Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 69 (2004)

Improving the alphabet-size in expander based
code constructions.

Eran Rom, Amnon Ta-Shma

April 7, 2005

Abstract

In this note we revisit the construction of high noise, almost optimal
rate list decodable code of Guruswami [Gur04]. Guruswami showed that
based on optimal extractors one can build a (1 —¢,0(2)) list decodable

codes of rate Q(zo;l) and alphabet size 20(£1098) We show that if one

replaces the expander component in the construction with an unbalanced
disperser, than one can improve the alphabet size to 90009* 2 while keep-
ing all other parameters the same.

In this revision we point out that the same type of improvement can be
done in various other expander based constructions given by Guruswami
and Indyk in [GI01]. We give here one example. [GI01] give an explicit

encodable/decodable unique decoding with rate ¢, relative distance (1 —¢)

. o) . . gpolyloglog(L)
and alphabet size 2¥'<’. we improve the alphabet size to 2 .

Unlike the construction in [Gur04], where the expanding graph is used only
for its expansion properties, the construction studied here requires both
expansion and mixing. Thus, the improvement is achieved by replacing
the balanced expander used with an unbalanced extractor.

1 Introduction

List decoding was defined independently by Elias [Eli57] and Wozencraft [Woz58|
as a generalization of the unique decoding problem. In unique decoding a code-
word is transmitted over a noisy channel such that if not too many errors occur,
one can recover the transmitted word from the received word. Unique decoding
is possible only when the number of errors is guaranteed to be less than half the
minimum distance of the code. In particular, unique decoding is not possible
when the error rate is greater than half. In list decoding we give up unique
decoding and instead only require that in any Hamming ball of relatively large
radius (”large” error rate), there are not too many codewords (”small” list con-
taining all possible transmitted codewords).

More formally, we say that C : " — 2V is (p, L)-list decodable if for every

Lassuming one can build an explicit optimal extractor the alphabet size can get to poly(%)

ISSN 1433-8092

re XN, {z € ¥"|A(C(z),r) < pN}| < L, where A(z,y) denotes the Hamming
distance between strings xz,y. That is, the number of codewords which agree
with r, on at least (1 — p)N coordinates is smaller than L.

We focus on the high noise regime, where p = 1 —¢, for € > 0 being a very small
constant. Simple probabilistic argument shows that (1 — ¢, O(1))-list decodable
codes with rate = Q(e¢), and |X| = 0(6%) exists. Until recently, the best known
explicit construction achieved rate of €2, which has been a ”barrier” for the rate
of list decoding from 1 — e fraction of errors. Recently, Guruswami ([Gur04])
used an expander based construction to give the first explicit (1 — e, O(%))-list
decodable code having rate = Q(@)

1.1 Our results

[Gur04] uses a strong extractor in his constuction, we skip the definition (the
interested reader can look in section 2 for the definition). [Gur04] proves:

Theorem 1. [Gur0j] For every 0 < K = K(N) < N and every ¢ > 0, if a
family of (K(N), §)-strong extractors E : [N] x [D] — [M] where M = (1)
and D = logn - plogM can be explicitly constructed, then one can construct a
family of (1 — ¢, K(N))-list decodable codes of rate Q(m) and alphabet of
90(e log(1))

We show that there is an explicit construction with a better alphabet size,
while all other parameters match:

Theorem 2. For every 0 < K = K(N) < N and every € > 0 if a family
of (K(N), 1)-strong estractors E : [N] x [D] — [M] where M = ©(%) and
D =logn-plogM can be explicitly constructed, then one can construct a family

of (1 —e€, K(N))-list decodable codes of block length N, rate = @(W), and
oglog(L ‘
alphabet size of g2rtestos ()
For strong extractor constructions with optimal entropy loss K(N) = K =
©(M), and near optimal degree D = O(log N), both the construction of [Gur04],
and ours achieve (1 —¢,O(1))-list decodable code. The alphabet size, however,

in [Gur04] is 20(” " 18(2)) while we acheive alphabet size of 20008°(2),

1.2 The technique
1.2.1 Extractor Codes

One underlying component is an extractor code [TSZ01]. An extractor takes
as input a sample drawn from a weak random source, and using a short seed
of truly random bits, outputs an almost uniform string. In a strong extractor,
the output is almost uniform even if the truly random bits are made public. An
extractor code is obtained by viewing the input as an information message, and
taking the encoded message to be the extractor’s output as the seed varies over
all possible values.

Extractor codes can list decode from a large error rate. Specifically, if the
extractor error is €, and its output length is M, then the extractor code can
decode from 1 — (e+ ;) fraction of errors. The drawback of extractor codes lies
in the Q(log %) lower bound on its degree [RTS00]. This lower bound translates
to an O(e?) upper bound on the code’s rate. On the other hand, as observed
in [TSZ01], extractor codes have a property stronger than list decoding, also
known as list recovering [GI02]. Roughly speaking, list recovering deals with the
situation where the receiver only knows that the i*" symbol received, belongs
to some set S;, whose size is a non negligible fraction of the alphabet size.
Specifically, if € is the error of the extractor and the sets S; are of size a|X|,
then the error rate from which recovery is possible is € 4 a.

1.2.2 Amplification using expanders

The technique of code amplification through expanders was introduced in [ABN192],
where it is used to amplify Justesen code. Justesen code rate vanishes as the
error rate grows. [ABN192] take a Justesen code of constant error rate and
amplify it using an expander to get a code with large distance and constant rate
over a large alphabet. The optimality of the expander is important as the rate
achieved using amplification is proportional to %, where D is the degree of the
expander.

In [Gur04] it is shown how to use the list recovering property of extractor codes
to bypass the degree lower bound "rate barrier” of O(e?) using the expander
amplification technique. The idea is to use a strong extractor with a constant
error, thus bypassing the ”rate barrier” on the expense of worse error rate. Now,
the expander amplification technique can be used to improve the error rate on
the expense of the alphabet size.

Looking back, the amplification in [ABN192] can be done using any disperser
(and good expander is just a special case), as the expansion property needed for
the amplification is to expand ”large” sets (representing the agreement larger
than pN), rather then expanding small ”sets”.

What we do is replace the expander component in [Gur04] with a good disperser.
Studying the problem we discover that what is needed is a disperser for the high
min—entropy rate, that has optimal entropy loss, and a surprisingly small degree.
Fortunately, an explicit construction of such a graph was given recently [RVWO00].
Using such a graph shows that our improvement over the construction in [Gur04]
can be made explicit. For every code built upon Guruswami’s scheme the ex-
pander component can be replaced with the explicit disperser and improve the
alphabet size. As the disperser is explicit, the decoding scheme mentioned in
[Gur04] and the time it takes does not change.

2 preliminaries

We first describe the components used in the construction.

2.1 Extractors and Dispersers

An extractor is a function which extracts the randomness of a defective random
source using truly random bits as a catalyst. In a strong extractor, the same
holds even when the catalyst is made public. Formally,

Definition 1. f : [N] x [D] — [M] is a (K, (ext)-strong extractor if for every
X C [N], |X| > K, the distribution Y o f(X,Y) is (eui-close to the uniform
distribution over [D] x [M], where Y is taken uniformly at random from [D].
The entropy loss of the strong extractor is %

Ta-Shma and Radhakrishnan [RTS00] show that a (K, (eq¢)-strong extractor
f : [N] x [D] — [M] must have degree D = Q(C% log &), and entropy loss

ext

£ = O(é) Also shown in [RTS00] are matching implicit upper bounds.
An important property of extractors is mixing (see, [ASE92], Chap 9). For
that we now introduce some notation. For z € [N] we define I'f(x) to be the

ordered neighbors of . Formally,

Ty(z) = {(@ f(z,9) | i€ [D]}
The mixing property says that:

Fact 1. If f : [N] x [D] — [M] is a (K, est) Strong extractor, then for every
S C [D] x [M], there are at most K elements x € [N] satisfying

Cs(@)nS] 18]
D D-M ~

Cemt

A disperser is the one-sided variant of an extractor. Instead of requiring that
the output is e-close to the uniform distribution, we require that the disperser’s
output covers at least a 1 — € fraction of the target set.

Definition 2. g : [L] x [T] — [D] is a (H, Caisp)-disperser if for every X C [L]
with | X| > H we have |T'g(X)| > (1 —Caisp)D. The entropy loss of the disperser
. HT
8 D -

[RT'S00] show matching lower bound and non-explicit upper bound for dis-
persers. Specifically, a (H, (qisp)-disperser g : [L] x [T| — [D] must have
T = Q(Cdiw log £), and entropy loss ZL = Q(log Cdlp).

We again define the neighbor set I'y(¢) of ¢, except that the dispersers we

work with are not strong, and so the set is not ordered . For ¢ € [L] we define

Ly(0) = H{g(6.5) | jelTl}

For a subset H C [L] we define I'y(H) = {J,cy T'y(£).

2.2 List Decodable Codes

Definition 3. A Code C : X7 — XX is (¢, K)-List Decodable, if for every
re Xy, {z e ZHA(r,C(z) <eN}Y < K

Intuitively, this means that even if an (1 — ¢) fraction of the symbols in a
codeword are noisy, the size of the decoding set is upper bounded by K.
The rate of the code, which captures the amount of redundancy added is

%. The goal in constructing a list decodable code in the "high noise”

situation, where € > 0 is treated as a very small constant, is to minimize K and
the alphabet size, while maintaining a high rate. It is known that (1 —¢,O(1))
codes of rate Q(e), and |X| = O(Z) exists. Also the rate must be Q(e), and
=] = Q)

3 The construction

The construction is basically Guruswami’s construction, except that Guruswami
uses a balanced, good expander and we use a slightly unbalanced good disperser.

e f:[N] x [D] — [M] be a (K, nt)-strong extractor, and,

o g:[L] x [T] — [D] be a (H, (asp)-disperser.

We define the code Cy g : [N] — [MT]E as follows:

1. Given z € [N], denote by ¥ = (y1,...,yp) € [M]P where y; = f(x,1).

2. Put the symbols (yi,...,yp) € [M]P along g’s range [D]. Each element
¢ € [L] has T neighbors in [D]. Collect from each neighbor the symbol that
was put along it. Le., for each £ € [L] define z, = (2¢.1,...,207) € [M]T,
where z¢; = yg(e,1)-

3. The encoding of x is defined to be

Crole) = (71,...,7L)

See Figure 1 for a figure illustrating the construction. We claim:

Lemma 1. If the extractor f and the disperser g are as above, and if M - D >

%, then Cy 4 is (1 — £, K)-list decodable code.
Proof. Let z = (z1,...,21) € [MT]F be an arbitrary word in [MT]L. From z
we build a set S as follows. For each 1 < /¢ < L, we look at Zy = z¢1,..., 2071

and we build the set S, C [D] x [M] by

Sy = {(g(&t),Zg’t) | I<t< T}

Le., we build a subset of what Z, thinks y1, ..., yp are in locations g(¢,1),...,g(¢,T).
We define the set S of z = (Z1,...,Z1) to be Ule Sp.
Suppose a codeword C ,(z) € [MT]E agrees with z on at least H coordi-
nates. Now, if C'y 4(z) agrees with z on the £’th coordinate, then (¢, f(x,?)) € S¢
for every i € I'y(¢). As g is a (H, (aisp)-disperser, the set of neighbors of H has
at least (1 — (gisp)D elements. Hence, |I'¢(z) N S| > (1 — Caisp) D.

Noting that |S| < L- T, and using the assumption M - D > we

17Ce:l;t474disp ’
see that % <1 — Ceat — Cdisp and together

Cy(z) s IS

D MD - Cemt
By Fact 1 we conclude that there are at most K such x’s, hence the number
of close codewords is at most K. O
[N] [M]=O(K) [D] [L]
Vi
y2 y]_
Y
Y3
X€[N]

272, 11 2, DeMT

Yo
Yo

(K.¢,,)-Strong Extractor (H, Zdisp)-Disperser
f:[N]X[D] ~[M] g:[LIX[T] —~ID]

Cf,g(x):Zl,..., z,

Figure 1: The neighbors of x € [N]: (y1,...,yp), are "put” along the disperser’s
output [D], defining for each z € [L], a T ordered vector of its neighbors:
Zi = (z11,...,27). The vector Z; is the I*h symbol in the codeword Cyq(z).

4 Analyzing the parameters

4.1 The constraints

First, we write down all the constraints. The bounds we give are both lower
bounds, and achievable by non-explicit constructions. We have:

1 N
D = Q(—— -log— 1
(> 0g 7) (1)
= O(K(,) (2)
1 L
T = Q(Cdisp'logﬁ) (3)
HT
D = O (4)
g(disp
v.p > LT (5)

o 1- Cea:t - Cdisp
where the first two equations are the degree and entropy loss of the extractor,

the third and fourth are the degree and entropy loss of the disperser, and the fifth
is the construction bound that guarantees that the set S is small in [D] x [M].

4.2 A specific choice of parameters

We now choose parameters. We first set (cqt, (disp to be small constants, say
we set both to be 1. In order to get a (1 —¢€,0(1)) we set K to be K = O(%).
With these choices we have D = O(log(N)), and M = O(K) = ©(1). We also
set £ = ¢. This implies that 7' = ©(log(£)) = O(log 1). To satisfy Equation
(4) we need to take H = O(2) = ©(*2U)) which implies that L = £ =

log ¢ €

O (2™ Finally, we check Equation (5). We see that M- D = @(@) and

e~10g(%)
L-T= @(@), so with the proper choice of constants the equation holds.
We let N = 2" and € > 0 be our basic parameters. We summarize all other
parameters as functions in n and e. We have,

K = o) ©)
D = ©O(n) (7)
M= el (8)
L = @(6 1og(§)) 9)
H = @(bg(%)) (10)
T = O(log-) (11)

The rate of the code is given by

log N n €
le = =0 =0
T DT (ﬁ@) Tog(D) Toe@ ~ s

The size of the alphabet is [S| = M7 = (2)00°2(2)). This proves:
Corollary 1. For every fized positive integer K, and arbitrary e > 0

1. If a family of (K, 3)-strong extractors f : [N] x [D] — [M], with degree
D = O(log N), and with optimal entropy loss can be explicitly constructed,
and,

2. a (eL, L) disperser g : [L] x [T] — [D] with degree T = Q(log £) and
optimal entropy loss can be explicitly constructed

then we can ezplicitly construct (1 — e, O(L))-list decodable code of rate Q(@)

over an alphabet size of 20(10g”(2))

4.3 On the optimality of the parameters choice

The parameters chosen in section 4.2 give good rate and alphabet size, but are
sub optimal with respect to the non explicit construction. We now show that
in the suggested construction this choice of parameters is optimal. In all cases
below we consider the high noise regime of 1 — € fraction of errors, namely,
H =¢lL.

4.3.1 (1—¢, O(%)) list-decoding implies sub optimal rate and alphabet
size

Claim 1. In the construction given in section 8, for any choice of parameters
satisfying (1 —e, %)-list decoding with rate bounded away from zero, the resulting
rate and alphabet size cannot be better (up to constant factor) than those in
section 4.2.

Proof. We first show that M must be ©(1):

e Decoding list of size 2 implies that K = 1, and by constraint (2) M =
O(K) = 0(3)

e By constraint (5) M > &L L = £ "and constraint (4) implies T = Q(5).
Altogether, M > &L = (1)

By the construction, rate = %, constraint (5) implies L - T < M - D,

log N _ @(elogN
M-DlogM — Dlog 1
€

from zero, we must take D = O(log N), which gives rate = Q(==1). As for

log <
the alphabet size |%| = MT. M = Q(%)7 and by constraint (3) T = Q(log %)
Altogether, |X| = (2)%0o8) 0

and so rate >). Thus, in order to bound the rate away

4.3.2 Rate close to ¢ implies an almost optimal extractor degree

Regardless of the decoding list size and the alphabet size, having rate close to
€, requires an almost optimal extractor degree.

Claim 2. In the construction given in section 3, for any choice of parameters
satisfying list decoding from 1 — € error fraction with rate = —<t, it must be

log
that D = O(log N).
Proof. We show that % =Q(1)

e The construction constraint suggests that L -T < M - D, and so rate =

log N log N _ € : : log N €
TTlogdl = M Dlogif- Thus, rate = == implies =3~ < Mlog M =~
g < e
_ log N _ elog N _ 1 : _ €
o rale = Tloe i = FTleg il L = -H. Assuming rate = fog T and
noting that by constraint (4) H - T > ©(D), we have IO%N > @(ll‘z)gg]\f)

Altogether we have @(lf)ggf‘f) < % < Mlog Mﬁ and so M > @(%) and

1 1
e

logDN _ Q(l) 0

We mention that [TSZS01] show an explicit strong extractor with a degree
very close to O(log N). However, the entropy loss of the extractor is high. We
quote its exact parameters in the next section.

4.3.3 Rate close to ¢, and alphabet size of (%)log% implies optimal
entropy loss disperser

Regardless of the list size, if we wish to decode from 1 — e fraction of errors
and achieve the rate and alphabet size as in section 4.2, then we must take an
optimal entropy loss disperser.

Claim 3. In the construction given in section 3, for any choice of parameters

satisfying list decoding from 1 — € error fraction with rate = —<+, and |X| =

log
(%)log% it must be that 2L = O(1).

_ log N _ elog N _ 1 .
Proof. rate = TTlog il — TTloghl® 3 L = ;-H. By the construction con-

straint, L-T < M - D, and so H?’llwolgOéVM > M.lgglé\éM, giving % < eM. Now, by

constraint (3) T > O(1), and S| = M7T = (%)k’g% implies M < 1. Altogether,
L = 0(1) 0
LT —

4.3.4 (1—¢0(2)) list-decoding implies disperser and extractor opti-
mal entropy loss

Claim 4. In the construction given in section 3, for any choice of parameters
satisfying (1 — e, %)—list decoding the disperser and extractor must have optimal
entropy loss (namely, 2L = O(1) and £ = O(1)).

Proof. The list size implies K = %, the use of strong extractor implies M =
O(K) = O(%), and the error fraction implies H = eL. By constraint (5)

€

D > LT Altogether, D > Q(H -T) or ZL = O(1). Interpreting constraint

M D
(5) otherwise, M > &L and by the disperser’s lower bound D < ©(H - T).
Altogether, we have ©(1) < M < K (as & = 1). Now in order to get a list size
of 1, it must be that M = O(K). O

We mention that [RVWO00] give an explicit disperser with high min—entropy
and optimal entropy loss, as imposed by the above claim. We quote the exact
parameters of the explicit disperser in the next section.

5 Explicit Constructions

As before, we set the extractor and disperser errors to be constants, say (ept =
Cdisp = i. We note that the construction constraint now becomes, M-D > 2-L-T

5.1 Using explicit high min—entropy optimal loss disperser

As mentioned in 4.3.4, the high noise regime and the good rate we wish, imply
the need of a high min—entropy disperser with optimal entropy loss. [RVWOO0]
give an explicit construction of a disperser for high min—entropies with O(1)
entropy loss. Specifically:

Fact 2 ([RVWO0O0]). For every L and ¢ > ﬁ, and for every Cqisp > 0, there
exists an explicit construction of (€L, (aisp)-disperser g : [L] x [T] — [D], with

1 .
T = 2plodlod(3) | and entropy loss % =0(1).

We now plug in the above disperser in the construction:

Corollary 2. If for € > 0, and for K = K(N) < N a family of (K, §)-strong
extractors f : [N] x [D] — O(%) can be constructed, then for every e > 0 one
can construct a family of (1 — €, K)-list decodable codes of block length N, with

oglog(L
rate = Q(gffg]\i), and |3] = g2rioston)

Proof. Let e >0, M = O(1), and T = gploglog(£) - We now choose N so that
¢2-T-D > /D. By the assumption, if K(N) < N, then there is a (K, 1)-strong
extractor f : [N] x [D] — O(1), with degree D(N). By the choice of N, there
is a (eL, 3)-disperser g : [L] x [T] — [D], with <L = O(1), and so choosing
a ©(-) constant small enough for M, we have M - D > 2- L -T. Thus we can
apply lemma 1 to get a (1 — ¢, K)-list decodable code, of block length N, with
the above rate and alphabet size. OJ

Assuming one can construct a family of optimal entropy loss strong extrac-
tors with near optimal degree (namely, K = O(M) = O(%), and D = O(log N)
in the above), then one can get (1 — ¢, O(2))-list decodable code with rate =
Q(@), and the above alphabet size. ‘

10

5.2 Using the above disperser with an explicit extractor

As mentioned by Guruswami, and in section 4.3.2 we need an extractor with de-
gree D = O(log N). The best explicit construction to date of a strong extractor,
which achieves the required degree is due to [TSZS01].

Fact 3 ([TSZS01]). For Every m =m(n), k = k(n) and (= {(n) such that

3m+/nlog(n/{) < k < n, there is an explicit family of (k,() strong extractors
E, : {0,1}" x {0,1}¢ — {0,1}™ with d = logn + O(log 7).

Denoting N = 2", K = 2¥ D = 2? and M = 2™ Plugging the above
extractor in the construction, we get:

Corollary 3. For every e > 0, there is an explicit constructible family of (1 —
€, (2)®Wnloen)) list decodable codes of block length N, rate = @(W), and

ploglog(L
5] = gzt
Proof. Apply corollary 2 with K = M©O(nlogn) — (%)@(V’“Og"), and D =
log N -1og®® M = ©(log N - logo(l)(%)). O

This proves Theorem 2.

6 Unique Decoding with Rate Q(¢), and Relative
Distance (1 —¢)

The example we study here as well as all constructions from [GI01] share some
basic form described below.

6.1 The Abstract Expander Based Construction

The expander based constructions given in [GI01] have the following general
form. Take some (N, rN) code C over some alphabet ¥ and a bipartite balanced
expanding graph G = (4, B, E), with |[A| = |B| = N. Put the symbols of a
codeword C(x) along one side of G, and redistribute the symbols along the edges
of G. Collect the symbols on the other side of G to get the resulting codeword.
See figure 2. [ABN'92] gave a similar construction to amplify the error of
Justesen code. The property needed from the expanding graph in [ABNT92]
was that of a disperser, namely, every large enough subset of vertices in one side
misses only a small fraction of vertices on the other side. The properties needed
from the expanding graph in [GIO1] are both expansion and mixing properties.
We point out the fact that the graph used in [GI01] is balanced. We show that
by replacing it with an unbalanced graph, the alphabet size can be dramatically
improved.

11

w,=(w,

.
W g W) ez

T-regular balanced
expanding graph
G=(A,B,E) with|A|=|B|=N

CX)=W, ,.., W,

Figure 2: yi,...,yn € N are the coordinates of some codeword C(z). The
coordinates of C(x) are "put” along the graph’s left side A, defining for each
l € B an ordered vector of its neighbors w; = (wy 1,...,wyT) € YT, The vector
w; is the I symbol in the overall codeword Cg(z).

6.2 The Actual Components Used

For the specific example we bring here of unique decoding with rate Q(e), relative
distance (1 — ¢€), and alphabet size 20(3) with encoding time N log® N and
almost linear decoding time [GIO01] use the above scheme with the following code
C and expanding graph G:

1. ([GI01] Claim 1) For every « > 0 there exists a prime power ¢ = ¢, of
order O(%), which may be assumed to be a power of 2, such that for all
B > 0, the following holds. there is an explicitly specified code family with
constant rate ro g > 0 over an alphabet of size ¢ with the property that a
code of block length N in the family can be list decoded from up to (1 —«)
fraction of errors in O(N'*#) time, and can be encoded in O(N log®™) N)

2. A T-regular balanced expander graph G = (4, B, F), with |A| = |B| = N,
satisfying for every e < §’ < 4:

e VY C A, |Y|=1iN we have [[¢(Y)| > (1—€)N
« VY C A, Y] = 1N, VX C B, |X|= 0N, we have FeZIRX] > 5

Using Ramanujan graph, a degree T'= O(
above two properties.

=

+ %) is enough to achieve the

Plugging the above building blocks in the construction above we get a code with

rate: 1
0B 12
Ta.pm (12)

and with alphabet size:
1

o

O((—)") (13)

12

Using these two building blocks [GI01] prove the following:

Theorem 3 ([GIO1] Theorem 8). For any (3,5 > 0, there is a constant B > 1
such that for all small enough € > 0 there is an explicitly specified code family
with the properties:

1. It has rate (5), relative distance at least (1 — €) and alphabet size 20(2).

2. A code of block length N in the family can be list decoded in O(N'T8) time
from up to a (1 —§) errors, and can be encoded in O(N log®(1)N) time.

Given ¢ > 0, the parameters in the theorem are achieved by taking §’ = (%),
o= (g) and any € < §. Thus, the required degree T is O(1). Noting that &, 3
are independent of € (12), (13) imply rate Q(¢), and alphabet size 20(2)

6.3 Replacing the Balanced Expander with Unbalanced
Extractor

We now claim that the balanced expanding graph from above can be replaced
with an unbalanced extractor g : [L] x [T] — [N] with regular right degree

Q= % with [N] replacing A, and [L] replacing B, see figure 3.

Lemma 2. For every § > 0, and € < 8 if g : [L] x [T] — [N] is an (eL, §)-

extractor with reqular right degree @ = % we have:

e VY C [N], |Y| = 1N we have T¢(Y)| > (1 —¢€)L
o VY C[N], [Y| = §N, VX C [L], |X| = 0L, we have TEF0XL > &

Proof. For the expansion property we note that any extractor is also a disperser.
Thus, for every X C [L], | X| = €L, we have [I'y(X)| > 2N. This means that
for every Y C [N], |[Y| = 3N, there are at most €L vertices in [L] which do
not have any neighbor in Y (Otherwise, we have a set of eL vertices in L with
neighbor set of size %N which have no neighbor in Y of size %N). Thus, for
every Y C [N], |[Y| = 1N there are at least (1 — €)L vertices with at least one

neighbor in Y. In other words [T'y(Y)| > (1 —¢€)L.

For the second property we have by the mixing property of extractors that
VY C [N], VX C [L], |X| > €L it holds that:

r,(xX)nY| Y| 1
’ TIX| N| < 1 (14)
Y F ﬂY XY |T 1
QI‘ Xy 1)
TIX] Q\YI QYN i
T,(X)NY| |X|T TIX| 1
- < - 16
‘ vl QN Qv 1 (16)
0, (X)nY| |X] NIX| 1
‘ oVl | < I i (a7)
T, (Y) N X| (Nl) X
Pl)20 s (11— =2) 18
aly] vii) I (18)

13

Y1
Y2
- T
WI_(WI,l s W I,T) €2
Yn
Extractor
O:[L]x[T] —[N]
Cg(x)=wl,.., W,

Figure 3: Ezactly as with the previous construction yi,...,yn € %V, the
coordinates of some codeword C(x) are "put” along the extractor’s output [N],
defining for eachl € [L] an ordered vector of its neighbors w; = (wy1,...,w;,T) €

ST The vector w; is the I'" symbol in the overall codeword C,(x).

Now, taking | X| = 0L for § > € we get —‘FQS‘/}),TX‘

Plugging in the same code as before with the extractor instead of the bal-
anced expander in the above construction we get a code with rate

> 30 O

N
B 19
ra BT (19)
and with alphabet size:
1
Ol(=)") (20)

Once again taking &' = (%), o = (%) and any € < ¢/, and noting that an optimal

extractor with constant error satisfies:

T = Oflog(2) (21)
and
N = O(eLT) (22)

We get by (19) rate Q(e) and by (20) alphabet size poly(?).
For an explicit result we can take the Zig-Zag extractor of [RVWO00] which when
used with constant error it satisfies:

T — @(2polylolog(%)) (23)
and
N = O(LT) (24)

1
2polylogl,og(€)

Thus, for L > (%) we get again rate Q(e), and alphabet size 2

14

References

[ABN'92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construc-

[ASE92]

[Eli57]

[GI01]

[G102]

[Gur04]

[RTS00]

[RVWO00]

[TSZ01]

[TSZS01]

[Woz58]

tion of asymptotically good, low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on Information Theory,
38:509-516, 1992.

N. Alon, J. H. Spencer, and P. Erdés. The Probabilistic Method.
Wiley—Interscience Series, John Wiley & Sons, Inc., New York, 1992.

P. Elias. List decoding for noisy channels. In 1957-IRE WESCON
Convention Record, Pt. 2, pages 94-104, 1957.

Venkatesan Guruswami and Piotr Indyk. Expander-based construc-
tions of efficiently decodable codes. In Proceedings of the 42nd An-
nual IEEE Symposium on Foundations of Computer Science, pages
658-667, 2001.

Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time
codes for unique decoding and new list-decodable codes over smaller
alphabets. In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing, pages 812-821. ACM Press, 2002.

Venkatesan Guruswami. Better extractors for better codes? In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, pages 436—444. ACM Press, 2004.

J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extrac-
tors, and depth-two superconcentrators. SIAM Journal on Discrete
Mathematics, 13(1):2-24, 2000.

O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-
zag product, and new constant-degree expanders and extractors. In
Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science, 2000.

A. Ta-Shma and D. Zuckerman. Extractor codes. In Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing, pages
193-199, 2001.

Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors
from Reed-Muller codes. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, pages 638-647,
October 2001.

J.M. Wozencraft. List decoding. In Quarterly Progress Report, vol-
ume 48, pages 90-95. Research Laboratory of Electronics, MIT, 1958.

15

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

