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Abstract

Let p(21,.s%n) = 320, . r)el, n Wrayyra) Il1<i<n i e homogeneous polynomial of
degree n in n real variables with integer nonnegative coefficients. The support of such
polynomial p(z1,...,z,) is defined as supp(p) = {(r1,.-,7n) € Inn : a(py,....;,) # 0} . The
convex hull CO(supp(p)) of supp(p) is called the Newton polytope of p . We study the
following decision problems , which are far-reaching generalizations of the classical perfect
matching problem :

e Problem 1 . Consider a homogeneous polynomial p(z1, ..., z,,) of degree n in n real
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it
true that (1,1,..,1) € supp(p) ¢

e Problem 2 . Consider a homogeneous polynomial p(z1, ..., ) of degree n in n real
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it
true that (1,1,..,1) € CO(supp(p)) ?

We prove that for hyperbolic polynomials these two problems are equivalent and can be
solved by deterministic polynomial-time oracle algorithms . This result is based on a "hy-
perbolic” generalization of Rado theorem .
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1 Introduction and motivating examples

Let p(21,.-,Tn) = X(ry,..rn)elnn Ur1rrn) Hi1<i<n z;' be homogeneous polynomial of degree n
in n real variables. Here I}, ,, stands for the set of vectors r = (71, ..., 7) with nonnegative integer
components and > ;;< 7 = n. In this paper we primarily study homogeneous polynomials
with nonnegative integer coefficients .

_Definition 1.1: The support of polynomial p(z1,...,z,) as above is defined as supp(p) =
1y n) € Inm @ @@y, p,) 7 0} . The convex hull CO(supp(p)) of supp(p) is called the
wton polytope of p . 11
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We will study the following decision problems :

e Problem 1 . Consider a homogeneous polynomial p(z1,...,2,) of degree n in n real
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it true
that (1,1,..,1) € supp(p) ?

e Problem 2 . Consider a homogeneous polynomial p(z1,...,z,) of degree n in n real
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it true
that (1,1,..,1) € CO(supp(p)) ?



Our goal is solve these decision problems using deterministic polynomial-time oracle algorithms,
i.e. algorithms which evaluate the given p(z1, ..., 2, ) at the number of rational vectors (g1, ..., gn)
which is polynomial in n and log(p(1, 1, ..,1)); these rational vectors (g, ..., g, ) suppose to have
bit-wise complexity which is polynomial in n and log(p(1,1,..,1)) ; and the additional auxilary
arithmetic computations also take polynomial in n and log(p(1,1,..,1)) number of steps .

The next example explains some (well known ) origins of the both problems .

Example 1.2: Consider first the following homogeneous polynomial from [23] : p(z1,...,2,) =
tr(D(xz)A)" , where D(z) is a n X n diagonal matrix Diag(z1,...,2,) ; and A is n X n matrix
with (0,1) entries , i.e. A is an anjacency matrix of some directed graph I' . Clearly , this
polynomial p(z1, ..., z,) has nonnegative integer coefficients . It has been proved in [23] that
;Wtr(D( )A)" is equal to the number of Hamiltonian circuits in the graph I' . Notice
that the polynomial tr(D(z)A)" can be evaluated in O(n®log(n)) arithmetic operations and
(1,1,...,1) € supp(p) iff there exists a Hamiltonian circuit in the graph I'. Therefore , unless
P = NP , there is no hope to design deterministic polynomial oracle algorithm solving Problem
1 in this case . (The author is indebted to A.Barvinok for pointing at this polynomial . )
Next consider the following class of determinantal polynomials :

Q(xl,---,xn) = det( Z Azl'l)a
1<i<n

where A = (A44,...,A,) is a n-tuple of positive semidefinite n x n hermitian matrices , i.e.
A; = 0, with integer entries . Recall that the mixed discriminant

D(A) = Par. 00, 6 det Z Ajz;).

1<i<n

It is well known (see , for instance , [19] ) that a determinantal polynomial ¢() can be represented

as
1

glzy, . zn) = >, ][] DA ) E—— (1)
rElnn 1<i<n HISiSn Ti:
where a n-tuple of square matrices consists of r; copies of 4;,1 < i < k. One of the equivalent
formulations [29] of the classical Rado theorem states that D(A,) > 0 iff
Rank(ZAi) > |S]| for all S C {1,2,...,n} (2)
1€S
One important corollary of the Rado conditions (3) is that

supp(q) = CO(supp(q)) N Inn- (3)
Le. if integer vectors r,r(1),7(2),...,7(k) € I(n,n) and
r= Z a(i)r(i),a(s) > 0,1 <i<k; Z a(i
1<i<k 1<i<k

and D(A,@;) > 0,1 < i < k then also D(A;) > 0 . Notice that in this case Problem 1 and
Problem 2 are equivalent .
We can rewrite Rado conditions (3) as follows :

max Y r; > [S|forall § C {1,2,..,n} (4)
resupp(q) ;=g



Putting things together we get the following Fact .

Fact 1.3: The following properties of determinantal polynomial g((z1, ..., ) = det(3> 1 <;<,, AiTi)
with n X n hermitian matrices A; > 0,1 < i < n are equivalent .

1. (1,1,..,1) ¢ supp(q).
2. (1,1,..,1) ¢ CO(supp(q))-

3. There exists nonempty S C {1,2,...,n} such that

Z ris; < Z si = | S| for all(ry, ...,y € supp(q), (5)
1<i<n 1<i<n

, where (s1, ..., 8,) is a characteristic function of the subset S , i.e. s, =1ifi € S, and
s; = 0 otherwise .
Notice that if (6) holds then the distance dist(e, CO(supp(q))

to the Newton polytope CO(supp(q)) is at least /m

~—

from the vectore = (1,...,1)
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We will show that for any class of polynomials satisfying Fact 1.3 there exists a deterministic
polynomial-time oracle algorithm solving both Problem 1 and Problem 2 , which are , of course
, equivalent in this case . Our algorithm is based on the reduction to some convex programming
problem and the consequent use of the Ellipsoids method .

The next fact about determinantal polynomials , namely their hyperbolicity , is happened to
be the most important .

Fact 1.4: Consider a determinantal polynomial ¢((z1,...,zn) = det(}>;<;<,, Aizi) with A; >
0,1 <i<n . Assume that g is not identically zero , i.e. that B =: 3; ;- Ai > 0 (the sum is
strictly positive definite ). For a real vector (z1,...,z,) € R" consider the following polynomial
equation of degree n in one variable :

P(t)y=q(x1 —t,zg — t,....,xp — t) = det( Z Ajx; —t Z A;) =0. (6)

1<i<n 1<i<n

The equation (7) has n real roots roots counting the multiplicities ; if the real vector (1, ..., ) €
R™ has nonnegative entries then all roots of (7) are nonnegative real numbers . I

Proof: First , the matrix A =: }7;;.,, Aiz; is hermitian . Second , det(4 — tB) = 0 iff
det(BféABfé —tI) =0, where B 3 is the unique positive definite operator square root of

positrive definite matrix B~! . As, clearly , B~3AB™3 is also hermitian hence itls eigerllvalues
, which are the roots of () , are real . If z; > 0,1 < ¢ < n , then the matrix B"24AB"2 > 0 .
Therefore in this case the roots of (7) are nonnegative real numbers . i

The main result of this paper that this hyperbolicity , which we will describe formally in
Section 1.1 , is sufficient for Fact 1.3 ; i.e. Fact 1.4 implies Fact 1.3 . 1



1.1 Hyperbolic polynomials

The following concept of hyperbolic polynomials was originated in the theory of partial differ-
ential equations [15] .

A homogeneous polynomial p(z),z € R™ of degree n in m real varibles is called hyperbolic in
the direction e € R™ (or e- hyperbolic) if for any z € R™ the polynomial p(z — Ae) in the one
variable A\ has exactly n real roots counting their multiplicities. We assume in this paper that
p(e) > 0. Denote an ordered vector of roots of p(z—Ae) as A(z) = (A1 (z) > Ao(x) > .. A\p(2)). Tt
is well known that the product of roots is equal to p(z). Call x € R™ e-positive (e-nonnegative)
if Ap(z) > 0 (Ap(z) > 0). The fundamental result [15] in the theory of hyperbolic polynomi-
als states that the set of e-nonnegative vectors is a closed convex cone. A k-tuple of vectors
(z1,...xz) is called e-positive (e-nonnegative) if z;,1 < i < k are e-positive (e-nonnegative).
We denote the closed convex cone of e-nonnegative vectors as N(p), and the open convex cone
of e-positive vectors as Ce(p). It has been shown in [15] (see also [21]) that an e- hyperbolic
polynomial p is also d- hyperbolic for all e-positive vectors d € Ce(p).

Let us fix n real vectors z; € R™,1 < i < n and define the following homogeneous polynomial:

Poyan(01, yom) =p( Y ouxi) (7)

1<i<n
Following [21] , we define the p-mixed value of an n-vector tuple X = (z1,..,2,) as

an

Mp(X) =: Mp(@1,-52n) = 55~

p( Y, ouzy) (8)

1<i<n

Equivalently, the p-mixed value Mp(z1, .., ) can be defined by the polarization (see [21]) :

My(21,..yTp) =277 > p( Y bim) J] b 9)

bie{—1,+1},1<i<n 1<i<n 1<i<n

Associate with any vector r = (rq,...,r) € I, an n-tuple of m-dimensional vectors X,
consisting of r; copies of z;(1 < i < n). It follows, for instance from the polarization identity
(10), that

: 1
Py o1, an) = Z H a:lMp(Xr)i.' (10)
€l p 1<i<n [li<icn i
For e-nonnegative tuple X = (z1, .., ), define its capacity as:
Cap(X) = inf Ppy a1, ey an) (11)
ai>0’H1§i§n a; =1
Probably the best known example of a hyperbolic polynomial is

P(a(), ceey ak) = Det( Z aZAZ) (12)

0<i<k

where A;,0 < i < k are hermitian matrices and the linear space spanned by A4;,0 < i < k
contains a strictly positive definite matrix: } ;< 8i4; = B > 0. This polynomial is hyperbolic

4



in the direction 8 = (fi, ..., Bk). We can assume wlog that B = I and that 8 = (1,0,0,...,0).
In other words, after a nonsingular linear change of variables

P(ao, ..., o) = Det( > o;B;) (13)
0<i<k

where the matrices B;,1 < i < k are hermitian and By = 1.

In this case mixed forms are just mixed discriminants.

We make a substantial use of the following very recent result [22] , which is a rather direct
corollary of [1] , [31] and even much older [10] .

Theorem 1.5: Consider a homogeneous polynomial p(y1,y2,y3)) of degree n in 3 real variables
which is hyperbolic in the direction (0,0,1). Assume that p(0,0,1) =1 . Then there exists two
n X n real symmetric matrices A, B such that

p(y1,Y2,y3)) = det(y1 A + yo2 B + y3I).

It has been shown in [16] that most of known facts (and some opened problems ) about hyper-
bolic polynomials follow from Theorem 1.5 .

2 A hyperbolic analogue of the Rado theorem

Definition 2.1: Consider a homogeneous polynomial p(z),z € R™ of degree n in m real
variables which is hyperbolic in the direction e.Denote an ordered vector of roots of p(xz — Ae)
as AMz) = (A(z) > Aa(z) > ... A\p(z)) . We define the p-rank of z € R™ in direction e as
Ranky(x) = [{i : Mi(z) # 0}|. It follows from Theorem 1.5 that the p-rank of z € R™ in any
direction d € C. is equal to the p-rank of x € R™ in direction e , which we call the p-rank of
rcR™ .1

Consider the following polynomial in one variable D(t) = p(td + ) = Yo<i<y, cit'. Tt follows
from the identity (11) that

en = My(d,..,d)(n!) ! = p(d), cn_1 = Mp(z,d,..,d) (A (n—1)) 1, ...;co = Mp(z,..,z)(n!) ! = p(=).

(14)
Let (Agd) (z) > )\gd) () > ...> A (z)) be the (real) roots of z in the e-positive direction d, i.e.
the roots of the equation p(td — ) = 0 . Define (canonical symmetric functions) :

Ska(z) = > iy (T) Ay () Ay, ().
1<41<42<...<ix<n
ek

Then Spg(xr) = =2=* . Clearly if x is e-nonnegative then for any e-positive d the p-rank

Ranky(z) = ma,x{kn Ska(z) > 0} . The next theorem , which we prove in Appendix A , is the
main mathematical result of this paper .



Theorem 2.2: Consider a homogeneous polynomial p(x),z € R™ of degree n in m real variables
which is hyperbolic in the direction e. Let (X) = (z1,...x),z; € R™ be e-nonnegative) n-tuple
of m-dimensional vectors , i.e. x;,1 <1i < k are e-nonnegative .
Then the p-mized form My(X) =: Mpy(x1,..,2,) is positive iff the following generalized Rado
conditions hold :
Rankp(z z;) > |S| forall SC{1,2,..,n}. (15)
€S

Definition 2.3: Call a homogeneous polynomial p(a),a € R™ of degree n in n real variables
P-hyperbolic if it is hyperbolic in direction e = (1,1,...1) (vector of all ones) and all canonical
orts e;,1 < ¢ < n (rows of the identity matrix I ) are e-nonnegative .

(Notice that the class of P-hyperbolic polynomials coincides with the class of polynomials
Py, .. zn(@1,...yan) = p(31<i<n @iti) , where p is e -hyperbolic polynomial of degree n in m
real variables , a n-tuple (21, .., 2, ) of m-dimensional real vectors is e-nonnegative and 3", ., -, =;
is e-positive . ) o
Call a homogeneous polynomial g(a),a € R™ of degree n in n real variables with nonnegative
coefficients S-hyperbolic if there exists a P-hyperbolic polynomial p such that supp(p) = supp(q)
-1

Corollary 2.4: Let g(a), a0 € R™ be S-hyperbolic polynomial of degree n .
Then CO(supp(q)) NIny .

Proof: It is enough to prove the corollary for P-hyperbolic polynomials. I.e. suppose that
g(ai,...,on) = p(X1<j<n @i®i) , where p is e -hyperbolic polynomial of degree n in m real
variables , a n-tuple (xy,..,x,) of m-dimensional real vectors is e-nonnegative and ., ;
is e-positive . Then r = (ry, 72, ...,m) € supp(q) iff the p-mixed value Mp(X,) > 0, where the

n-tuple X, consists of r; copies of z;,1 < i < n. Let r(0) = (rgo), ...,rr(,o)) € CO(supp(q)). Le.
there exist r(¥) € supp(q),1 < j < n such that r0) = Y1<j<n ajr(]) and aj > 0,3 1<jcpa; =1

Let r(0) = (7«9) ...,rf(lj)),O <j<n.Asrl) e supp(q),1 <j<nthus My(X,;) >0,1<j<n
. It follows from Theorem 2.2 (only if part ) that

Rankp(z z;) > Zrz(j) forall S cC{1,2,...,n};1<j<n.
€S €S

Therefore . )
Rankp(z x;) > Z Z ajrz(]) = Zrzm,S c{L,2,...,n}.
ics i€S1<j<n icS
Using the ”if” part of Theorem 2.2 we get that M,(X, . (0)) > 0 and thus r® € supp(q) . I

Corollary 2.5: Let g(x),z € R"™ be S-hyperbolic polynomial of degree n . Then the following
conditions are equivalent

1. e € CO(supp(q)) -



2. e € supp(q) , i.e. (9(11‘_9_7':90‘”(](3:) >0.
3. Cap(p) =: infai>0,nl<i<n =1 g(at, ...,an) > 0.

4. For all € > 0 there exists a vector (a, ..., o) with positive entries such that the following
inequality holds :

a9
a;iz-q(ai, ..., a
S 90,200, - 0n) 112 < e. (16)
1Si2n g(at,...,on)

5. There exists a vector (aq,...,an) with positive entries such that the following inequality
holds :

0
aip—q(ay, ..., o 1
| Zaalq( JERE) n)_1|2§_‘ (17)
1§Zi§n g(a, ..., o)

3

6. For all subsets S C {1,2,...,n} the following inequality holds :

Zri > |S| for all (ri,...,r) € supp(q). (18)
€S

(We sketch a proof in Appendix C . )

The following result , which we prove in Appendix B , is a ”polynomial” generalization of
Lemma 4.2 in [17] .

Proposition 2.6: The condition (18) implies the condition (19) for all homogeneous polyno-
mial q(z),x € R™ of degree n in n real variables with nonnegative coefficients .

3 The ellipsoid algorithm

Consider a homogeneous polynomial ¢(z),z € R"™ of degree n in n real variables with nonneg-
ative integer coefficients . Associate with such ¢ the following convex functional

f(y1’ R yn) = log(q(eyl ) ey2, ey eyn))
Proposition 3.1: The following conditions are equivalent

1. e=(1,1,..,1) € CO(supp(q)) -
2. infyl—}-...—{—yn:O f(yla ;yn) > 0.

Ife=(1,1,..,1) ¢ CO(supp(q)) then infy,  _y.—0 f(y1,..-,yn) = —00.
Let dist(e, CO(supp(q))) = A1 > 0 and Q = log(q(e)) . Define y=(Q +1)A . Then
inf 1 f(yla ,yn) = f(yl’ ,yn) <-1 (19)

min
— 2 2
Y1t oot yn=0,(|y1|2+...4+|yn|2) Z <y Y1t tyn=0,ly1[2 +... +[yn|? <y



Proof: Our proof is a strigthforward application of the concavity of the logarithm on the
positive semi-axis and of Hanh-Banach separation theorem . It will be included in the full
version . I

Proposition 3.1 suggests the following natural approach to solve Problem 2 , i.e. to decide
whether e = (1,1,..,1) € CO(supp(q)) or not :
find ming, o —0 1y12+..+yn|2<~y F (U1 -+, Yn) With absolute accuracy % . If the resulting value
is greater or equal —% then e = (1,1,..,1) € CO(supp(q)) ; if the resulting value is less or
equal —% then e = (1,1,..,1) ¢ CO(supp(q)) . And , of course , it is natural to use the
ellipsoid method . Our main tool is the following property of the ellipsoid algorithm [27]: For a
prescribed accuracy 4 > 0, it finds a J-minimizer of a differentiable convex function f in a ball
B, that is a point z5 € B with f(zs) < ming f + d, in no more than

0 (nzln (W)) , Varg(f) = max f — min f (20)
) B B

iterations. Each iteration requires a single computation of the value and of the gradient of f at

a given point, plus O(n?) elementary operations to run the algorithm itself. In our case, this is

easily seen to cost at most O(n?) oracle calls and O(n) elementary arithmetic operations .

We have n — 1 dimensional ball By = {(y1,..;yn) 1 41 + . + Yn =0, [y1]?> + ... + [yn> <7} A

straigthforward computations show that

Varp(f) <log(q(1,1,.,1)e™) —log(q(1,1,..,1)e™ ") < 2yn.

Which gives O(n?(1 ( ) + In(y)) iterations of the ellipsoid method needed to solve Problem 2
, it amounts to O(n*(In(n) + In(y)) oracle calls . And O(n*(In(n) + In(y)) is polynomial in n
even if v is exponentially large (dist(e, CO(supp(q))) is exponentially small ). The problem is
that if -y is exponentially large ( and it can happened ) then we need to call oracles on inputs
with exponential bit-size .

Putting things together , we get the following conclusion :

If it is promised that either e = (1,1,..,1) € CO(supp(q)) or dist(e, CO(supp(q))) > poly(n)~!
for some fized polynomial poly(n) then Problem 1 can be solved by a deterministic polynomial-
time oracle algorithm based on the ellipsoid method .

And at this point we can say nothing about Problem 1, i.e. deciding whether e =(1,1,..,1) €
supp(q) or not . Corollary 2.5 says that if ¢ is S-hyperbolic polynomial then Problem 1 and
Problem 2 are equivalent ; moreover if e = (1,1,..,1) ¢ supp(q) then here exists nonempty
S C {1,2,...,n} such that

Z risi < Z s; = |S| for all(ry, ..., rn) € supp(q), (21)

1<i<n 1<i<n

, where (s1, ..., $p) is a characteristic function of the subset S ,ie. s;=1if:€ S, and s; =0
otherwise .

Notice that if (22) holds then the distance dist(e, CO(supp( ))) from the vector e = (1,...,1)
to the Newton polytope CO(supp(q)) is at least m > % Thus we have the next

theorem .

Theorem 3.2: Problem 1 and Problem 2 are equivalent for S-hyperbolic polynomials . There
exists a deterministic polynomial-time oracle algorithm solving Problem 1 for a given S-hyperbolic



polynomial q(y, ..., ) with integer coefficients . It requires O(n*(In(n)+In(In(q(1, 1,...,1))) or-
acle calls and it bit-wise complexity (which roughly the radius of the ball B, ) is O(n2 ln(q(l, 1,..,1)))

4 Hyperbolic Sinkhorn scaling

We will discuss briefly in this section another method , which is essentially a large step version
of the gradient descent .

Definition 4.1: Consider an e-nonnegative tuple X = (1,..,x,) such that the sum of its
components S(X) = d = 3;;<; % is e-positive. Define trg(z) as a sum of roots of the
univariate polynomial equation p(z — td) = 0.

Define the following map (Hyperbolic Sinkhorn Scaling) acting on such tuples:

( I1 In

trg(z1)’ " tra(zn)

HS(X)=Y =

Hyperbolic Sinkhorn Iteration (HSI) is a recursive procedure:

X1 = HS(X;),j >0, Xp is an e-nonnegative tuple with Z z; € Ce .
1<i<k

We also define the doubly-stochastic defect of e-nonnegative tuples with e-positive sums as

DS(X) = Y (tra(z;) — Z zi=d e C,

1<i<k 1<z<k

We can define the map HS(.) directly in terms of the P-hyperbolic polynomial

Qo -y o) = Py g (0,0, 0) = P Z ;T;).

1<i<n
Indeed, if Zlgign a;z; = d € Ce then
ai%Q(al, ey Q)
Qaq, ..., ap)
This gives the following way to redefine the map HS(X) :
Q(ay ...y ap) Q(ai,-..,an)

ZQar, o) 2 Q(ar, -y an)

tra(aiz;) =

HS(ag,...,an) = (

);a; > 0,1 <i<n.

And correspondingly the doubly-stochastic defect of (o, ..., ay) is equal to

ozZa Qa, ..., o)
Z | a — - 1|27

1<'L<n Q ai, .. an)

the same as the left side of (18 ) . Notice that 3 ; ;< tra(z;) = n by the Euler’s identity .



Example 4.2: Consider the following hyperbolic polynomial in n variables: p(z1,...,2n) =
[Ti<i<n zi- It is e- hyperbolic for e = (1,1,...,1). And N, is a nonnegative orthant, C, is a
positive orthant. An e-nonnegative tuple X = (1, .., 2, ) can be represented by an n x n matrix
Ax with nonnegative entries: the ith column of A is a vector z; € R"®. If Z = (21, ..., z,) € R"
and d = (dy, ...,dn) € R"; 2 > 0,1 < i <, then trq(Z) = Y1<i<pn - Recall that for a square
matrix A = {a;; : 1 <i,j < N} row scaling is defined as

R(A) ={ 2

E] (I,”

column scaling as C(A) = {—J—} assuming that all denominators are nonzero. The iterative

process ...CRCR(A) is called Smkhorns iterative scaling (SI). In terms of the matrix Ax the
map HS(X) can be realized as follows:

Ansx) = C(R(4x))

So, the map HS(X) is indeed a (rather far-reaching) generalization of Sinkhorn’s scaling. Other
generalizations (not all hyperbolic) can be found in [20], [3], [2].

The following result , proved in [16] , allows to use (HSI) to solve Problem 1 for P-hyperbolic
polynomials ¢ in the same way as it was done for the perfect matching problem in [20] , [17] ; and
for the Edmonds’ problem in [3] . The corresponding complexity is O(nlog(g(e))) iterations of
(HSI) , which can be done in O(n®log(g(e))) oracle calls . The algorithm works in the following
way :

Run K = O(nlog(q(e))) Hyperbolic Sinkhorn Iterations X1 = HS(X;) ; if DS(X;) < L for
some i < K then the p-mized form Mpy(Xo) > 0, and M,(Xo) = 0 otherwise .

Proposition 4.3: Let y; = where z; is e-nonnegative , 1 <i<n,andd =3 1<i<, Ti

z;
tra(z1) 7
is e- positive . Then (clearly) w = > 1<i<n Yi 18 e- positive . Let positive real numbers Ay >

. > An be the roots of the equation p(w —td) = 0. Then 3;;cp, \i = n and thus p(w) =
p(d) IT1<i<n N < p(d) -

In terms of the corresponding P-hyperbolic polynomial Q , the following inequality holds :

Q((B%Q(al, o)L (%Q(al, o)) <01, an) ™ Dia; > 0. (23)

5 Conclusion and Acknowledgments

Univariate polynomials with real roots appear quite often in modern combinatorics , especially
in the context of integer polytopes . We discovered in this paper rather unexpected and very
likely far-reaching connections between hyperbolic polynomials and many classical combinato-
rial and algorithmic problems . There are still several open problems . The most interesting
is a hyperbolic generalization of the van der Waerden conjecture for permanents of doubly
stochastic matrices .
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Question 5.1: Define the van der Waerden constant of a hyperbolic in direction e polynomial
p(Y1, ..., ym) of degree n in m real variables as

Mp(.’L'l, Y .’En)

VDW (p) = inf
(p) C(]/p(.'L'l, 0y xn)

where the infimum is taken over the set of tuples (z1, .., z,,) of e-positive vectors and the quantity
Cap(z1, .., zy,) is defined by (12) . It is easy to see that VDW (p) < :—:L Is VDW (p) = T’:—,'L 7 Is
it positive 7 I

For a hyperbolic in direction (1,1,..,1) polynomial Mul(yi,...,yn) = y1Y2...yn this question
is equivalent to the famous van der Waerden conjecture for permanents of doubly stochastic
matrices , proved in [12] , [13] . For a hyperbolic in direction I polynomial det(X) , X isn x n
hermitian matrix , it is equivalent to Bapat’s conjecture [5] (it was also hinted in [12] ) , proved
by the author in [18] , [30] .

I would like to acknowledge a great influence of amazingly clear paper [21] . It is my pleasure
to thank Adrian Lewis for numerous as e-mail as well phone communications. Many thanks to
the fantastic library of Los Alamos National Laboratory: all references I needed were there.
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A Proof of the (main ) Theorem 2.2

Before proving Theorem 2.2 , we will recall some basic properties of p-mixed forms and prove
a few auxillary results . The following fact was proved in [21]

Fact A.1: Consider a homogeneous polynomial p(z),z € R™ of degree n in m real variables
which is hyperbolic in the direction e. Then the following properties hold .

1. The p-mixed form Mp(z1, .., Zy) is linear in each z;,1 < i < n.

2. If 21, 29,..,2p—1 are e-nonnegative then the linear functional I(z) = Mp(z1,..,Tn—1,2) is
nonnegative on the closed cone N, of e-nonnegative vectors .

3. If the tuples (1, .., zpn), (Y1, -, Yn), (€1 — Y1, --, T, — Yn) are e-nonnegative then

0 < Mp(yla ayn) < Mp(xlﬁ ;wn)

4. Fix e-positive vector d and consider the following homogeneous polynomial py(z),z € R™
of degree n — 1 in m real variables : pg(x) =: Mp(z,z,...,z,d) . Then pg is hyperbolic in
any e-positive direction v € Ce(p) . If g € Ce(p) ( e-positive respect to the polynomial p
) then also ¢ € C,(pg) for all v € Ce(p) .

|
The next fact is well known .

Fact A.2: Consider a sequence of univariate polynomials of the same degree n : Py(t) =
> o<i<n ai,kti . suppose that limy_,o a1 = a4,0 < ¢ <nanda, #0 .

Define P(t) = ¥ y<i<p, ait’ . Then roots of P;, converge to roots of P . In particular if roots of
all polynomials P, are real then also roots of P are real ; if roots of all polynomials Py are real

nonnegative numbers then also also roots of P are real nonnegative numbers . lI
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The following corollary of Theorem 1.5 plays crucial role in our proof of Theorem 2.2 .
Corollary A.3:

1. Consider a homogeneous polynomial p(x),z € R™ of degree n in m real variables which
is hyperbolic in the direction e. Let x1,x2,x3 be three e-nonnegative vectors and d =
x1 + x2 + 3 s e-positive . Assume wlog that p(x1 + x2 + x3) = 1 . Then there exists
three symmetric positive semidefinite matrices A, B, C such that p(aiz1 + a2x2 + agx3) =
det(a1 A+ asB + a3C for all real a1, az,a3. Additionally , the roots of ajz1 + asxs + asxs
in the direction d , i.e. the roots of the equation p(aix1 + asxs + azxs —td) = 0, coincide
with the eigenvalues of a1 A + asB + a3C' .

2. Theorem 2.2 is true for e-nonnegative tuples (X) = (z1,...x,),z; € R™ consisting of at
most three distinct components , i.e the cardinality of the set {x1,...x,} is at most three .

Proof:

1. Consider the following homogeneous polynomial L(b,be,bs) = P(byx1 + bexa + b3(z1 +
x2+x3)) of degree n in 3 real variables . It follows from Theorem 1.5 that there exists two
real symmetric matrices A and B such that L(by, be, b3) = det(by A+beB+bsI) . It follows
that they both positive semidefinite , and C = I — A — B is also positive semidefinite .
Take a real linear combination z = ajx1 + asx2 + azxs. Then

p(z—t(x1+xo+x3)) = det((a1 —a3)A+(az—az)B+as3l —tI) = det(a; A+asB+asC—tI).

This proves that p(aiz1 + aszs + azzs) = det(a1 A + a2 B + a3C) for all real aq,as, a3 by
putting ¢t = 0. And it also proves the ”eigenvalues ” statement .

2. Consider e-nonnegative tuple (X) consisting of r; copiesof z; , 1 <i<3;ri+ra+r3=n
. Assume that d = z1 + z2 + 3 is e-positive (if it is not then Mp(X) = 0 by a simple
argument based on the monotonicity of p-mixed forms ). It follows from the polarization
formula (10) , that

Mp(X)= Y dip(trizy + taim2 + ts3ix3),
1<i<h<oo

and this formula is universal , i.e. holds for all homogeneous polynomial of degree n , in
particular for det(X) , X is n X n symmetric matrix . Therefore , using the first part
of this Corollary we get that the p-mixed form M,(X) = D(A) , where the matrix tuple
A consists of r; copies of A | ro copies of B and r3 copies of C' and D(A) is the mixed
discriminant . Using Rado theorem for mixed discriminants we get that D(A) > 0 iff

Rank(d_ A;) > > r; forall §cC{1,2,3}.

€8 1€S

But from the first part we get that Rank(} ;cg Ai) is equal to p-rank Rank,(sum;csz;)
of Y icgx; forall S C {1,2,3} .
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Proposition A.4: Consider similarly to part 4 of Fact A.1 the polynomial pg(z) =: Mp(z, z, ..., z, d)
where d is e-nonnegative and Rank,(d) > 1 . Then pq is hyperbolic in any direction z € N(p)
which is e-nonnegative and satisfies the following inequalities :

Rankp(z) > n —1; Ranky(z +d) =n. (24)

Also , if y € Ne(p) is e-nonnegative then also y € N,(pg) , i.e. is z-nonnegative respect to the
polynomial py.

Proof: Let z € Ng(p) be e-nonnegative satisfying (25) . Consider univariate polynomial
P(t) = Mp(tz+z,tz+z,....,tz+2,d) . Then P(t) = Ygcicnq ait’ and an—1 = My(z, 2, ..., 2,d) .
It follows from Corollary A.3 that a,_1 > 0. Consider now a sequence of univariate polynomials
Py(t) = Mp(tzy + x,tzy + ...tz + x,dg) . Where zi,d), are e-positive and limy_,oo 2; =
z, limg_,oo dr, = d . Then the coefficients of polynomials P converge to the coefficients of the
polynomial P . It follows from part 4 of Fact A.1 that the roots of P are real . Since a,—1 > 0
hence using Fact A.2 we get that the roots of P are also real . This exactly means that the
polynomial p; is hyperbolic in direction z . The d-nonnegativity statement follows from the
nonnegativity part of Fact A.2 . I

We are ready now to present our proof of Theorem 2.2 .

Proof: (Proof of Theorem 2.2 ) . The ”only if” part is simple . Indeed supposed that there
exists a subset S C {1,2,...,n} such that Rank,(> ;csz;) < |S| , i.e. using the identities
(15) My(k,k,..k,d,..,d) = 0, where k = > ;cgz; , d € Ce(p) is e-positive and the n-tuple
(k,k,...k,d,..,d) consists of |S| copies of k = > ;g x; . Let d be any e-positive positive vector
such that d — x; is e-nonnegative , 1 < i < n . Using the monotonicity of p-mixed forms we get
that

My(z1,...,xn) < Mp(k, k, ...k, d,..,d) =0.

Our proof of the ”if” part is by induction in the degree n . Suppose that the generalized Rado
conditions (16) hold . Then at least Ranky(z,) > 1 . Consider the following homogeneous
polynomial of degree n — 1 :

pd(x) = Mp(xaxa "'7$7d)7 d=zp.

We get from Proposition a.4 the following assertion :

The polynomial pg(x) is hyperbolic in direction z = Y ;<,,_1 ; and the vectors z; € N,(pg),1 <
i <n—1,ie. are z-nonnegative respect to the polynomial pg.

Indeed , it follows from the generalized Rado conditions (16) that Rankp(z) > n — 1 and
Ranky(z + d) = Ranky(31<j<cp i) =1 .

Next we show that the n—1-tuple Y = (z1, ..., 2,_1) satisfies the generalized Rado conditions

Ranky, (Y ;) > |S| forall ScC{1,2,..,n—1}.
€S
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Or equivalently , that

My(k, ...k, z,...,2,d) > 0;k = in,z = Z z;,d=1xz,,S C{1,..,n—1}, (25)
icS 1<i<n—1

where the n-tuple T = (k, .., k, 2, ..., z,d) consists of |S| copies of k , n — 1 — |S| copies of z and
one copy of d .

It is easy to see that the generalized Rado conditions for the n-tuple T are implied by the
generalized Rado conditions for the original n-tuple X = (1, ...,Zp—1, &) . Since the n-tuple
(k,..,k,z,...,2,d) consists of at most three distinct components hence we can apply part 2 of
Corollary A.3 . Therefore we get that indeed

Rankpd(z z;) > |S| forall SC{1,2,...,n—1}. (26)
€S

Thus , by induction in the degree , we get that pg-mixed form My, (z1,...,zp—1) > 0 :
the polynomial p; of degree n — 1 in m real variables is z-hyperbolic . But

an— 1
Mpy (21, s Tn—1) = Wpd(21<z<n 1 06i%;) =

~1
= ﬁpr(ZKignfl QiTiy ey 2o1<i<n—1 ;% Tn) = (n — 1)IMp(21, ..., 2p).

We conclude that if Theorem 2.2 is true for n — 1 then it is also true for n , and the case
?n =17 is trivially true . 1

B  Proof of Proposition 2.6
Proof: Assume wlog that g(ay,...,an) =1 . It follows from the Euler’s identity that

Z al al, ,an) =n.
1<i<n
Let g(o, ..., an) = Z(rl,...,rn)ESUpp( ) A(r1es7n) H1<z<n :
Define ( positive numbers ) O(r1,oirn) = Q(ry,.ern) H1<,<na , (71, -y ) € supp(q) -

Then ai%q(al, s @n) = ey ) esupp(q) Ti(r1,eeirn) -

Suppose that for some subset S C {1,2,...,n},1 < |S| < n we have the inequality Y ;g <

|S| for all (rq, ...,m) € supp(q) - Then > ;s a,-a%iq(al, .y0p) < |S|—1. But the condition (18)

says that ai%q(al, yan) =146 and Y1 cicp |6i]? < 1 By the Cauchy-Schwarz inequality

y Yies 16 < < 1. Therefore ,

Zaz q(an, . an) 2 [S| =16 > [S] - L.
Oa;

i€S €S

The last inequality gives a contradiction . i
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C A sketch of a proof of Corollary 2.4

Proof: By Theorem 2.2 the conditions (1) and (2) are equivalent . (2) implies (3) for any
homogeneous polynomial with nonnegative coefficients .
Let o = €¥,1 <% < m; 3 1<i<p ¥i = 0. Consider the following convex functional

f(yl, ] yn) = log(q(eyl ? ey27 ) eyn )'
Here g(z),z € R"™ is a homogeneous polynomial of degree n in n real variables with nonnegative
coefficients . Then

0
Qiga-q(a, ..., an) 0 .
* :—f Yi, - Y ,].SZSTL.
qon, ..., om) Ay ( n)

Notice the condition (3) is equivalent to the following condition :

inf s ¥n) = L > —c0.
pp 2 F(y1,syn) =L > —o00

Consider the anti-gradient flow , i.e. the system of differential equations

' 2 .
yi(t) = —(a—yif(yl, e ¥n) —1),3(0) = 0;1 < i < n.

It is well known that in this convex case the gradient flow is defined for all ¢ > 0 . Using the
Euler’s identity we get that

Oéz'i, Ay eeey Oy
%f(yl(t),---,yn(t)):—ﬂ(t) = 3 | fa; 41( )_1‘2

1S%n e, on)

It is easy to see that , because of the convexity of f , a nonnegative function 3(t) is non-
increasing on [0, 00) .

As infy 4+ 1y.=0 F(Y1,.-,Yn) = L > —oo thus [§° B(t)dt < oo . Thus lim; ,o B(t) = 0. This
proves the implication (3) — (4) for all homogeneous polynomials of degree n in n real variables
with nonnegative coefficients .

The implication (4) — (5) is obvious . The implication (5) — (6) for general homogeneous
polynomials of degree n in n real variables with nonnegative coefficients is Proposition 2.6 .
Finally , the implication (6) — (2) follows fairly directly from Theorem 2.2 . I
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