furthermore, this property is true for a mixture of
arbitrary distributions.

It is then a reasonable idea to project the sample to the SVD subspace
to reduce the dimensionality. To identify individual components in this sub-
space, we need them to remain nonoverlapping. If the mixture is arbitrary,
then even though the means are separated on average, the samples could
intermingle. To overcome this, we assume that the component distributions
are logconcave. (A function f : R" — R, is logconcave if its logarithm is
concave). Logconcave distributions are a powerful generalization of Gaus-
sians, with the following properties: (a) the projection of a logconcave dis-
tribution remains logconcave (b) the distance of a random point from the
mean has an exponential tail. Besides Gaussians, many other common prob-
ability measures, like the exponential family and the uniform measure over
a convex set are logconcave. So for example, the mixture could consist of a
Gaussian and a cube.

In Section 3, we give an iterative spectral algorithm that identifies one
component of the mixture in each iteration. We assume that each mixing
weight is at least € and the pairwise separation satisfies

3
i — mj| = (03 + 05) ¥ (k2 /7).

More precisely, our algorithm only requires a lower bound €, a probability of
error § an upper bound k, and a sample set from an n-dimensional mixture
distribution of size (% log®(nk/8)) which satisfies the given separation, and
it classifies all but a fixed number with probability at least 1 — § (Theorem
3). It is easy to see that it requires time polynomial in n,e,log(%). The
means and covariance matrices of the components can be estimated using
O(% log®(nk/6)) samples (Theorem 2). For the special case of Gaussians,
O(nlog®(n/8)/e) samples suffice. Table 1 presents a comparison of algo-
rithms for learning mixtures (logarithmic terms are suppressed).

1.3 Notation

A mixture F' has k components Fi,..., Fy. We denote their mixing weights
by wi,...,w, and their means by pu1,...pur. The maximum variance of F;
in any direction is denoted by 01-2. For any subspace W, we denote the
maximum variance of F; along any direction in W by UZ w-

Let S be a set of iid samples S from F. One can think of S as being picked
as follows: first i is picked from {1,2,...,k} with probability w; (unknown

to the algorithm); then a sample is picked from F;. We can partition S as



Method

Authors Separation Assumptions
Dasgupta [2] nl/? Gaussians, bounded variances Random projection
and w; = Q(1/k)
Dasgupta-Schulman [3] nt/4 Spherical Gaussians
Arora-Kannan [1] nt/4 Gaussians
Vempala-Wang [11] /4 Spherical Gaussians
3
This paper ’Z—; Logconcave distributions, w; > €

EM+distances
Distances
Spectral projection

Spectral projection

Table 1: Comparison

S =51US2U...US; where each S; is from F; (note: this partition of S is
unknown to the algorithm). For each i, we denote by uf the sample mean,
ie.,

For a subspace V and a vector z, we write d(x, V) for the orthogonal
distance of z from V.

For any set of points S, we can form a matrix A whose rows are the
points in S. The subspace spanned by the top k right singular vectors of
A will be called the SVD subspace of S. For any subspace W, we denote
the maximum variance of a set of sample points in S = S7; U...U S, which
belong to S; along any direction in W by 61’2,W(S)-

2 The SVD subspace

In this section, we prove an important property of spectral projection. The
theorem says that the SVD subspace of a sample is close to the means of the
samples from each component of the mixture, where “close” is in terms of
the sample variances. Note that the theorem holds for any mixture. In the
analysis of our algorithm, we will apply it only to mixtures of logconcave
distributions.

Theorem 1 Let S = S1 U Ss...U S, be a sample from a mizture F with
k components such that S; is from the ith component F; and let W be the
SVD subspace of S. For each i, let uf be the mean of S; and 6ZW(S) be the



mazimum variance of S; along any direction in W. Then,

k
Z|Sz‘d(uzsa <kZ‘S|UzW
i=1

Proof. Let W be the span of oy ,,ug. For £ € R", write £ for the
projection of z onto W and & for the projection of = onto W.
We have (since p? is the average of z € S; and u € W),

k k
SE?P = DD @ —wi P+ |1Sillud P
€S i=1 z€S; i=1

k
> ISillug P
i=1
k k
= Y ISillad P + ) ISild(ui, W) (1)
i=1 =1

v

On the other hand,

k k
g = D> e -adP +Z}\Sz~|m§|2
P

€S =1 x€S;
k
< kZ|S|azW S)+ > ISillisf |- (2)
=1

It is well-known that the SVD subspace maximizes the sum of squared pro-
jections among all subspaces of rank at most k (alternatively, it minimizes
the sum of squared distances to the subspace; see e.g. [4]). From this, we

get
Yo lEP =)

TES TES

Using this, the RHS of (2) is at least the RHS of (1) and the theorem follows.
O

The same proof also yields an inequality for the entire distribution:

k

Z (pi, W <kaz

=1

Here W is the SVD subspace of the entire distribution (subspace spanned
by the top k principal components of the distribution).



3 An iterative spectral algorithm

In this section, we describe the algorithm. It follows the method suggested
by Theorem 1, namely, to project on the SVD subspace and to try to iden-
tify components in that subspace. However, since pairwise distances are
only preserved in an average sense, it is possible that some means are very
close to each other in the projected subspace and we cannot separate the
corresponding samples. To get around this, we will show that all “large”
components remain well-separated from the rest and there is at least one
large component. We identify this component, filter it from the sample and
repeat. For technical reasons (see below), the samples used to compute the
SVD are discarded. The input to the algorithm below is a set of N iid
samples and a parameter Ny < N.

1.

2.

3.

Algorithm.

Repeat while there are samples left:

For a subset S of size Ny, find the k-dimensional SVD subspace W.
Discard S and project the rest, 7', to the subspace W.

For each projected point p:
--- Find the closest ¢N/2 points. Let this set be T'(p) with mean u(p).

--- Form the matrix A(p) whose rows are z-u(p) for each z in T'(p).
Compute the largest singular value o(p) of A(p) (Note: this is the
maximum standard deviation of 7T'(p) over all directions in W).

. Find a point py for which o(py) is maximum. Let 7j be the set of all

VEklog N
€

points of T whose projection to W is within distance o(p) of po.

. Label T as one component; estimate its mean and covariance matrix.

. Delete Ty from T'.

In step 3 of the algorithm, for any point p, the top singular value o(p)
of A(p) can also be expressed as follows:

1 1
2 2
o = max —— E co|lf— | — E -
2 veW, v/=1 |Tp| 4Ty lg-vl |Tp| qupq




This value is an estimate of the maximum variance of the entire subsample
of the component to which p belongs.

There is a technical issue concerning independence. If we use the entire
sample to compute the SVD subspace W, then the sample is not independent
from W. So we use a subset S to compute the SVD subspace in each
iteration and discard it. The rest of the sample, i.e., the part not used for
SVD computation is classifed correctly with high probability. The size of
the subset S in each iteration is V.

We can state guarantees for the algorithm in two different ways. The first
is a guarantee that the estimated means and covariances are approximations
of the means and covariances of individual components. Recall that the
covariance matrix of a distribution G with mean y is Eq((z — p)(z — p)7),
the matrix whose 7j’th is the covariance of the ith and jth coordinates of a
random point z drawn from G.

Theorem 2 For 0 <n <1, let

n n
No=C—log® [ — |.
O ep 8 (?75 >
Suppose that have have 2kNy iid samples from a mizture F of k logconcave

distributions in K", with mizing weights at least € and the means separated

as
3

.. k2
Vi, j | — pj| > 1024(0; + 0y) (6—2> log 2k Ny.

Then the iterative spectral algorithm with this setting of Ny finds approzi-
mations pl, ..., u), to the means and Ay, ..., Ay to the covariance matrices
such that with probability at least 1 — 0, for 1 <i <k,

lwi — pil <moi  and  ||A7'ER, (& — pa)(z — pa)T) —I|» <7

where || -||r is the Frobenius norm, the square root of the sum of the squares
of all the entries.

A second guarantee is when we have N samples and the separation grows
with log N. In this case, we can classify all but kN samples.

Theorem 3 Suppose we have N iid samples from a mizture F of k log-
concave distributions with mizing weights at least € and the means of the
components separated as

3
k2

8



Then, for any 0 < § < 1, with
Ny = cZ log® E,
€

the iterative spectral algorithm correctly classifies N — 2kNy samples with
probability at least 1 —0 (a subset of 2kNy samples are used by the algorithm
and discarded).

We will prove Theorem 3 in the next section. The proof of Theorem 2 is
very similar.

4 Analysis

4.1 Preliminaries

We begin with some properties of logconcave distributions, paraphrased from
[6, 7]. The proof of the first uses a theorem from [9].

Lemma 1 Let 0 < n <1 and yi1,...,yn be iid samples from a logconcave
distribution G in R™ whose mean is the origin. There is an absolute constant

C such that for
n n
Zlogd [ =
m > 0772 og (775)

with probability at least 1 — §, for any vector v € R™,

(1 -nEc((vTy)*) < % Y 0"y)? < (L+n)Ec((v7y)?).
=1

Lemma 2 Let F be any logconcave distribution in R™ with mean p and
second moment Ep(|X — p|?) = R2. Then, for anyt > 1,

Pr(|X — p| > tR) <e™".

Lemma 3 Let f : ® — Ry be a logconcave density function with variance
o%. Then

max flz) < %



4.2 Sample properties

Assume that N > 2kNy. If T is the subset of samples that are not used
for SVD computation, then there is a partition T'as T =Ty UTo U ... U T}
where T; is the set of samples from F;.

Lemma 4 With probability at least 1 — §/4k, for every i € {1,2,...,k},
a. wil T| + 5|T| <|T| < wil T| + [T
b i —pi | < %
c. For any subspace W, Lojw < &?,W(T) < %Uiz,W'
Proof.

a. Follows easily from a Chernoff bound [8].

b. For any fixed |T;|, the random variable p) |T| Y zer; T 18 a con-
volution of logconcave distributions and hence is also logconcave. Its
variance is no?/|T;|. We apply Lemma 2 to this distribution to get
the bound.

c. Follows immediately from Lemma 1.

O

In our proof, we would like to apply Theorem 1. However, the theorem
holds for the sample S that is used to compute the SVD subspace. The next
theorem derives a similar bound for an independent sample T' that is not
used in the SVD computation.

Lemma 5 Suppose T = T1 U ... UT} is the set of sample points not used
for the SVD computation in the algorithm. Then we have

k k
S ITld(ud, W)? < 2k |T;|67 (3)
=1 =1

where 67 = &-QW(T) is the mazimum variance of T; along any direction in

Z!
w.

Proof. First, we apply Theorem 1 to S. Then, using Lemma 4(a), we can
related |T;| to |S;| and we have

k
Z‘Tz|d(uz‘sa < kZ|T|UzW
=1
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Next, Lemma 1 implies that

2

&'?,W(S) < O, w-

(=2 |

Finally, we use the lower bound in Lemma 4(c) to get the desired inequality.
O

4.3 Proof of Theorem 3

We will prove the following claim: With probability at least 1 — (§/2k), the
algorithm identifies one component exactly in any one iteration. We will
prove the claim for the first iteration and it will follow inductively for all
subsequent iterations.

Let T =Ty UTy U...UTy be the partition of the current sample T
according to the components F;. For each 4, recall that u! is the sample
mean and define ﬂZT to be the projection of uiT to the subspace spanned by
W. Similarly, we have yu? and 4. For convenience, we write &; v (T)? as
62. Let

g 3

k2 €
—1024"210¢ N and 8= .
@ gz los N and = greer

We say that a component F, is large if the following condition holds:

[T|67 > fmax |T3|57. (4)
The proof is based on the next two lemmas.

Lemma 6 For any large component F,., for every i # r,
Q

i = 1> 3

(05 + o7).

Proof. Let d, = d(us,W). For any large component r satisfying (4), by

(3),

o _ 2K
IT,|d} <2k |T;|67 < 7|:r,«|o—$. (5)
i
Thus,
2k% a?
Next, let

) . N «a
R={i#r: | —i7| < (o +0r)}

11



Then, by the assumed separation, for each i € R, we must have (using
Lemma 4b)

e a a,
di = d{ud s W) > |i—pirl =i = i3 | = lpr =17 | = dy =37 =i | > SO0 > 6.
Therefore, using (5),
2k? £ :
7|T,n|a,% >2k > |Te? > Y |Tila?
i=1 i=1
2 o
> YOI 2y |T 367
i€ER €ER
As a result,
32k €
Z|Tz\ < aTﬂ|Tr| < §|T‘-

1€ER
However, since each |T;| > 5|T| (by Lemma 4(a)), this implies that R is
empty.
To complete the lemma, we note that by Lemma 4(b), for any j,

8] = A5 <|u) — uf <luj — pyl+ [y — pf| < 204,

and then use triangle inequality. O

Lemma 7 Let p € T;. With probability at least 1 — §/4k,
o(p)? < 16ké?7.
Further, if 1 is a large component, then

w;
12

o(p)? > =62,

ot

Proof. By Lemma 2, within a radius of \/Z_kai,w of any point p from T,
there will be at least e N/2 points from the same component. Even if some
points from other components are within this distance of p, they cannot
increase o(p) beyond this value. To complete the proof, we use Lemma 4(c).
For the second iequality, note that by Lemma 6 the set of samples used
to compute o(p) are all from T;. If v is the direction in W for which the
distribution F; has maximum variance, then Lemma, 3 implies that for

9

H:{zemnZHT(p)'U_go-i,WSU-xSMT(p)'U+8

O'i,W}

12



we have Fj(H) < 1 x 25%W = £

Now we apply VC dimension techniques (see [12]). Suppose |T;| > 1.
This is guaranteed by Lemma 4a. Since the VC-dimension of intervals on a
line is 2, with probability 1 — g the following statement is true:

e For any interval I along the direction v, if Hy = {x e R" : z - v € I},
then
| |T N HI|

- <
7] — Fi(Hy)| <

¢
<

Therefore |T'(p) N H| < %|T;| < 2 x 5|T| < 3|T( ). This means that at least
% samples in T'(p) are out of the strlp H, i.e. they are at least as far as

§oi,w apart from pT®) in the direction of v. Hence, using Lemma 4c

o(p)? > 1 Z (z-v — T -v)?

7@ )
1 T, e 2
> Z o
2y < <G
e 262

> —0oF >
= 25674W = 512

which completes the proof.
O

We continue with the proof of Theorem 3. By Lemma 2, and the first
part of Lemma 7, if the point py in Step 4 that maximizes o(p) is from a
component 7 satisfying (4), then the set of samples identified is entirely from
T,. Next we will show that the point py in step (4) must indeed be from
a large component. Let 7 be the component for which |7;|62 is maximum.
Take any p € T; for an ¢ which is not large, i.e.,

| Ti|67 < BITy|67. (6)
Therefore,
o alTrlo _ B,
0; < IB‘T:| oy < ZUZ
By Lemma 7,

e Or T 5127



Hence the point pg chosen in step 4 will be from a large component.

Now by Lemma 4, the number of samples we have in Tj is enough to
estimate the mean and covariance matrix. Finally, using these estimates, by
Lemma 2, the set T contains all the sample points from a single component
with high probability.

5 Conclusion

Spectral projection, or principal component analysis, is fairly easy to imple-
ment and commonly used in practice for many applications. Most guarantees
for spectral methods assume that the data is generated from some restricted
model, such as a random model. Our algorithm is also for “random” data,
but the distributions considered are more general. Spectral projection seem
to be best suited for such models (unlike say random projection, which has
guarantees for arbitrary input data) and our result can be viewed as further
evidence of this.
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