
Information Theory in Property Testing and Monotonicity Testing

in Higher Dimension

Nir Ailon∗ Bernard Chazelle†

Abstract

In general property testing, we are given oracle access to a function f , and we wish to randomly
test if the function satisfies a given property P , or it is ε-far from having that property. In a
more general setting, the domain on which the function is defined is equipped with a probability
distribution, which assigns different weight to different elements in the distance function. This
paper relates the complexity of testing the monotonicity of a function over the d-dimensional
cube to the Shannon entropy of the underlying distribution. We provide an improved upper
bound on the property tester query complexity and we finetune the exponential dependence on
the dimension d.

1 Introduction

In general property testing [4, 7, 9, 13], we are given oracle access to a function f , and we wish to
randomly test if the function satisfies a given property P , or it is ε-far from having that property.
By ε-far we mean, that any function g that has the property P differs from f in at least ε-fraction
places. We allow the property tester to err with at most constant probability, say 1/3 (in this paper
we assume only one-sided error). In many interesting cases, this relaxation allows the tester to query
only a sublinear portion of the input f , which is crucial when the input is a giant dataset.

The query complexity of the property is the minimal number of f -queries performed by a tester
for that property (although the classical “number of operations” quantity can be considered too).
A query to a function can be viewed as a quantity of information, which gives rise to the relation
between property testing and information complexity [4], which will be made more precise in what
follows.

An interesting ramification of property testing problems [4, 5, 10] generalizes the definition of
distance between two functions: Instead of defining the distance between f and g as the fractional
size of the set {x | f(x) 6= g(x)}, we attach a probability distribution D to the function domain,
and define

dist(f, g) = Pr({x | f(x) 6= g(x)}).

The “old” definition reduces to the case D = U (the uniform distribution). This definition allows
assignment of importance weights to domain points. It also allows property testers to deal with
functions defined on infinite domains, though it may be necessary to assume additional structure

∗Dept. Comp. Sci., Princeton University, nailon @cs.princeton.edu
†Dept. Comp. Sci., Princeton University, chazelle @cs.princeton.edu

1

Electronic Colloquium on Computational Complexity, Report No. 68 (2004)

ISSN 1433-8092

(for example, measurability of f w.r.t. the underlying σ-algebra). Such functions arise when dealing
with natural phenomena, like the temperature as a function of location and time. Of course in these
cases we couldn’t read the entire input even if we had unlimited resources.

The distribution should not be considered as part of the problem, but rather as a parameter of
the problem. Fischer [4] distinguishes between the case where D is known to the tester, and the
case where it is not known. The latter is known as the “distribution-free” case [10]. We will assume
that the distribution is known.

The following question motivated the results in this paper: what happens when the distribution
D is uniform on a strict subset S of the domain, and zero outside S? Intuitively, the “effective”
domain is smaller, and therefore testing the property should be simpler. For general distributions, a
natural measure of the “size” of the effective domain is the Shannon entropy H of D. In this paper
we show a connection between the quantity H and the query complexity, which further supports
the connection between property testing and information theory.

One interesting, well-studied property is monotonicity [2–4,6,8,10–12]. A real function f over a
poset P is monotone if any x, y ∈ P such that x ≤ y satisfy f(x) ≤ f(y). In this paper we assume
that P is the d-dimensional cube [n]d, with the order:

(x1, . . . , xd) ≤ (y1, . . . , yd) if xi ≤ yi for all i = 1, . . . , d.

Halevy and Kushilevitz [10] describe a property tester with query complexity O(2d logd n
ε

) in the

distribution-free case. In [11] they show a property tester with query complexity O(d4d log n
ε

), for the
special case D = U . If d is fixed, this result improves a result by Dodis et al. [2], who describe a

property tester with query complexity O(d2 log2 n
ε

) (For large d, n must be doubly-exponential in d
for Halevy-Kushilevitz’s result to be better than that of Dodis et al.).

The main result of our paper is as follows:

Theorem 1.1 Let D be a distribution on [n]d with independent marginal distributions (in other
words, D is a product D1 × · · · × Dd of distributions Di on [n]d). Let H be the Shannon entropy of
D. Then there exists a property tester for functions over ([n]d,D) with expected query complexity

O(2dH
ε

).

This theorem improves Halevy and Kushilevitz’s result by replacing the 4d with 2d in the special
case D = U (because then H = d log n). It also gives a first evidence of the connection between
property testing and the Shannon entropy of the underlying distribution.

We note that although this paper deals with the known distribution case, the results here can
be easily used to show that Halevy and Kushilevitz’s O(ε−1 log n) algorithm for the distribution-
free one-dimensional case [10] can be generalized to the distribution-free high-dimensional case with
O(ε−1d2d log n) query complexity.

The rest of the paper is organized as follows: Section 2 starts with preliminaries and definitions,
Section 3 proves Theorem 1.1 for the case ([n],D), Section 4 proves Theorem 1.1 for the case ([n]d,U),
and Section 5 completes the proof of Theorem 1.1 using a general measure theoretic lemma proven
in Appendix A. Section 6 discusses future work and open problems.

2 Preliminaries

Let f be a real valued function on the domain [n]d, with a probability distribution D = D1×· · ·×Dd.
Assume that Di assigns probability pi

j to j ∈ [n], and therefore D assigns probability
∏d

k=1 pk
ik

to
(i1, i2, . . . , id).

2

Definition 2.1 The distance of f from monotonicity, denoted by ε, is minPrD({f 6= g}), where
the minimum is over all monotone functions g.

We will also use the notion of the axis-parallel (“projected”) order.

Definition 2.2 The i-th axis-parallel order ≤i on [n]d is defined as

(x1, . . . , xd) ≤i (y1, . . . , yd) if xi ≤ yi and xj = yj for j 6= i.

Definition 2.3 The i-th axis-parallel distance of f to monotonicity, denoted by εi, is minPrD({f 6=
g}), where the minimum is over all functions g that are monotone with respect to ≤i.

It is a simple observation that f is monotone on [n]d if and only if it is monotone with respect
to ≤i for each i = 1, . . . , d.

Definition 2.4 An integer pair 〈i, j〉 (for i, j ∈ [n]d, i ≤ j) is a violating pair if f(i) > f(j). We
say that “j is in violation with i” or “i is in violation with j” in this case.

Although this work deals with the finite domain case, it will be useful in what follows to consider
the continuous cube Id, where I = {x ∈ R | 0 ≤ x < 1}. The probability distribution is the Lebesgue
measure, denoted by µ. The distance between two measurable functions α, β : I d → R is µ({α 6= β})
(the set {α 6= β} is measurable). The distance of α from monotonicity is inf dist(α, β) where the
infimum is over all monotone functions β.

For i = 1, . . . , d, consider the following sequence of subintervals covering I:

∆i
1 = [0, pi

1),∆
i
2 = [pi

1, p
i
1 + pi

2), . . . ,∆
i
n = [1− pi

n, 1).

For a number x ∈ I, define inti(x) = j if x ∈ ∆i
j, that is, x belongs to the j-th interval induced

by Di. If d = 1 we omit the superscript and simply write ∆j and int(x). It is obvious that if x is
distributed uniformly in I, then inti(x) is distributed according to Di.

Denote by f̃ : Id → R the function defined as

f̃(x1, . . . , xd) = f(int1(x1), int2(x2), . . . , intd(xd)).

The function f̃ is constant on rectangles of the form ∆1
i1
× · · · × ∆d

id
, for any i1, . . . , id ∈ [n].

Moreover, any function α : Id → R which is constant on these rectangles can be viewed as a function
over [n]d. The following lemma formalizes an intuitive connection between ([n]d,D) and (Id,U). The
proof is postponed to Appendix A.

Lemma 2.5 The distance of f̃ from monotonicity in Id (with respect to the uniform distribution)
equals the distance of f from monotonicity in [n]d (with respect to D). This is also true with respect
to the axis-parallel orders ≤i.

3 A property tester for ([n],D)

The algorithm is a generalization of an algorithm presented in [10]. Let f : [n] → R be the input
function. We need a few definitions and lemmas.

3

Definition 3.1 For a violating pair 〈i, j〉 we say that i is active if

Pr(in violation with i | [i + 1, j]) ≥ 1/2.

Similarly, j is active if
Pr(in violation with j | [i, j − 1]) ≥ 1/2.

In other words, an active integer in a violating pair 〈i, j〉 is also in violation with an abundance
of elements in the interval [i, j].

Definition 3.2 For a violating pair 〈i, j〉, we say that i is strongly active if it is active and pi ≤
Pr([i + 1, j]). Similarly, j is strongly active if it is active and pj ≤ Pr([i, j − 1]).

Lemma 3.3 If 〈i, j〉 is a violating pair, then either i is strongly active or j is strongly active.

Proof: It is immediate that for any i < k < j, either 〈i, k〉 or 〈k, j〉 is a violating pair. So either i
or j is in violation with at least half the weight of the integers [i + 1, j − 1]. This proves that either
i or j is active. So assume i is active but not strongly active. This means that pi > Pr([i + 1, j]).
But this would imply that j is strongly active. Indeed, pi is greater than half of Pr([i, j − 1]), and
i is in violation with j, so j is active. But pj < pi so j is strongly active. 2

Lemma 3.4 Let J be the collection of strongly active integers from all violating pairs of f . Then
Pr(J) ≥ ε.

Proof: Actually, any collection J of at least one integer from each violating pair has this property.
Proof of this simple fact is omitted. 2

To describe the algorithm, we need another piece of notation. For x ∈ I, let left(x) denote the
left endpoint of the interval ∆int(x), and similarly let right(x) denote its right endpoint.

The following algorithm is an ε-property tester for monotonicity of f , with expected query
complexity O(H+1

ε
). We show how to eliminate the added 1 shortly.

monotonicity-test (f,D, ε)
1 repeat O(ε−1) times

2 choose random x ∈ I
set δ ← pint(x)

3 set r ← right(x)
4 while r + δ ≤ 2
5 choose random y ∈ [r,min{r + δ, 1}]
6 if f(int(x)) > f(int(y))
7 then output REJECT

δ ← 2δ
set δ ← pint(x)

set l← left(x)
8 while l − δ ≥ −1

choose random y ∈ [max{l − δ, 0}, x]
if f(int(y)) > f(int(x))
then output REJECT

set δ ← 2δ
output ACCEPT

4

We first calculate the expected running time of monotonicity-test. The number of iterations
of the internal while loops (lines 4,8) is clearly at most log(2/pint(x)) (all the logarithms are taken

in base 2 in this paper). Clearly,

Ex∈UI [log(2/pint(x))] = Ei∈D[log(2/pi)] = H + 1.

We prove correctness of the algorithm. Obviously, if f is monotone then the algorithm returns
“ACCEPT”. Assume that f is ε-far from being monotone. By lemma 3.4, with probability at least
ε, the random variable x chosen in line 2 satisfies int(x) ∈ J . This means that i = int(x) is strongly
active with respect to a violating pair 〈i, j〉 or 〈j, i〉. Assume the former case (a similar analysis
can be done for the latter). So i is in violation with at least half the weight of [i + 1, j], and also
pi ≤ Pr([i +1, j]). Consider the intervals [r, r + pi2

t] for t = 0, 1, 2, . . . with r as in line 3. For some
t, this interval “contains” the corresponding interval [i + 1, j] (i.e. ∆i+1 ∪ · · · ∪∆j), but pi2

t is at
most twice Pr([i + 1, j]). The latter by virtue of i being strongly active. For this t, with probability
at least 1/2 the y chosen in line 5 is in [i + 1, j]. In such a case, the probability of y being a witness
of nonmonotonicity in lines 6-7 is at least 1/2, by virtue of i being active. Summing up, we get that
the probability of outputting “REJECT” in a single iteration of the loop in line 1 is at least ε/4.
Repeating O(ε−1) times gives a constant probability.

We note that the additive constant 1 in the query complexity can be eliminated using a simple
technical observation. Indeed, notice that, for x chosen in line 2, if pint(x) > 1/2 then x cannot
be strongly active by definition, and therefore that iteration can be aborted without any query. If
pint(x) ≤ 1/2 then we can eliminate one iteration from the while loops by initializing δ = 2pint(x)

instead of δ = pint(x) and by slightly decreasing the probability of success in each iteration of the
repeat loop. This gets rid of the additive constant, and concludes the proof of Theorem 1.1 in the
([n],D) case.

4 A property tester for ([n]d,U)

For a dimension j ∈ [d] and integers i1, . . . , îj , . . . , id ∈ [n], denote by f j

i1,...,îj ,...,id
the function f

restricted to the line {i1} × · · · × {ij−1} × [n]× {ij+1} × · · · × {id}.

highdim-mon-uniform-test (f, ε)
repeat O(ε−1d2d) times

1 choose random dimension j ∈ [d]

2 choose random i1, . . . , îj , . . . , id ∈ [n]

3 run one iteration of repeat loop of monotonicity-test(f j

i1,...,îj ,...,id
,U , ∗)

output ACCEPT

To prove that the above algorithm works, we will need the following lemma. It is an improved
version of a theorem from [11], with 2d replacing the 4d on the right hand side. Recall Def. 2.2 for
definition of εi.

Lemma 4.1
d

∑

i=1

εi ≥ ε/2d+1.

5

The correctness of highdim-mon-uniform-test is a simple consequence of Lemma 4.1. Indeed,
the restricted one-dimensional function f j

i1,...,̂ij ,...,id
chosen in line 3 has expected distance of at least

γ = 1
d

∑

εi ≥
1
d
ε/2d+1 from monotonicity, in each iteration of the repeat loop. A single iteration

of monotonicity-test has an expected success probability of Ω(γ) by the analysis of the previous
section. Repeating O(ε−1d2d) times amplifies the probability of success to any fixed constant. As for
the query complexity, line 3 makes O(log n) queries, which is the entropy of the uniform distribution
on [n]. So the entire query complexity is O(ε−12dd log n) = O(ε−12dH), as required. It remains to
prove Lemma 4.1:
Proof: For i = 1, . . . , d, let Bi denote a minimal subset of [n]d such that f can be changed on Bi

to get a monotone function with respect to ≤i. So |Bi| = ndεi. Let B = ∪d
i=1Bi. So |B| ≤

∑

εi[n]d.
Let χB : [n]d → {0, 1} denote the characteristic function of B:

χB(x) =

{

1 x ∈ B

0 otherwise

We define operators ΨL and ΨR on {0, 1} functions over [n] as follows:

(ΨLv)(i) =

{

1 if there exists j ∈ [1, i] s.t.
∑i

k=j v(k) ≥ (i− j + 1)/2

0 otherwise

(ΨRv)(i) =

{

1 if there exists j ∈ [i, n] s.t.
∑j

k=i v(k) ≥ (j − i + 1)/2

0 otherwise

Given a {0, 1}-function over [n]d, we define operators Ψ
(i)
L (resp. Ψ

(i)
R) for i = 1, . . . , d by applying

ΨR (resp. ΨL) independently on one-dimensional lines of the form

{x1} × · · · × {xi−1} × [n]× {xi+1} × · · · × xd.

Finally, for i = 1, . . . , d we define the functions ϕ
(i)
L , ϕ

(i)
R : [n]d → {0, 1} as follows:

ϕ
(i)
L =

(

Ψ
(i)
L ◦Ψ

(i+1)
L ◦ · · · ◦Ψ

(d)
L

)

χB

ϕ
(i)
R =

(

Ψ
(i)
R ◦Ψ

(i+1)
R ◦ · · · ◦Ψ

(d)
R

)

χB

Note that ϕ
(i)
L = Ψ

(i)
L ϕ

(i+1)
L and ϕ

(i)
R = Ψ

(i)
R ϕ

(i+1)
R .

We claim that outside the set {ϕ
(1)
L = 1}∪{ϕ

(1)
R = 1} ⊆ [n]d the function f is monotone. Indeed,

choose x, y ∈ [n]d such that x ≤ y and ϕ
(1)
L (y) = ϕ

(1)
R (x) = 0. We want to show that f(x) ≤ f(y).

Claim 4.2 Any b ∈ B satisfies ϕ
(i)
L (b) = ϕ

(i)
R (b) = 1 for i = 1, . . . , d.

By the above Claim, x, y /∈ B. Now consider the two line segments:

SR = [x1, y1]× {x2} × · · · × {xd}

SL = [x1, y1]× {y2} × · · · × {yd}.

By definition of Ψ
(1)
R (resp. Ψ

(1)
L), the average value of ϕ

(2)
R (resp. ϕ

(2)
L) on SR (resp. SL) is less

than 1/2. Therefore, there exists z1 ∈ [x1, y1] such that ϕ
(2)
R (z1, x2, . . . , xd)+ϕ

(2)
L (z1, y2, . . . , yd) < 1.

Since these values are in {0, 1}, we get that

ϕ
(2)
R (z1, x2, . . . , xd) = ϕ

(2)
L (z1, y2, . . . , yd) = 0. (1)

6

Denote x(1) = (z1, x2, . . . , xd) and y(1) = (z2, y2, . . . , yd). By Claim 4.2 and (1), both x(1) and
y(1) are outside B. Since x ≤1 x(1) we get that f(x) ≤ f(x(1)). A similar argument shows that
f(y(1)) ≤ f(y).

We use an inductive argument, using the functions ϕ
(2)
L and ϕ

(2)
R to show that f(x(1)) ≤ f(y(1)).

The general inductive step generates points x(i) ≤ y(i) that agree in the first i coordinates, and such

that ϕ
(i+1)
R (x(i)) = ϕ

(i+1)
L (y(i)) = 0 (consequently, x(i), y(i) /∈ B).

In the base step we will end up with x(d−1) and y(d−1) that differ in their last coordinate only.
Therefore, they are ≤d-comparable and f(x(d−1)) ≤ f(y(d−1)) because x(d−1), y(d−1) /∈ B.

It remains to bound the size of the set {ϕ
(1)
L = 1}. A similar analysis can be applied to {ϕ

(1)
R = 1}.

We claim that |{ϕ
(1)
L = 1}| ≤ |B|2d. This is a simple consequence of the following lemma.

Lemma 4.3 Let v ∈ {0, 1}n. Then the number of 1’s in ΨLv is at most twice the number of 1’s in
v.

To prove this, imagine walking on the domain [n] from 1 to n, and marking integers according
to the following rule (assume on initialization that all domain points are unmarked and a counter
is set to 0):

If the value of v on the current integer i is 1, then mark i. Also, in this case increase the
counter by 1. If v(i) = 0 and the counter is > 0, then mark integer i and decrease the counter by 1.
Otherwise do nothing.

It is obvious that the number of marked integers is at most twice the number of 1’s in v. It is
also not hard to show that (ΨLv)(i) = 1 only if i is marked. Indeed, if (ΨLv)(i) = 1, then for some
j ≤ i, vector v on integer segment [j, i] has at least as many 1’s as 0’s. This implies that either
v(i) = 1 or the counter at i is positive, therefore i is marked. This proves the lemma.

We conclude that the combined size of {ϕ
(1)
L = 1} and {ϕ

(1)
R = 1} is at most 2|B|2d. This means

that f is monotone on a subset of [n]d of size at least nd − |B|2d+1. It is a simple fact that any
monotone function on a subset of [n]d can be completed to a monotone function on the entire domain
(see Lemma 1 [6]). So the distance ε of f from monotonicity is at most 2d+1

∑

εi, as required. 2

We conclude the section with a continuous version of Lemma 4.1, which will be used in the next
section.

Lemma 4.4 Let α : Id → R be a measurable function, with distance ε from monotonicity, and
distances εi from monotonicity with respect to ≤i. Then

d
∑

i=1

εi ≥ ε/2d+1.

Proof: The proof is basically as that of Lemma 4.1, with a few changes. We pick an arbitrarily
small δ > 0, and define the set Bi ⊆ Id as the set {f 6= g} for some ≤i-monotone g with distance at
most εi + δ from f (so εi ≤ µ(Bi) ≤ εi + δ). We then define a continuous version of ΨL,ΨR. The
proof of a continuous version of Lemma 4.3 is omitted. Taking δ → 0 gives the desired inequality.
2

7

5 A property tester for ([n]d,D)

highdim-monotonicity-test (f,D, ε)
1 repeat O(ε−1d2d) times

2 choose random dimension j ∈ [d]
3 choose random (x1, . . . , x̂j , . . . , xd) ∈ [0, 1]d−1

4 set ik ← intk(xk) for k = 1 . . . ̂ . . . d.

5 run one iteration of repeat loop of monotonicity-test(f j

i1,...,îj ,...,id
,Dj , ∗)

output ACCEPT

Clearly for D = U highdim-monotonicity-test is equivalent to highdim-mon-uniform-test.
We start with the query complexity analysis. The call to monotonicity-test in line 5 has query

complexity O(Hj) (the entropy of Dj). Therefore, the expected query complexity in each iteration

of the repeat loop is 1
d

∑d
j=1 O(Hj) = 1

d
O(H) (we use the well known identity that the entropy of a

product of independent variables is the sum of the individual entropies). Therefore the total running
time os O(ε−12dH), as claimed.

To prove correctness, consider the function f̃ : Id → R defined in Section 2. By Lemma 2.5,
the distance of f̃ from monotonicity ε̃ equals the distance of f from monotonicity ε. Similarly, the
axis-parallel distances satisfy ε̃i = εi for i = 1 . . . d. By Lemma 4.4, we have

∑

εi ≥
1
2ε/2d. This

means that the expected one-dimensional distance from monotonicity of f j

i1,...,îj ,...,id
in line 5 is at

least 1
2d

ε/2d. The analysis is now the same as that of highdim-mon-uniform-test.

6 Future work

1. Lower bounds: The best known lower bound for the one-dimensional uniform distribution
property tester [3] is Ω(ε−1 log n) . For arbitrary distribution it is possible, using Yao’s minimax
principal, to show a lower bound of Ω(ε−1 log(ε/pmax)), where pmax is the maximal probability
in the distribution. Note that log(1/pmax) can be arbitrarily smaller than H. It would be
interesting to close the gap, as well as generalize for higher dimension.

2. High-dimensional monotonicity: It is not known if Lemma 4.1 is tight. Namely, is there a
high dimensional function that has axis-parallel distances from monotonicity exponentially (in
d) smaller than the global distance to monotonicity? We note that even if the exponential
dependence is tight in the inequality, it would not necessarily mean that the property testing
query complexity should be exponential in d (other algorithms that are not based on axis-
parallel comparisons might do a better job).

3. Other posets and distributions: It would be interesting to generalize the results here to func-
tions over general posets [6] as well as arbitrary distributions (not necessarily product distri-
butions).

4. More information theory in property testing: It would be interesting to see how the entropy
or other complexity measures of D affect the query complexity of other interesting property
testing problems.

8

We would like to thank Shirley Halevy and Eyal Kushilevitz for enlightening discussions.

A Proof of Lemma 2.5

Let ε̃ be the distance of f̃ from monotonicity. Pick an arbitrarily small δ > 0, and let g̃ be some
monotone function on Id with distance at most ε̃+δ to f̃ . We are going to replace g̃ with a monotone
function g over [n]d with distance at most ε̃+2δ to f . To do this, we will make it constant on tiles of
the form ∆1

i1
×∆2

i2
×· · ·×∆d

id
, paying a price of at most one extra δ. We will do this one dimension

at a time.
We show how to do this for the first dimension, and the rest is done similarly. Our goal is to

replace g̃ with a monotone function g̃(1) that has distance at most ε̃ + δ(1 + 1/d) from f̃ , with
the property that it is constant on any line segment of the form ∆1

i × {x2} × · · · × {xd}, for any
i ∈ [n] and x2, . . . , xd ∈ I. For every i ∈ [n], do the following: For every x1 ∈ ∆1

i , consider the
restriction of the function g̃ to the d − 1 dimensional cube {x1} × Id−1. Denote this function by
g̃x1

(x2, . . . , xd). Let ε̃x1
denote the distance between g̃x1

and f̃x1
(where f̃x1

is defined similarly to
g̃x1

). Let γ = infx1∈∆1
i
ε̃x1

. Pick x1 such that ε̃x1
is at most γ + δ/d. We now “smear” the value

of g̃ at (x1, x2,, xd) to ∆1
i × {x2} × · · · × {xd}, for all x2, . . . , xd. Doing this for all i = 1, . . . , n

produces the function g̃(1). It is not hard to see that the distance between g̃(1) and f is at most
ε̃ + δ(1 + 1/d), and the function g̃(1) is monotone.

After obtaining g̃(j), we obtain g̃(j+1) by repeating the above process for the (j+1)-th dimension.
It is easy to verify that for j < d,

1. If g̃(j) is monotone then so is g̃(j+1).

2. If g̃(j) is constant on ∆1
i1
×∆2

i2
×· · ·×∆j

ij
×{xj+1}×· · ·×{xd} for all i1, . . . , ij and xj+1, . . . , xd,

then g̃(j+1) is constant on ∆1
i1
×∆2

i2
× · · · ×∆j+1

ij+1
×{xj+2}× · · · × {xd} for all i1, . . . , ij+1 and

xj+2, . . . , xd.

3. If the distance between g̃(j) and f̃ is at most ε̃ + jδ/d, then the distance between g̃(j+1) and
f̃ is at most ε̃ + (j + 1)δ/d.

Therefore, g̃(d) is monotone, and it is defined over [n]d (because it is constant over ∆1
i1
×· · ·×∆d

id
).

Denote the equivalent function over ([n]d,D) by g. The monotone function g has distance at most
ε̃ + 2δ from f . The set of possible distances between functions over ([n]d,D) is finite, therefore by
choosing δ small enough we obtain a function g which has distance exactly ε̃ from f . This concludes
the proof. 2

9

References

[1] Batu, T., Rubinfeld, R., White, P. Fast approximate PCPs for multidimensional bin-packing problems,
Proc. RANDOM (1999), 245–256.

[2] Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A. Improved testing
algorithms for monotonicity, Proc. RANDOM (1999), 97–108.

[3] Ergun, F., Kannan, S., Kumar, S. Ravi, Rubinfeld, R., Viswanathan, M. Spot-checkers, Proc. STOC
(1998), 259–268.

[4] Fischer, E. The art of uninformed decisions: A primer to property testing, Bulletin of EATCS, 75: 97-126,
2001.

[5] Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A., Testing Juntas Proc. FOCS (2002),
103–112.

[6] Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A. Monotonicity
testing over general poset domains, Proc. STOC (2002), 474–483.

[7] Goldreich, O. Combinatorial property testing - A survey, in “Randomization Methods in Algorithm De-
sign,” 45-60, 1998.

[8] Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samordinsky, A. Testing monotonicity, Combina-
torica, 20 (2000), 301–337.

[9] Goldreich, O., Goldwasser, S., Ron, D. Property testing and its connection to learning and approximation,
J. ACM 45 (1998), 653–750.

[10] Halevy, S., Kushilevitz, E. Distribution-free property testing, Proc. RANDOM (2003), 302–317.

[11] Halevy, S., Kushilevitz, E. Testing Monotonicity over Graph Products, ICALP (2004).

[12] Parnas, M., Ron, D., Rubinfeld, R. Tolerant property testing and distance approximation, ECCC 2004.

[13] Ron, D. Property testing, in “Handbook on Randomization,” Volume II, 597-649, 2001.

[14] Rubinfeld, R., Sudan, M. Robust characterization of polynomials with applications to program testing,
SIAM J. Comput. 25 (1996), 647–668.

10

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

