Hausdorff Dimension and Oracle Constructions

John M. Hitchcock
Department of Computer Science
University of Wyoming
jhitchco@cs.uwyo.edu

Abstract

Bennett and Gill (1981) proved that $\mathrm{P}^{A} \neq \mathrm{NP}^{A}$ relative to a random oracle A, or in other words, that the set $\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}=\left\{A \mid \mathrm{P}^{A}=\mathrm{NP}^{A}\right\}$ has Lebesgue measure 0 . In contrast, we show that $\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}$ has Hausdorff dimension 1.

This follows from a much more general theorem: if there is a relativizable and paddable oracle construction for a complexity theoretic statement Φ, then the set of oracles relative to which Φ holds has Hausdorff dimension 1.

We give several other applications including proofs that the polynomial-time hierarchy is infinite relative to a Hausdorff dimension 1 set of oracles and that $\mathrm{P}^{A} \neq \mathrm{NP}^{A} \cap \operatorname{coNP}^{A}$ relative to a Hausdorff dimension 1 set of oracles.

1 Introduction

Bennett and Gill [1] initiated the study of random oracles in computational complexity theory. They showed that if an oracle A is chosen uniformly at random, then $\mathrm{P}^{A} \neq \mathrm{NP}^{A}$ with probability 1. More precisely, they proved that the set of oracles

$$
\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}=\left\{A \mid \mathrm{P}^{A}=\mathrm{NP}^{A}\right\}
$$

has Lebesgue measure 0.
Hausdorff dimension [7], the most commonly used fractal dimension, provides a quantitative distinction among the measure 0 sets. Every set \mathcal{O} of oracles has a Hausdorff dimension $\operatorname{dim}_{\mathrm{H}}(\mathcal{O})$, a real number in $[0,1]$. If \mathcal{O} does not have measure 0 , then $\operatorname{dim}_{H}(\mathcal{O})=1$, but there are measure 0 sets of each possible dimension between 0 and 1 .

It is therefore interesting to ask: what is the Hausdorff dimension of $\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}$? We prove that

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}}\left(\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}\right)=1 \tag{1.1}
\end{equation*}
$$

While $\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}$ is probabilistically small, there is a dimension theoretic abundance of oracles A that satisfy $\mathrm{P}^{A}=\mathrm{NP}^{A}$.

We establish (1.1) as a corollary of a very general theorem. Let Φ be a relativizable complexity theoretic statement. In Section 3 we prove that if there is a paddable and relativizable oracle construction for Φ, then

$$
\mathcal{O}_{[\Phi]}=\{A \mid \Phi \text { holds relative to } A\}
$$

has Hausdorff dimension 1. The proof of this theorem is facilitated by the equivalence of Hausdorff dimension and log-loss unpredictability [10].

In Section 4 we give several applications of the general theorem, including (1.1) and that some other measure 0 oracle sets including $\mathcal{O}_{[\mathrm{NP}=\mathrm{EXP}]}$ and $\mathcal{O}_{[\mathrm{P} \neq \mathrm{BPP}]}$ also have Hausdorff dimension 1 . It is not known if $\mathrm{P}^{A} \neq \mathrm{NP}^{A} \cap \operatorname{coNP}^{A}$ relative to a random oracle A or if the polynomial-time hierarchy has infinitely many distinct levels relative to a random oracle A. We show that each of these statements holds relative to a Hausdorff dimension 1 set of oracles.

2 Dimension and Unpredictability

In this section we review Hausdorff dimension and an equivalent definition of it using log-loss prediction.

Hausdorff dimension is defined in any metric space. In this paper we use the Cantor space $\mathbf{C}=\{0,1\}^{\infty}$ of all infinite binary sequences. As is standard, each oracle $O \subseteq\{0,1\}^{*}$ is identified with its characteristic sequence $\chi_{O} \in \mathbf{C}$ according to the lexicographic ordering of $\{0,1\}^{*}$.

The metric on Cantor space is defined as $\rho(S, T)=2^{-k}$ where k is the length of longest common prefix of S and T. The diameter of a set $Y \subseteq \mathbf{C}$ is $\operatorname{diam}(Y)=\sup \{\rho(S, T) \mid S, T \in Y\}$.

Let $X \subseteq \mathbf{C}$ and $\delta>0$. We say that a collection $\left(Y_{i}\right)_{i=0}^{\infty}$ of subsets of \mathbf{C} is a δ-cover of X if (i) $\operatorname{diam}\left(Y_{i}\right) \leq \delta$ for all i and (ii) $X \subseteq \bigcup_{i=0}^{\infty} Y_{i}$. For each $s \in[0, \infty)$, we define

$$
H_{\delta}^{s}(X)=\inf \left\{\sum_{i=0}^{\infty} \operatorname{diam}\left(Y_{i}\right)^{s} \mid\left(Y_{i}\right)_{i=0}^{\infty} \text { is a } \delta \text {-cover of } X\right\} .
$$

The s-dimensional Hausdorff outer measure of X is

$$
H^{s}(X)=\lim _{\delta \rightarrow 0} H_{\delta}^{s}(X) .
$$

This limit always exists, but it may be infinite. For each X there is a unique $s^{*} \in[0,1]$ such that

$$
s>s^{*} \Rightarrow H^{s}(X)=0
$$

and

$$
s<s^{*} \Rightarrow H^{s}(X)=\infty .
$$

This number s^{*} is the Hausdorff dimension of X.
Definition. The Hausdorff dimension of a set $X \subseteq \mathbf{C}$ is

$$
\operatorname{dim}_{H}(X)=\inf \left\{s \mid H^{s}(X)=0\right\} .
$$

We have $0 \leq \operatorname{dim}_{\mathrm{H}}(X) \leq 1$ for every $X \subseteq \mathbf{C}$. If X does not have Lebesgue measure 0 , then $\operatorname{dim}_{\mathrm{H}}(X)=1$. For each $\alpha \in[0,1]$ there exist sets X with $\operatorname{dim}_{\mathrm{H}}(X)=\alpha$. Hausdorff dimension therefore makes quantitative distinctions among the measure 0 sets. We refer to the book by Falconer [4] for more information about Hausdorff dimension.

We now recall an equivalent definition of Hausdorff dimension involving log-loss prediction [10].
Definition. A predictor is a function

$$
\pi:\{0,1\}^{*} \times\{0,1\} \rightarrow[0,1]
$$

that satisfies

$$
\pi(w, 0)+\pi(w, 1)=1
$$

for all $w \in\{0,1\}^{*}$.

Intuitively, $\pi(w, b)$ is interpreted as the probability given by the predictor for b following w. The performance of a predictor is measured according to the log loss function, a very common loss function in the information theory literature. If probability p was assigned to the outcome that occurred, then the log loss is

$$
\log \frac{1}{p} .
$$

Definition. Let π be a predictor.

1. The cumulative log-loss of π on a string $w \in\{0,1\}^{*}$ is

$$
\mathcal{L}^{\log }(\pi, w)=\sum_{i=0}^{|w|-1} \log \frac{1}{\pi(w\lceil i, w[i])} .
$$

2. The log-loss rate of π on a sequence $A \in \mathbf{C}$ is

$$
\mathcal{L}^{\log }(\pi, A)=\liminf _{n \rightarrow \infty} \frac{\mathcal{L}^{\log }(\pi, A \upharpoonright n)}{n} .
$$

3. The worst-case log-loss rate of π on a set $X \subseteq \mathbf{C}$ is

$$
\mathcal{L}^{\log }(\pi, X)=\sup _{A \in X} \mathcal{L}^{\log }(\pi, A) .
$$

Hausdorff dimension admits an equivalent definition as log-loss unpredictability. Let Π be the set of all predictors. The proof of the following theorem used Lutz's gale characterization of Hausdorff dimension [13].

Theorem 2.1. (Hitchcock [10]) For every $X \subseteq \mathbf{C}$,

$$
\operatorname{dim}_{H}(X)=\inf _{\pi \in \Pi} \mathcal{L}^{\log }(\pi, X)
$$

The following lemma can be derived from [13] and [10]; a direct proof is included here for completeness. Intuitively, if π stops making predictions after reading w, it will have $\operatorname{loss} \mathcal{L}^{\log }\left(\pi, w v^{\prime}\right)=$ $\mathcal{L}^{\log }(\pi, w)+\left|v^{\prime}\right|$. Lemma 2.2 says that the strings $v \in\{0,1\}^{l}$ on which π can achieve a $\operatorname{loss} \log \alpha$ less than this for some prefix of v are at most a $\frac{1}{\alpha}$ fraction of the length l strings.

Lemma 2.2. Let π be a predictor and let $\alpha>1$ be a real number. For all $l \in \mathbb{N}$ and $w \in\{0,1\}^{*}$, there are at most $\frac{2^{l}}{\alpha}$ strings $v \in\{0,1\}^{l}$ for which

$$
\left(\exists v^{\prime} \sqsubseteq v\right) \mathcal{L}^{\log }\left(\pi, w v^{\prime}\right) \leq \mathcal{L}^{\log }(\pi, w)+\left|v^{\prime}\right|-\log \alpha .
$$

Proof. Let

$$
A=\left\{v \in\{0,1\}^{l}\left|\left(\exists v^{\prime} \sqsubseteq v\right) \mathcal{L}^{\log }\left(\pi, w v^{\prime}\right) \leq \mathcal{L}^{\log }(\pi, w)+\left|v^{\prime}\right|-\log \alpha\right\} .\right.
$$

Let B be the set of all strings that $v \in\{0,1\} \leq l$ that satisfy $\mathcal{L}^{\log }(\pi, w v) \leq \mathcal{L}^{\log }(\pi, w)+|v|-\log \alpha$ but no prefix of v satisfies this condition. Then $A=\left\{v \in\{0,1\}^{l} \mid\left(\exists v^{\prime} \sqsubseteq v\right) v^{\prime} \in B\right\}$ and

$$
|A|=\sum_{v \in B} 2^{l-|v|}=2^{l} \sum_{v \in B} 2^{-|v|}
$$

because B is a prefix set. Define a function $\mu:\{0,1\}^{\leq l} \rightarrow[0,1]$ by $\mu(\lambda)=1$ and $\mu(v b)=\mu(v) \pi(v, b)$ for all $v \in\{0,1\}^{<l}$ and $b \in\{0,1\}$. Then since B is a prefix set, it can be verified that $\sum_{v \in B} \mu(v) \leq 1$. Also, we have $\mu(v) \geq \alpha 2^{-|v|}$ for any $v \in B$ because $\mathcal{L}^{\log }(\pi, w v)-\mathcal{L}^{\log }(\pi, w)=\log \frac{1}{\mu(v)}$. Putting everything together, we have

$$
1 \geq \sum_{v \in B} \mu(v) \geq \sum_{v \in B} \alpha 2^{-|v|}=\alpha \frac{|A|}{2^{l}}
$$

so $|A| \leq \frac{2^{l}}{\alpha}$.

3 Paddable and Relativizable Oracle Constructions

For each $k \geq 1$, define a padding function $\operatorname{pad}_{k}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ by

$$
\operatorname{pad}_{k}(x)=0^{|x|^{k}-|x|} x
$$

and let

$$
R_{k}=\operatorname{range}\left(\operatorname{pad}_{k}\right)
$$

Let

$$
\mathcal{O}_{k}=\left\{B \subseteq\{0,1\}^{*} \mid B \cap R_{k}=\emptyset\right\}
$$

be the class of all oracles that are disjoint from R_{k}.
Definition. Let Φ be a relativizable complexity theoretic statement. We say that Φ holds via a paddable and relativizable oracle construction if

$$
(\forall k \geq 1)\left(\forall B \in \mathcal{O}_{k}\right)(\exists A) \Phi \text { holds relative to the oracle } \operatorname{pad}_{k}(A) \cup B
$$

It seems that most (if not all) oracle constructions for statements Φ involving polynomially bounded computations are paddable and relativizable. First, they are relativizable in the sense that for every oracle B there exists an oracle A such that Φ holds relative to the join $A \oplus B=0 A \cup 1 B$. Second, they are paddable in that if Φ holds relative to A, then Φ also holds relative to $\operatorname{pad}_{k}(A)$. Here we have combined these two concepts.

We now prove a general theorem that implies many complexity-theoretic statements Φ hold relative to a Hausdorff dimension 1 set of oracles.

Theorem 3.1. If Φ holds via a paddable and relativizable oracle construction, then

$$
\mathcal{O}_{[\Phi]}=\{A \mid \Phi \text { holds relative to } A\}
$$

has Hausdorff dimension 1.
Proof. Let π be any predictor. By Theorem 2.1, it suffices to show that $\mathcal{L}^{\log }\left(\pi, \mathcal{O}_{[\Phi]}\right) \geq 1$.
Let $\epsilon \in(0,1)$. For each $n \in \mathbb{N}$, define $\alpha_{n}=\left\lceil 2^{n^{\epsilon}}\right\rceil$ and $\beta_{n}=2^{\epsilon n}$. Choose n_{0} large enough so that $n \alpha_{n}<\beta_{n}$ for all $n \geq n_{0}$.

We will define a sequence of strings v_{n} for $n \geq 0$ inductively. For $n<n_{0}$, we let $v_{n}=0^{2^{n}-\alpha_{n}}$. Now let $n \geq n_{0}$ and assume that v_{i} has been defined for all $i<n$. We choose v_{n} of length $2^{n}-\alpha_{n}$ such that for all

$$
\left(u_{0}, \ldots, u_{n}\right) \in \prod_{i=0}^{n}\{0,1\}^{\alpha_{n}}
$$

we have

$$
\begin{equation*}
\mathcal{L}^{\log }\left(\pi, u_{0} v_{0} \cdots u_{n} v_{n}^{\prime}\right)>\mathcal{L}^{\log }\left(\pi, u_{0} v_{0} \cdots u_{n}\right)+\left|v_{n}^{\prime}\right|-\beta_{n} \tag{3.1}
\end{equation*}
$$

for all $v_{n}^{\prime} \sqsubseteq v_{n}$. Since Lemma 2.2 tells us that for each $\left(u_{0}, \ldots, u_{n}\right)$ there are at most $2^{2^{n}-\alpha_{n}-\beta_{n}}$ strings $v \in\{0,1\}^{2^{n}-\alpha_{n}}$ that satisfy $\mathcal{L}^{\log }\left(\pi, u_{0} v_{0} \cdots u_{n} v^{\prime}\right) \leq \mathcal{L}^{\log }\left(\pi, u_{0} v_{0} \cdots u_{n}\right)+\left|v^{\prime}\right|-\log 2^{\beta_{n}}$ for some $v^{\prime} \sqsubseteq v$ and there are $\prod_{i=0}^{n} 2^{\alpha_{i}} \leq 2^{n \alpha_{n}}$ choices of $\left(u_{0}, \ldots, u_{n}\right)$, we know that such a string v_{n} exists because

$$
2^{n \alpha_{n}} \cdot 2^{2^{n}-\alpha_{n}-\beta_{n}}<2^{2^{n}-\alpha_{n}}
$$

Let B have the characteristic sequence that is the concatenation of $0^{\alpha_{n}} v_{n}$ for all $n \in \mathbb{N}$. In other words, B is empty on the first α_{n} strings of length n, and the remaining strings are decided according to v_{n}.

Let $k>\frac{1}{\epsilon}$. We have $B \in \mathcal{O}_{k}$, so by the hypothesis there is some A such that Φ holds relative to the oracle $C=\operatorname{pad}_{k}(A) \cup B$.

Let w_{n} be the length $2^{n}-1$ prefix of C. For any u with $w_{n} u \sqsubseteq C$ and $|u| \leq \alpha_{n}$ we have

$$
\begin{aligned}
\mathcal{L}^{\log }\left(\pi, w_{n} u\right) & \geq \mathcal{L}^{\log }\left(\pi, w_{n}\right) \\
& \geq \mathcal{L}^{\log }\left(\pi, w_{n}\right)+|u|-\alpha_{n}
\end{aligned}
$$

For u, v with $w_{n} u v \sqsubseteq C,|u|=\alpha_{n}$, and $|v| \leq 2^{n}-\alpha_{n}$, we know that

$$
\begin{aligned}
\mathcal{L}^{\log }\left(\pi, w_{n} u v\right) & >\mathcal{L}^{\log }\left(\pi, w_{n} u\right)+|v|-\beta_{n} \\
& \geq \mathcal{L}^{\log }\left(\pi, w_{n}\right)+|v|-\beta_{n} \\
& =\mathcal{L}^{\log }\left(\pi, w_{n}\right)+|u v|-\alpha_{n}-\beta_{n}
\end{aligned}
$$

Let $m=2^{n_{0}}-1$ and let $c=\mathcal{L}^{\log }(\pi, C \upharpoonright m)$. Let w_{n}^{\prime} such that $\left|w_{n}^{\prime}\right| \leq 2^{n}$ and $w_{n} w_{n}^{\prime} \sqsubseteq C$. We have by induction that

$$
\mathcal{L}^{\log }\left(\pi, w_{n} w_{n}^{\prime}\right) \geq c+\left|w_{n} w_{n}^{\prime}\right|-m-\sum_{i=n_{0}}^{n}\left(\alpha_{n}+\beta_{n}\right) \geq\left|w_{n} w_{n}^{\prime}\right|-m-n\left(\alpha_{n}+\beta_{n}\right)
$$

It follows that $\mathcal{L}^{\log }(\pi, C) \geq 1$ since m is a constant and $n\left(\alpha_{n}+\beta_{n}\right)=o\left(2^{n}-1\right)$. Since $C \in \mathcal{O}_{[\Phi]}$, we have $\mathcal{L}^{\log }\left(\pi, \mathcal{O}_{[\Phi]}\right) \geq 1$.

We remark that the proof of Theorem 3.1 can be extended to yield a stronger scaled dimension [11] result. It can be shown that the set of oracles has $-2^{\text {nd }}$-order dimension 1.

We conclude this section with a variation of Theorem 3.1 involving random oracles that will be useful in an application. For each $k \geq 1$, let

$$
\operatorname{shift}_{k}:\{0,1\}^{*} \rightarrow R_{k}^{c}
$$

be the bijection that preserves the lexicographic ordering.
Theorem 3.2. Suppose that for every $k \geq 1$ there exists an oracle A such that relative to a random oracle R
Φ holds relative to the oracle $\operatorname{pad}_{k}(A) \cup \operatorname{shift}_{k}(R)$
with probability 1. Then $\mathcal{O}_{[\Phi]}$ has Hausdorff dimension 1.

Proof. In the proof of Theorem 3.1 we showed that sequence v_{0}, v_{1}, \ldots of strings exists by a combinatorial argument. In fact, randomly chosen v_{0}, v_{1}, \ldots suffice with high probability. If we choose an oracle R randomly, let $B=\operatorname{shift}_{k}(R)$, and write $B=w_{0} v_{0} w_{1} v_{1} \cdots$ where $\left|w_{n}\right|=\alpha_{n}$ and $\left|v_{n}\right|=2^{n}-\alpha_{n}$, then with probability 1 the sequence v_{0}, v_{1}, \ldots will satisfy (3.1) for all sufficiently large n. Since (3.2) holds with probability 1 , there exists an oracle R with the property of the previous sentence such that (3.2) also holds. Fix such an R. Then Φ holds relative to $C=\operatorname{pad}_{k}(A) \cup B$ and the rest of the proof goes through to show $\mathcal{L}^{\log }(\pi, C) \geq 1$.

4 Applications

In this section we apply Theorems 3.1 and 3.2 to some fundamental oracle constructions. We begin with an easy example.

Theorem 4.1. $\mathcal{O}_{[\mathrm{P}=\mathrm{PSPACE}]}$ has Hausdorff dimension 1.
Proof. The standard example of an oracle A with $\mathrm{P}^{A}=\operatorname{PSPACE}^{A}$ is to let A be PSPACE-complete. We now verify that this is a paddable and relativizable oracle construction.

Let $k \geq 1$ and let $B \in \mathcal{O}_{k}$. We use

$$
K^{B}=\left\{\left\langle x, i, 0^{t}\right\rangle \mid M_{i}^{B} \text { accepts } x \text { in } \leq t \text { space }\right\},
$$

the canonical PSPACE ${ }^{B}$-complete language. Here M_{i} is the $i^{\text {th }}$ oracle Turing machine. Let

$$
A=\operatorname{pad}_{k}\left(K^{B}\right) \cup B
$$

Then A is also PSPACE ${ }^{B}$-complete. Since we can directly answer queries to $\operatorname{pad}_{k}\left(K^{B}\right)$ in polynomial space with access to oracle B, we have $\operatorname{PSPACE}^{A}=\operatorname{PSPACE}^{B}$. Therefore

$$
\mathrm{P}^{A} \subseteq \mathrm{PSPACE}^{A}=\mathrm{PSPACE}^{B} \subseteq \mathrm{P}^{A}
$$

so $\mathrm{P}^{A}=\mathrm{PSPACE}^{A}$.
Using the fact that Hausdorff dimension in monotone, i.e. $X \subseteq Y$ implies $\operatorname{dim}_{\mathrm{H}}(X) \leq \operatorname{dim}_{\mathrm{H}}(Y)$, the first result mentioned in the introduction follows from Theorem 4.1.

Corollary 4.2. $\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}$ has Hausdorff dimension 1.
Since Bennett and Gill [1] proved that $\mathrm{NP}^{A} \neq \operatorname{coNP}^{A}$ relative to a random oracle A, we know that $\mathcal{O}_{[\mathrm{NP}=\mathrm{EXP}]}$ has measure 0 . Using Heller's construction of an oracle A with $\mathrm{NP}^{A}=\operatorname{EXP}^{A}[8]$, we have a contrasting dimension result.

Theorem 4.3. $\mathcal{O}_{[\mathrm{NP}=\mathrm{EXP}]}$ has Hausdorff dimension 1.
Proof. We will show that Heller's oracle construction is paddable and relativizable. Let $k \geq 1$ and let $B \in \mathcal{O}_{k}$. For any oracle A let $A \oplus_{k} B=\operatorname{pad}_{k}(A) \cup B$ and define the language

$$
D_{k}(A, B)=\left\{\langle i, x, l\rangle \mid M_{i}^{A \oplus_{k} B} \text { accepts } x \text { in }<l \text { steps }\right\} .
$$

Then $D_{k}(A, B)$ is always EXP ${ }^{A \oplus_{k} B}$-complete. To apply Theorem 3.1 it suffices to construct an oracle A so that $D_{k}(A, B) \in \mathrm{NP}^{A \oplus_{k} B}$. We will construct A to satisfy

$$
x \in D_{k}(A, B) \Longleftrightarrow(\exists y)|y|=3|x| \text { and } x y \in A
$$

for all x. Then $D_{k}(A, B) \in \mathrm{NP}^{A} \subseteq \mathrm{NP}^{A \oplus_{k} B}$.
We construct A in stages. Initially $A=\emptyset$. In stage m, we consider of all x of length m that encode some triple $x=\langle i, a, l\rangle$. We simulate $M_{i}^{A \oplus_{k} B}$ on input a for l steps, using the current oracle A. Reserve for A^{c} all strings $z \notin A$ such that $\operatorname{pad}_{k}(z)$ is queried in this computation. If $M_{i}^{A \oplus_{k} B}$ accepts a in fewer than l steps, we choose some y of length $3 m$ such that $x y$ is not reserved for A^{c} and add $x y$ to A. As argued in [8], we can always choose such a y. This completes stage m.

The most famous counterexample to the random oracle hypothesis [1] is IP $=$ PSPACE [12, 14, 3]. While IP $=$ PSPACE holds unrelativized, the set $\mathcal{O}_{[\text {IP }=\text { PSPACE }]}$ has measure 0 . Since $\mathrm{NP}^{A} \subseteq \mathrm{IP}^{A} \subseteq \mathrm{PSPACE}^{A} \subseteq \mathrm{EXP}^{A}$ relative to every oracle A, we have the following corollary of Theorem 4.3.

Corollary 4.4. $\mathcal{O}_{\text {[IP=PSPACE }]}$ has Hausdorff dimension 1.

It is not known if $\mathrm{P}^{A} \neq \mathrm{NP}^{A} \cap \operatorname{coNP}^{A}$ relative to a random oracle A. By the Kolmogorov zero-one law, one of the complementary sets $\mathcal{O}_{[\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP}]}$ and $\mathcal{O}_{[\mathrm{P} \neq \mathrm{NP} \cap \mathrm{coNP}]}$ has measure 1 , but it is an open problem to determine which one. From Corollary 4.2, Theorem 4.3, and monotonicity we now know that they both have dimension 1.

Corollary 4.5. $\mathcal{O}_{[\mathrm{P}=\mathrm{NP} \cap c o \mathrm{NP}]}$ and $\mathcal{O}_{[\mathrm{P} \neq \mathrm{NP} \cap c o \mathrm{NP}]}$ both have Hausdorff dimension 1.
Bennett and Gill also showed that $\mathrm{P}^{A}=\mathrm{BPP}^{A}$ relative to a random oracle A, or that $\mathcal{O}_{[\mathrm{P} \neq \mathrm{BPP}]}$ has measure 0 . Heller [9] constructed an oracle A with $\mathrm{BPP}^{A}=\mathrm{NEXP}^{A}$. We can show this oracle construction is paddable and relativizable to establish the following.

Theorem 4.6. $\mathcal{O}_{[\mathrm{BPP}=\mathrm{NEXP}]}$ has Hausdorff dimension 1.
Corollary 4.7. $\mathcal{O}_{[\mathrm{P} \neq \mathrm{BPP}]}$ has Hausdorff dimension 1.
Yao [15] (see also Håstad [6]) constructed an oracle relative to which the polynomial-time hierarchy has infinitely many distinct levels. Whether this holds relative to a random oracle is an open problem. We now use Theorem 3.2 and a relativized theorem of Book $[2,5]$ to show that it holds relative to a dimension 1 set of oracles.

Theorem 4.8. $\mathcal{O}_{\left[(\forall i) \Sigma_{i}^{\mathrm{p}} \neq \Sigma_{i+1}^{\mathrm{p}}\right]}$ has Hausdorff dimension 1.
Proof. Let A be an oracle such that $\Sigma_{i}^{\mathrm{p}, A} \neq \Sigma_{i+1}^{\mathrm{p}, A}$ for all i. By Corollary 3.5 in [5] we know that for a random oracle $R, \Sigma_{i}^{\mathrm{p}, A \oplus R} \neq \Sigma_{i+1}^{\mathrm{p}, A \oplus R}$ for all i with probability 1. Noting that $\Sigma_{i}^{\mathrm{p}, A \oplus R}=$ $\Sigma_{i}^{\mathrm{p}, \operatorname{pad}_{k}(A) \cup \operatorname{shift}_{k}(R)}$ for every oracle R and $k \geq 1$, we apply Theorem 3.2 and establish the theorem.

Acknowledgments. I thank Lance Fortnow, Xiaoyang Gu, and Jack Lutz for very helpful comments and suggestions.

References

[1] C. H. Bennett and J. Gill. Relative to a random oracle $A, \mathrm{P}^{A} \neq \mathrm{NP}^{A} \neq$ co- NP^{A} with probability 1. SIAM Journal on Computing, 10:96-113, 1981.
[2] R. V. Book. On collapsing the polynomial-time hierarchy. Information Processing Letters, 52(5):235-237, 1994.
[3] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Håstad, D. Ranjan, and R. Rohatgi. The random oracle hypothesis is false. Journal of Computer and System Sciences, 49(1):24-39, 1994.
[4] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley \& Sons, 1990.
[5] L. Fortnow. Relativized worlds with an infinite hierarchy. Information Processing Letters, 69(6):309-313, 1999.
[6] J. Håstad. Computational Limitations for Small-Depth Circuits. The MIT Press, 1986.
[7] F. Hausdorff. Dimension und äußeres Maß. Mathematische Annalen, 79:157-179, 1919.
[8] H. Heller. On relativized polynomial and exponential computations. SIAM Journal on Computing, 13(4):717-725, 1984.
[9] H. Heller. On relativized exponential and probabilistic complexity classes. Information and Control, 71:231-243, 1986.
[10] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science, 304(1-3):431-441, 2003.
[11] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform complexity. Journal of Computer and System Sciences, 69(2):97-122, 2004.
[12] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. Journal of the ACM, 39(4):859-868, 1992.
[13] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236-1259, 2003.
[14] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.
[15] A. Yao. Separating the polynomial-time hierarchy by oracles. In 26th IEEE Symposium on Foundations of Computer Science, pages 1-10. IEEE Computer Society Press, 1985.

