
Improving the alphabet-size in high noise, almost

optimal rate list decodable codes.

Eran Rom, Amnon Ta-Shma

A draft.

August 13, 2004

Abstract

In this note we revisit the construction of high noise, almost optimal
rate list decodable code of Guruswami [Gur04]. Guruswami showed that
based on optimal extractors one can build a (1 − ε, O(1

ε
)) list decodable

codes of rate Ω(ε

log 1
ε

) and alphabet size 2O(1
ε
·log 1

ε
). We show that if one

replaces the expander component in the construction with an unbalanced

disperser, than one can improve the alphabet size to 2O(log2 1
ε
) while keep-

ing all other parameters the same.

1 Introduction

List decoding was defined independently by Elias [Eli57] andWozencraft [Woz58]
as a generalization of the unique decoding problem. In unique decoding a code-
word is transmitted over a noisy channel such that if not too many errors occur,
one can recover the transmitted word from the received word. Unique decoding
is possible only when the number of errors is guaranteed to be less than half the
minimum distance of the code. In particular, unique decoding is not possible
when the error rate is greater than half. In list decoding we give up unique
decoding and instead only require that in any Hamming ball of relatively large
radius (”large” error rate), there are not too many codewords (”small” list con-
taining all possible transmitted codewords).
More formally, we say that C : Σn → ΣN is (p, L)-list decodable if for every
r ∈ ΣN , |{x ∈ Σn|∆(C(x), r) ≤ pN}| ≤ L, where ∆(x, y) denotes the Hamming
distance between strings x, y. That is, the number of codewords which agree
with r, on at least (1− p)N coordinates is smaller than L.
We focus on the high noise regime, where p = 1− ε, for ε > 0 being a very small
constant. Simple probabilistic argument shows that (1− ε, O(1

ε
))-list decodable

codes with rate = Ω(ε), and |Σ| = O(1
ε2
) exists. Until recently, the best known

explicit construction achieved rate of ε2, which has been a ”barrier” for the rate
of list decoding from 1 − ε fraction of errors. Recently, Guruswami ([Gur04])

1

Electronic Colloquium on Computational Complexity, Report No. 69 (2004)

ISSN 1433-8092

used an expander based construction to give the first explicit (1 − ε, O(1
ε
))-list

decodable code having rate = Ω(ε
log 1

ε

).

1.1 Our results

[Gur04] uses a strong extractor in his constuction, we skip the definition (the
interested reader can look in section 2 for the definition). [Gur04] proves:

Theorem 1. [Gur04] For every 0 ≤ K = K(N) ≤ N and every ε > 0, if a
family of (K(N), 14)-strong extractors E : [N] × [D] → [M] where M = Θ(1

ε
)

and D = log n · plogM can be explicitly constructed, then one can construct a
family of (1 − ε,K(N))-list decodable codes of rate Ω(ε

plog(1
ε
)
) and alphabet of

2O(ε
−1 log(1

ε
)).

We show that there is an explicit construction with a better alphabet size,
while all other parameters match:

Theorem 2. For every 0 ≤ K = K(N) ≤ N and every ε > 0 if a family
of (K(N), 14)-strong extractors E : [N] × [D] → [M] where M = Θ(1

ε
) and

D = log n · plogM can be explicitly constructed, then one can construct a family
of (1− ε,K(N))-list decodable codes of block length N , rate = Θ(ε

logO(1) 1
ε

), and

alphabet size of 22
ploglog(1

ε
)

For strong extractor constructions with optimal entropy loss K(N) = K =
Θ(M), and near optimal degreeD = O(logN), both the construction of [Gur04],
and ours achieve (1− ε, O(1

ε
))-list decodable code. The alphabet size, however,

in [Gur04] is 2O(ε
−1 log(1

ε
)) while we acheive alphabet size of 2O(log

2(1
ε
)).

1.2 The technique

1.2.1 Extractor Codes

One underlying component is an extractor code [TSZ01]. An extractor takes
as input a sample drawn from a weak random source, and using a short seed
of truly random bits, outputs an almost uniform string. In a strong extractor,
the output is almost uniform even if the truly random bits are made public. An
extractor code is obtained by viewing the input as an information message, and
taking the encoded message to be the extractor’s output as the seed varies over
all possible values.
Extractor codes can list decode from a large error rate. Specifically, if the
extractor error is ε, and its output length is M , then the extractor code can
decode from 1− (ε+ 1

M
) fraction of errors. The drawback of extractor codes lies

in the Ω(log 1
ε2
) lower bound on its degree [RTS00]. This lower bound translates

to an O(ε2) upper bound on the code’s rate. On the other hand, as observed
in [TSZ01], extractor codes have a property stronger than list decoding, also
known as list recovering [GI02]. Roughly speaking, list recovering deals with the
situation where the receiver only knows that the ith symbol received, belongs

2

to some set Si, whose size is a non negligible fraction of the alphabet size.
Specifically, if ε is the error of the extractor and the sets Si are of size α|Σ|,
then the error rate from which recovery is possible is ε+ α.

1.2.2 Amplification using expanders

The technique of code amplification through expanders was introduced in [ABN+92],
where it is used to amplify Justesen code. Justesen code rate vanishes as the
error rate grows. [ABN+92] take a Justesen code of constant error rate and
amplify it using an expander to get a code with large distance and constant rate
over a large alphabet. The optimality of the expander is important as the rate
achieved using amplification is proportional to 1

D
, where D is the degree of the

expander.
In [Gur04] it is shown how to use the list recovering property of extractor codes
to bypass the degree lower bound ”rate barrier” of O(ε2) using the expander
amplification technique. The idea is to use a strong extractor with a constant
error, thus bypassing the ”rate barrier” on the expense of worse error rate. Now,
the expander amplification technique can be used to improve the error rate on
the expense of the alphabet size.
Looking back, the amplification in [ABN+92] can be done using any disperser
(and good expander is just a special case), as the expansion property needed for
the amplification is to expand ”large” sets (representing the agreement larger
than pN), rather then expanding small ”sets”.
What we do is replace the expander component in [Gur04] with a good disperser.
Studying the problem we discover that what is needed is a disperser for the high
min–entropy rate, that has optimal entropy loss, and a surprisingly small degree.
Fortunately, an explicit construction of such a graph was given recently [RVW00].
Using such a graph shows that our improvement over the construction in [Gur04]
can be made explicit. For every code built upon Guruswami’s scheme the ex-
pander component can be replaced with the explicit disperser and improve the
alphabet size. As the disperser is explicit, the decoding scheme mentioned in
[Gur04] and the time it takes does not change.

2 preliminaries

We first describe the components used in the construction.

2.1 Extractors and Dispersers

An extractor is a function which extracts the randomness of a defective random
source using truly random bits as a catalyst. In a strong extractor, the same
holds even when the catalyst is made public. Formally,

Definition 1. f : [N] × [D] → [M] is a (K, ζext)-strong extractor if for every
X ⊆ [N], |X| ≥ K, the distribution Y ◦ f(X,Y) is ζext-close to the uniform

3

distribution over [D] × [M], where Y is taken uniformly at random from [D].
The entropy loss of the strong extractor is K

M
.

Ta-Shma and Radhakrishnan [RTS00] show that a (K, ζext)-strong extractor
f : [N] × [D] → [M] must have degree D = Ω(1

ζ2
ext

log N
K
), and entropy loss

K
M

= O(1
ζ2
ext

). Also shown in [RTS00] are matching implicit upper bounds.

An important property of extractors is mixing (see, [ASE92], Chap 9). For
that we now introduce some notation. For x ∈ [N] we define Γf (x) to be the
ordered neighbors of x. Formally,

Γf (x) = {(i, f(x, i) | i ∈ [D]}

The mixing property says that:

Fact 1. If f : [N] × [D] → [M] is a (K, ζext) strong extractor, then for every
S ⊆ [D]× [M], there are at most K elements x ∈ [N] satisfying

|Γf (x) ∩ S|
D

− |S|
D ·M ≥ ζext

A disperser is the one-sided variant of an extractor. Instead of requiring that
the output is ε-close to the uniform distribution, we require that the disperser’s
output covers at least a 1− ε fraction of the target set.

Definition 2. g : [L]× [T]→ [D] is a (H, ζdisp)-disperser if for every X ⊆ [L]
with |X| ≥ H we have |Γg(X)| ≥ (1− ζdisp)D. The entropy loss of the disperser
is HT

D
.

[RTS00] show matching lower bound and non-explicit upper bound for dis-
persers. Specifically, a (H, ζdisp)-disperser g : [L] × [T] → [D] must have
T = Ω(1

ζdisp
log L

H
), and entropy loss HT

D
= Ω(log 1

ζdisp
).

We again define the neighbor set Γg(`) of `, except that the dispersers we
work with are not strong, and so the set is not ordered . For ` ∈ [L] we define

Γg(`) = {g(`, j) | j ∈ [T]}

For a subset H ⊆ [L] we define Γg(H) =
⋃

`∈H Γg(`).

2.2 List Decodable Codes

Definition 3. A Code C : Σn
1 → ΣN

2 is (ε,K)-List Decodable, if for every
r ∈ ΣN

2 , |{x ∈ Σn
1 |∆(r, C(x) ≤ εN}| ≤ K

Intuitively, this means that even if an (1 − ε) fraction of the symbols in a
codeword are noisy, the size of the decoding set is upper bounded by K.

4

The rate of the code, which captures the amount of redundancy added is
n log |Σ1|
N log |Σ2| . The goal in constructing a list decodable code in the ”high noise”

situation, where ε > 0 is treated as a very small constant, is to minimize K and
the alphabet size, while maintaining a high rate. It is known that (1− ε, O(1

ε
))

codes of rate Ω(ε), and |Σ| = O(1
ε2
) exists. Also the rate must be Ω(ε), and

|Σ| = Ω(1
ε
).

3 The construction

The construction is basically Guruswami’s construction, except that Guruswami
uses a balanced, good expander and we use a slightly unbalanced good disperser.

• f : [N]× [D]→ [M] be a (K, ζext)-strong extractor, and,

• g : [L]× [T]→ [D] be a (H, ζdisp)-disperser.

We define the code Cf,g : [N]→ [MT]L as follows:

1. Given x ∈ [N], denote by y = (y1, . . . , yD) ∈ [M]D where yi = f(x, i).

2. Put the symbols (y1, . . . , yD) ∈ [M]D along g’s range [D]. Each element
` ∈ [L] has T neighbors in [D]. Collect from each neighbor the symbol that
was put along it. I.e., for each ` ∈ [L] define z` = (z`,1, . . . , z`,T) ∈ [M]T ,
where z`,t = yg(`,t).

3. The encoding of x is defined to be

Cf,g(x) = (z1, . . . , zL)

See Figure 1 for a figure illustrating the construction. We claim:

Lemma 1. If the extractor f and the disperser g are as above, and if M ·D ≥
L·T

1−ζext−ζdisp
, then Cf,g is (1− H

L
,K)-list decodable code.

Proof. Let z = (z1, . . . , zL) ∈ [MT]L be an arbitrary word in [MT]L. From z
we build a set S as follows. For each 1 ≤ ` ≤ L, we look at z` = z`,1, . . . , z`,T
and we build the set S` ⊆ [D]× [M] by

S` = {(g(`, t), z`,t) | 1 ≤ t ≤ T}

I.e., we build a subset of what z` thinks y1, . . . , yD are in locations g(`, 1), . . . , g(`, T).

We define the set S of z = (z1, . . . , zL) to be
⋃L

`=1 S`.
Suppose a codeword Cf,g(x) ∈ [MT]L agrees with z on at least H coordi-

nates. Now, if Cf,g(x) agrees with z on the `’th coordinate, then (i, f(x, i)) ∈ S`

for every i ∈ Γg(`). As g is a (H, ζdisp)-disperser, the set of neighbors of H has
at least (1− ζdisp)D elements. Hence, |Γf (x) ∩ S| ≥ (1− ζdisp)D.

5

Noting that |S| ≤ L · T , and using the assumption M ·D ≥ L·T
1−ζext−ζdisp

, we

see that |S|
MD

≤ 1− ζext − ζdisp and together

|Γf (x) ∩ S|
D

− |S|
MD

≥ ζext

By Fact 1 we conclude that there are at most K such x’s, hence the number
of close codewords is at most K.

[N] [M]=O(K) [D] [L]

D

y1y2

yD

y1y2y3

yD

T

Cf,g(x)=z1,…, zL

(K, ext)-Strong Extractor
f:[N] [D] [M]

(H, disp)-Disperser
g:[L] [T] [D]

zl=(zl,1 ,…, zl,T) [M]Tx [N]

Figure 1: The neighbors of x ∈ [N]: (y1, . . . , yD), are ”put” along the disperser’s
output [D], defining for each zl ∈ [L], a T ordered vector of its neighbors:
zl = (zl,1, . . . , zl,T). The vector zl is the lth symbol in the codeword Cf,g(x).

4 Analyzing the parameters

4.1 The constraints

First, we write down all the constraints. The bounds we give are both lower
bounds, and achievable by non-explicit constructions. We have:

6

D = Ω(
1

ζ2ext
· log N

K
) (1)

M = O(Kζ2ext) (2)

T = Ω(
1

ζdisp
· log L

H
) (3)

D = O(
HT

log 1
ζdisp

) (4)

M ·D ≥ L · T
1− ζext − ζdisp

(5)

where the first two equations are the degree and entropy loss of the extractor,
the third and fourth are the degree and entropy loss of the disperser, and the fifth
is the construction bound that guarantees that the set S is small in [D]× [M].

4.2 A specific choice of parameters

We now choose parameters. We first set ζext, ζdisp to be small constants, say
we set both to be 1

4 . In order to get a (1− ε, O(1
ε
)) we set K to be K = O(1

ε
).

With these choices we have D = Θ(log(N)), and M = Θ(K) = Θ(1
ε
). We also

set H
L
= ε. This implies that T = Θ(log(L

H
)) = Θ(log 1

ε
). To satisfy Equation

(4) we need to take H = Θ(D
T
) = Θ(log(N)

log 1
ε

) which implies that L = H
ε

=

Θ(log(N)
ε·log(1

ε
)
). Finally, we check Equation (5). We see that M ·D = Θ(log(N)

ε
) and

L · T = Θ(log(N)
ε

), so with the proper choice of constants the equation holds.
We let N = 2n and ε > 0 be our basic parameters. We summarize all other

parameters as functions in n and ε. We have,

K = Θ(
1

ε
) (6)

D = Θ(n) (7)

M = Θ(
1

ε
) (8)

L = Θ(
n

ε · log(1
ε
)
) (9)

H = Θ(
n

log(1
ε
)
) (10)

T = Θ(log
1

ε
) (11)

The rate of the code is given by

rate =
logN

L · T logM
= Θ(

n
n

ε·log(1
ε
)
· log(1

ε
) · log(1

ε
)
) = Θ(

ε

log(1
ε
)
)

7

The size of the alphabet is |Σ| = MT = (1
ε
)O(log(

1
ε
)). This proves:

Corollary 1. For every fixed positive integer K, and arbitrary ε > 0

1. If a family of (K, 14)-strong extractors f : [N] × [D] → [M], with degree
D = O(logN), and with optimal entropy loss can be explicitly constructed,
and,

2. a (εL, 14) disperser g : [L] × [T] → [D] with degree T = Ω(log L
H
) and

optimal entropy loss can be explicitly constructed

then we can explicitly construct (1− ε, O(1
ε
))-list decodable code of rate Ω(ε

log 1
ε

)

over an alphabet size of 2O(log
2(1

ε
)).

4.3 On the optimality of the parameters choice

The parameters chosen in section 4.2 give good rate and alphabet size, but are
sub optimal with respect to the non explicit construction. We now show that
in the suggested construction this choice of parameters is optimal. In all cases
below we consider the high noise regime of 1 − ε fraction of errors, namely,
H = εL.

4.3.1 (1−ε, O(1
ε
)) list-decoding implies sub optimal rate and alphabet

size

Claim 1. In the construction given in section 3, for any choice of parameters
satisfying (1− ε, 1

ε
)-list decoding with rate bounded away from zero, the resulting

rate and alphabet size cannot be better (up to constant factor) than those in
section 4.2.

Proof. We first show that M must be Θ(1
ε
):

• Decoding list of size 1
ε
implies that K = 1

ε
, and by constraint (2) M =

O(K) = O(1
ε
)

• By constraint (5) M ≥ L·T
D

. L = H
ε
, and constraint (4) implies T = Ω(D

H
).

Altogether, M ≥ L·T
D

= Ω(1
ε
)

By the construction, rate = logN
L·T logM , constraint (5) implies L · T ≤ M · D,

and so rate ≥ logN
M ·D logM = Θ(ε logN

D log 1
ε

). Thus, in order to bound the rate away

from zero, we must take D = O(logN), which gives rate = Ω(ε
log 1

ε

). As for

the alphabet size |Σ| = MT . M = Ω(1
ε
), and by constraint (3) T = Ω(log 1

ε
).

Altogether, |Σ| = (1
ε
)Ω(log

1
ε
)

8

4.3.2 Rate close to ε implies an almost optimal extractor degree

Regardless of the decoding list size and the alphabet size, having rate close to
ε, requires an almost optimal extractor degree.

Claim 2. In the construction given in section 3, for any choice of parameters
satisfying list decoding from 1 − ε error fraction with rate = ε

log 1
ε

, it must be

that D = O(logN).

Proof. We show that logN
D

= Ω(1)

• The construction constraint suggests that L · T ≤ M · D, and so rate =
logN

L·T logM ≥ logN
M ·D logM . Thus, rate = ε

log 1
ε

implies logN
D

≤M logM ε
log 1

ε

• rate = logN
L·T logM = ε logN

H·T logM , as L = 1
ε
H. Assuming rate = ε

log 1
ε

, and

noting that by constraint (4) H · T ≥ Θ(D), we have logN
D

≥ Θ(logM
log 1

ε

)

Altogether we have Θ(logM
log 1

ε

) ≤ logN
D

≤ M logM ε
log 1

ε

, and so M ≥ Θ(1
ε
) and

logN
D

= Ω(1)

We mention that [TSZS01] show an explicit strong extractor with a degree
very close to O(logN). However, the entropy loss of the extractor is high. We
quote its exact parameters in the next section.

4.3.3 Rate close to ε, and alphabet size of (1
ε
)log

1
ε implies optimal

entropy loss disperser

Regardless of the list size, if we wish to decode from 1 − ε fraction of errors
and achieve the rate and alphabet size as in section 4.2, then we must take an
optimal entropy loss disperser.

Claim 3. In the construction given in section 3, for any choice of parameters
satisfying list decoding from 1 − ε error fraction with rate = ε

log 1
ε

, and |Σ| =
(1
ε
)log

1
ε it must be that H·T

D
= O(1).

Proof. rate = logN
L·T logM = ε logN

H·T logM , as L = 1
ε
H. By the construction con-

straint, L ·T ≤M ·D, and so ε logN
H·T logM ≥ logN

M ·D logM , giving H·T
D
≤ εM . Now, by

constraint (3) T ≥ Θ(1
ε
), and |Σ| = MT = (1

ε
)log

1
ε implies M ≤ 1

ε
. Altogether,

H·T
D

= O(1)

4.3.4 (1− ε, O(1
ε
)) list-decoding implies disperser and extractor opti-

mal entropy loss

Claim 4. In the construction given in section 3, for any choice of parameters
satisfying (1− ε, 1

ε
)-list decoding the disperser and extractor must have optimal

entropy loss (namely, HT
D

= O(1) and K
M

= O(1)).

9

Proof. The list size implies K = 1
ε
, the use of strong extractor implies M =

O(K) = O(1
ε
), and the error fraction implies H = εL. By constraint (5)

D ≥ L·T
M

. Altogether, D ≥ Ω(H · T) or HT
D

= O(1). Interpreting constraint

(5) otherwise, M ≥ L·T
D

, and by the disperser’s lower bound D ≤ Θ(H · T).
Altogether, we have Θ(1

ε
) ≤M ≤ K (as L

H
= 1

ε
). Now in order to get a list size

of 1
ε
, it must be that M = Θ(K).

We mention that [RVW00] give an explicit disperser with high min–entropy
and optimal entropy loss, as imposed by the above claim. We quote the exact
parameters of the explicit disperser in the next section.

5 Explicit Constructions

As before, we set the extractor and disperser errors to be constants, say ζext =
ζdisp =

1
4 . We note that the construction constraint now becomes, M ·D ≥ 2·L·T

5.1 Using explicit high min–entropy optimal loss disperser

As mentioned in 4.3.4, the high noise regime and the good rate we wish, imply
the need of a high min–entropy disperser with optimal entropy loss. [RVW00]
give an explicit construction of a disperser for high min–entropies with O(1)
entropy loss. Specifically:

Fact 2 ([RVW00]). For every L and ε > 1√
L
, and for every ζdisp > 0, there

exists an explicit construction of (εL, ζdisp)-disperser g : [L] × [T] → [D], with

T = 2ploglog(
1
ε
), and entropy loss εL·T

D
= O(1).

We now plug in the above disperser in the construction:

Corollary 2. If for ε > 0, and for K = K(N) < N a family of (K, 14)-strong
extractors f : [N] × [D] → Θ(1

ε
) can be constructed, then for every ε > 0 one

can construct a family of (1− ε,K)-list decodable codes of block length N , with

rate = Ω(ε·logN
D·log 1

ε

), and |Σ| = 22
ploglog(1

ε
)

Proof. Let ε > 0, M = Θ(1
ε
), and T = 2ploglog(

1
ε
). We now choose N so that

ε2 ·T ·D ≥
√
D. By the assumption, if K(N) < N , then there is a (K, 14)-strong

extractor f : [N] × [D] → Θ(1
ε
), with degree D(N). By the choice of N , there

is a (εL, 14)-disperser g : [L] × [T] → [D], with εL·T
D

= O(1), and so choosing
a Θ(·) constant small enough for M , we have M · D ≥ 2 · L · T . Thus we can
apply lemma 1 to get a (1− ε,K)-list decodable code, of block length N , with
the above rate and alphabet size.

Assuming one can construct a family of optimal entropy loss strong extrac-
tors with near optimal degree (namely, K = O(M) = O(1

ε
), and D = O(logN)

in the above), then one can get (1 − ε, O(1
ε
))-list decodable code with rate =

Ω(ε
log 1

ε

), and the above alphabet size.

10

5.2 Using the above disperser with an explicit extractor

As mentioned by Guruswami, and in section 4.3.2 we need an extractor with de-
gree D = O(logN). The best explicit construction to date of a strong extractor,
which achieves the required degree is due to [TSZS01].

Fact 3 ([TSZS01]). For Every m =m(n), k = k(n) and ζ= ζ(n) such that
3m

√

n log(n/ζ) ≤ k ≤ n, there is an explicit family of (k, ζ) strong extractors
En : {0, 1}n × {0, 1}d → {0, 1}m with d = log n+O(log m

ζ
).

Denoting N = 2n, K = 2k, D = 2d, and M = 2m Plugging the above
extractor in the construction, we get:

Corollary 3. For every ε > 0, there is an explicit constructible family of (1−
ε, (1

ε
)Θ(

√
n log n))-list decodable codes of block length N , rate = Θ(ε

logO(1) 1
ε

), and

|Σ| = 22
ploglog(1

ε
)

Proof. Apply corollary 2 with K = MΘ(
√
n log n) = (1

ε
)Θ(

√
n log n), and D =

logN · logO(1)M = Θ(logN · logO(1)(1
ε
)).

This proves Theorem 2.

References

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construc-
tion of asymptotically good, low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on Information Theory,
38:509–516, 1992.

[ASE92] N. Alon, J. H. Spencer, and P. Erdős. The Probabilistic Method.
Wiley–Interscience Series, John Wiley & Sons, Inc., New York, 1992.

[Eli57] P. Elias. List decoding for noisy channels. In 1957-IRE WESCON
Convention Record, Pt. 2, pages 94–104, 1957.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time
codes for unique decoding and new list-decodable codes over smaller
alphabets. In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing, pages 812–821. ACM Press, 2002.

[Gur04] V. Guruswami. Better extractors for better codes. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, pages
?–?, 2004.

[RTS00] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extrac-
tors, and depth-two superconcentrators. SIAM Journal on Discrete
Mathematics, 13(1):2–24, 2000.

11

[RVW00] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-
zag product, and new constant-degree expanders and extractors. In
Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science, 2000.

[TSZ01] A. Ta-Shma and D. Zuckerman. Extractor codes. In Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing, pages
193–199, 2001.

[TSZS01] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors
from Reed-Muller codes. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, pages 638–647,
October 2001.

[Woz58] J.M. Wozencraft. List decoding. In Quarterly Progress Report, vol-
ume 48, pages 90–95. Research Laboratory of Electronics, MIT, 1958.

12

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

