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Abstract

Bennett and Gill (1981) proved that PA 6= NPA relative to a random oracle A, or in other
words, that the set O[P=NP] = {A | PA = NPA} has Lebesgue measure 0. In contrast, we show
that O[P=NP] has Hausdorff dimension 1.

This follows from a much more general theorem: if there is a relativizable and paddable oracle
construction for a complexity theoretic statement Φ, then the set of oracles relative to which Φ
holds has Hausdorff dimension 1.

We give several other applications including proofs that the polynomial-time hierarchy is
infinite relative to a Hausdorff dimension 1 set of oracles and that PA 6= NPA ∩ coNPA relative
to a Hausdorff dimension 1 set of oracles.

1 Introduction

Bennett and Gill [1] initiated the study of random oracles in computational complexity theory.
They showed that if an oracle A is chosen uniformly at random, then PA 6= NPA with probability
1. More precisely, they proved that the set of oracles

O[P=NP] = {A | PA = NPA}

has Lebesgue measure 0.
Hausdorff dimension [7], the most commonly used fractal dimension, provides a quantitative

distinction among the measure 0 sets. Every set O of oracles has a Hausdorff dimension dimH(O),
a real number in [0, 1]. If O does not have measure 0, then dimH(O) = 1, but there are measure 0
sets of each possible dimension between 0 and 1.

It is therefore interesting to ask: what is the Hausdorff dimension of O[P=NP]? We prove that

dimH(O[P=NP]) = 1. (1.1)

While O[P=NP] is probabilistically small, there is a dimension theoretic abundance of oracles A that

satisfy PA = NPA.
We establish (1.1) as a corollary of a very general theorem. Let Φ be a relativizable complexity

theoretic statement. In Section 3 we prove that if there is a paddable and relativizable oracle
construction for Φ, then

O[Φ] = {A | Φ holds relative to A}

has Hausdorff dimension 1. The proof of this theorem is facilitated by the equivalence of Hausdorff
dimension and log-loss unpredictability [10].
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In Section 4 we give several applications of the general theorem, including (1.1) and that some
other measure 0 oracle sets including O[NP=EXP] and O[P6=BPP] also have Hausdorff dimension 1.

It is not known if PA 6= NPA ∩ coNPA relative to a random oracle A or if the polynomial-time
hierarchy has infinitely many distinct levels relative to a random oracle A. We show that each of
these statements holds relative to a Hausdorff dimension 1 set of oracles.

2 Dimension and Unpredictability

In this section we review Hausdorff dimension and an equivalent definition of it using log-loss
prediction.

Hausdorff dimension is defined in any metric space. In this paper we use the Cantor space

C = {0, 1}∞ of all infinite binary sequences. As is standard, each oracle O ⊆ {0, 1}∗ is identified
with its characteristic sequence χO ∈ C according to the lexicographic ordering of {0, 1}∗.

The metric on Cantor space is defined as ρ(S, T ) = 2−k where k is the length of longest common
prefix of S and T . The diameter of a set Y ⊆ C is diam(Y ) = sup{ρ(S, T ) | S, T ∈ Y }.

Let X ⊆ C and δ > 0. We say that a collection (Yi)
∞
i=0 of subsets of C is a δ-cover of X if (i)

diam(Yi) ≤ δ for all i and (ii) X ⊆
⋃∞

i=0 Yi. For each s ∈ [0,∞), we define

Hs
δ (X) = inf

{

∞
∑

i=0

diam(Yi)
s

∣

∣

∣

∣

∣

(Yi)
∞
i=0 is a δ-cover of X

}

.

The s-dimensional Hausdorff outer measure of X is

Hs(X) = lim
δ→0

Hs
δ (X).

This limit always exists, but it may be infinite. For each X there is a unique s∗ ∈ [0, 1] such that

s > s∗ ⇒ Hs(X) = 0

and
s < s∗ ⇒ Hs(X) = ∞.

This number s∗ is the Hausdorff dimension of X.

Definition. The Hausdorff dimension of a set X ⊆ C is

dimH(X) = inf{s | Hs(X) = 0}.

We have 0 ≤ dimH(X) ≤ 1 for every X ⊆ C. If X does not have Lebesgue measure 0, then
dimH(X) = 1. For each α ∈ [0, 1] there exist sets X with dimH(X) = α. Hausdorff dimension
therefore makes quantitative distinctions among the measure 0 sets. We refer to the book by
Falconer [4] for more information about Hausdorff dimension.

We now recall an equivalent definition of Hausdorff dimension involving log-loss prediction [10].

Definition. A predictor is a function

π : {0, 1}∗ × {0, 1} → [0, 1]

that satisfies
π(w, 0) + π(w, 1) = 1

for all w ∈ {0, 1}∗.
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Intuitively, π(w, b) is interpreted as the probability given by the predictor for b following w.
The performance of a predictor is measured according to the log loss function, a very common loss
function in the information theory literature. If probability p was assigned to the outcome that
occurred, then the log loss is

log
1

p
.

Definition. Let π be a predictor.

1. The cumulative log-loss of π on a string w ∈ {0, 1}∗ is

Llog(π,w) =

|w|−1
∑

i=0

log
1

π(w � i, w[i])
.

2. The log-loss rate of π on a sequence A ∈ C is

Llog(π,A) = lim inf
n→∞

Llog(π,A�n)

n
.

3. The worst-case log-loss rate of π on a set X ⊆ C is

Llog(π,X) = sup
A∈X

Llog(π,A).

Hausdorff dimension admits an equivalent definition as log-loss unpredictability. Let Π be
the set of all predictors. The proof of the following theorem used Lutz’s gale characterization of
Hausdorff dimension [13].

Theorem 2.1. (Hitchcock [10]) For every X ⊆ C,

dimH(X) = inf
π∈Π

Llog(π,X).

The following lemma can be derived from [13] and [10]; a direct proof is included here for com-
pleteness. Intuitively, if π stops making predictions after reading w, it will have loss L log(π,wv′) =
Llog(π,w) + |v′|. Lemma 2.2 says that the strings v ∈ {0, 1}l on which π can achieve a loss log α

less than this for some prefix of v are at most a 1
α

fraction of the length l strings.

Lemma 2.2. Let π be a predictor and let α > 1 be a real number. For all l ∈ N and w ∈ {0, 1}∗,

there are at most 2l

α
strings v ∈ {0, 1}l for which

(∃v′ v v) Llog(π,wv′) ≤ Llog(π,w) + |v′| − log α.

Proof. Let
A = {v ∈ {0, 1}l | (∃v′ v v)Llog(π,wv′) ≤ Llog(π,w) + |v′| − log α}.

Let B be the set of all strings that v ∈ {0, 1}≤l that satisfy Llog(π,wv) ≤ Llog(π,w) + |v| − log α

but no prefix of v satisfies this condition. Then A = {v ∈ {0, 1}l | (∃v′ v v)v′ ∈ B} and

|A| =
∑

v∈B

2l−|v| = 2l
∑

v∈B

2−|v|
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because B is a prefix set. Define a function µ : {0, 1}≤l → [0, 1] by µ(λ) = 1 and µ(vb) = µ(v)π(v, b)
for all v ∈ {0, 1}<l and b ∈ {0, 1}. Then since B is a prefix set, it can be verified that

∑

v∈B µ(v) ≤ 1.

Also, we have µ(v) ≥ α2−|v| for any v ∈ B because Llog(π,wv) − Llog(π,w) = log 1
µ(v) . Putting

everything together, we have

1 ≥
∑

v∈B

µ(v) ≥
∑

v∈B

α2−|v| = α
|A|

2l
,

so |A| ≤ 2l

α
.

3 Paddable and Relativizable Oracle Constructions

For each k ≥ 1, define a padding function padk : {0, 1}∗ → {0, 1}∗ by

padk(x) = 0|x|
k−|x|x

and let
Rk = range(padk).

Let
Ok = {B ⊆ {0, 1}∗ | B ∩ Rk = ∅}

be the class of all oracles that are disjoint from Rk.

Definition. Let Φ be a relativizable complexity theoretic statement. We say that Φ holds via a
paddable and relativizable oracle construction if

(∀k ≥ 1)(∀B ∈ Ok)(∃A) Φ holds relative to the oracle padk(A) ∪ B.

It seems that most (if not all) oracle constructions for statements Φ involving polynomially
bounded computations are paddable and relativizable. First, they are relativizable in the sense that
for every oracle B there exists an oracle A such that Φ holds relative to the join A⊕B = 0A∪ 1B.
Second, they are paddable in that if Φ holds relative to A, then Φ also holds relative to padk(A).
Here we have combined these two concepts.

We now prove a general theorem that implies many complexity-theoretic statements Φ hold
relative to a Hausdorff dimension 1 set of oracles.

Theorem 3.1. If Φ holds via a paddable and relativizable oracle construction, then

O[Φ] = {A | Φ holds relative to A}

has Hausdorff dimension 1.

Proof. Let π be any predictor. By Theorem 2.1, it suffices to show that Llog(π,O[Φ]) ≥ 1.

Let ε ∈ (0, 1). For each n ∈ N, define αn =
⌈

2nε⌉

and βn = 2εn. Choose n0 large enough so that
nαn < βn for all n ≥ n0.

We will define a sequence of strings vn for n ≥ 0 inductively. For n < n0, we let vn = 02n−αn .
Now let n ≥ n0 and assume that vi has been defined for all i < n. We choose vn of length 2n − αn

such that for all

(u0, . . . , un) ∈
n

∏

i=0

{0, 1}αn ,
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we have
Llog(π, u0v0 · · · unv′n) > Llog(π, u0v0 · · · un) + |v′n| − βn (3.1)

for all v′n v vn. Since Lemma 2.2 tells us that for each (u0, . . . , un) there are at most 22n−αn−βn

strings v ∈ {0, 1}2n−αn that satisfy Llog(π, u0v0 · · · unv′) ≤ Llog(π, u0v0 · · · un) + |v′| − log 2βn for
some v′ v v and there are

∏n
i=0 2αi ≤ 2nαn choices of (u0, . . . , un), we know that such a string vn

exists because
2nαn · 22n−αn−βn < 22n−αn .

Let B have the characteristic sequence that is the concatenation of 0αnvn for all n ∈ N. In
other words, B is empty on the first αn strings of length n, and the remaining strings are decided
according to vn.

Let k > 1
ε
. We have B ∈ Ok, so by the hypothesis there is some A such that Φ holds relative

to the oracle C = padk(A) ∪ B.
Let wn be the length 2n − 1 prefix of C. For any u with wnu v C and |u| ≤ αn we have

Llog(π,wnu) ≥ Llog(π,wn)

≥ Llog(π,wn) + |u| − αn.

For u, v with wnuv v C, |u| = αn, and |v| ≤ 2n − αn, we know that

Llog(π,wnuv) > Llog(π,wnu) + |v| − βn

≥ Llog(π,wn) + |v| − βn

= Llog(π,wn) + |uv| − αn − βn.

Let m = 2n0 − 1 and let c = Llog(π,C �m). Let w′
n such that |w′

n| ≤ 2n and wnw′
n v C. We have

by induction that

Llog(π,wnw′
n) ≥ c + |wnw′

n| − m −
n

∑

i=n0

(αn + βn) ≥ |wnw′
n| − m − n(αn + βn).

It follows that Llog(π,C) ≥ 1 since m is a constant and n(αn + βn) = o(2n − 1). Since C ∈ O[Φ],

we have Llog(π,O[Φ]) ≥ 1.

We remark that the proof of Theorem 3.1 can be extended to yield a stronger scaled dimension

[11] result. It can be shown that the set of oracles has −2nd-order dimension 1.
We conclude this section with a variation of Theorem 3.1 involving random oracles that will be

useful in an application. For each k ≥ 1, let

shiftk : {0, 1}∗ → Rc
k

be the bijection that preserves the lexicographic ordering.

Theorem 3.2. Suppose that for every k ≥ 1 there exists an oracle A such that relative to a random

oracle R

Φ holds relative to the oracle padk(A) ∪ shiftk(R) (3.2)

with probability 1. Then O[Φ] has Hausdorff dimension 1.
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Proof. In the proof of Theorem 3.1 we showed that sequence v0, v1, . . . of strings exists by a com-
binatorial argument. In fact, randomly chosen v0, v1, . . . suffice with high probability. If we choose
an oracle R randomly, let B = shiftk(R), and write B = w0v0w1v1 · · · where |wn| = αn and
|vn| = 2n − αn, then with probability 1 the sequence v0, v1, . . . will satisfy (3.1) for all sufficiently
large n. Since (3.2) holds with probability 1, there exists an oracle R with the property of the pre-
vious sentence such that (3.2) also holds. Fix such an R. Then Φ holds relative to C = padk(A)∪B

and the rest of the proof goes through to show Llog(π,C) ≥ 1.

4 Applications

In this section we apply Theorems 3.1 and 3.2 to some fundamental oracle constructions. We begin
with an easy example.

Theorem 4.1. O[P=PSPACE] has Hausdorff dimension 1.

Proof. The standard example of an oracle A with PA = PSPACEA is to let A be PSPACE-complete.
We now verify that this is a paddable and relativizable oracle construction.

Let k ≥ 1 and let B ∈ Ok. We use

KB = {〈x, i, 0t〉 | MB
i accepts x in ≤ t space},

the canonical PSPACEB-complete language. Here Mi is the ith oracle Turing machine. Let

A = padk(K
B) ∪ B.

Then A is also PSPACEB-complete. Since we can directly answer queries to padk(K
B) in polyno-

mial space with access to oracle B, we have PSPACEA = PSPACEB . Therefore

PA ⊆ PSPACEA = PSPACEB ⊆ PA,

so PA = PSPACEA.

Using the fact that Hausdorff dimension in monotone, i.e. X ⊆ Y implies dimH(X) ≤ dimH(Y ),
the first result mentioned in the introduction follows from Theorem 4.1.

Corollary 4.2. O[P=NP] has Hausdorff dimension 1.

Since Bennett and Gill [1] proved that NPA 6= coNPA relative to a random oracle A, we know
that O[NP=EXP] has measure 0. Using Heller’s construction of an oracle A with NPA = EXPA [8],
we have a contrasting dimension result.

Theorem 4.3. O[NP=EXP] has Hausdorff dimension 1.

Proof. We will show that Heller’s oracle construction is paddable and relativizable. Let k ≥ 1 and
let B ∈ Ok. For any oracle A let A ⊕k B = padk(A) ∪ B and define the language

Dk(A,B) = {〈i, x, l〉 | M
A⊕kB
i accepts x in < l steps}.

Then Dk(A,B) is always EXPA⊕kB-complete. To apply Theorem 3.1 it suffices to construct an
oracle A so that Dk(A,B) ∈ NPA⊕kB. We will construct A to satisfy

x ∈ Dk(A,B) ⇐⇒ (∃y)|y| = 3|x| and xy ∈ A
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for all x. Then Dk(A,B) ∈ NPA ⊆ NPA⊕kB .

We construct A in stages. Initially A = ∅. In stage m, we consider of all x of length m that
encode some triple x = 〈i, a, l〉. We simulate M

A⊕kB
i on input a for l steps, using the current oracle

A. Reserve for Ac all strings z 6∈ A such that padk(z) is queried in this computation. If M
A⊕kB
i

accepts a in fewer than l steps, we choose some y of length 3m such that xy is not reserved for Ac

and add xy to A. As argued in [8], we can always choose such a y. This completes stage m.

The most famous counterexample to the random oracle hypothesis [1] is IP = PSPACE [12,
14, 3]. While IP = PSPACE holds unrelativized, the set O[IP=PSPACE] has measure 0. Since

NPA ⊆ IPA ⊆ PSPACEA ⊆ EXPA relative to every oracle A, we have the following corollary of
Theorem 4.3.

Corollary 4.4. O[IP=PSPACE] has Hausdorff dimension 1.

It is not known if PA 6= NPA ∩ coNPA relative to a random oracle A. By the Kolmogorov
zero-one law, one of the complementary sets O[P=NP∩coNP] and O[P6=NP∩coNP] has measure 1, but it
is an open problem to determine which one. From Corollary 4.2, Theorem 4.3, and monotonicity
we now know that they both have dimension 1.

Corollary 4.5. O[P=NP∩coNP] and O[P6=NP∩coNP] both have Hausdorff dimension 1.

Bennett and Gill also showed that PA = BPPA relative to a random oracle A, or that O[P6=BPP]

has measure 0. Heller [9] constructed an oracle A with BPPA = NEXPA. We can show this oracle
construction is paddable and relativizable to establish the following.

Theorem 4.6. O[BPP=NEXP] has Hausdorff dimension 1.

Corollary 4.7. O[P6=BPP] has Hausdorff dimension 1.

Yao [15] (see also H̊astad [6]) constructed an oracle relative to which the polynomial-time
hierarchy has infinitely many distinct levels. Whether this holds relative to a random oracle is an
open problem. We now use Theorem 3.2 and a relativized theorem of Book [2, 5] to show that it
holds relative to a dimension 1 set of oracles.

Theorem 4.8. O[(∀i)Σp

i
6=Σp

i+1
] has Hausdorff dimension 1.

Proof. Let A be an oracle such that Σp,A
i 6= Σp,A

i+1 for all i. By Corollary 3.5 in [5] we know that

for a random oracle R, Σp,A⊕R
i 6= Σp,A⊕R

i+1 for all i with probability 1. Noting that Σp,A⊕R
i =

Σ
p,padk(A)∪shiftk(R)
i for every oracle R and k ≥ 1, we apply Theorem 3.2 and establish the theorem.

Acknowledgments. I thank Lance Fortnow, Xiaoyang Gu, and Jack Lutz for very helpful com-
ments and suggestions.
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