

# Hausdorff Dimension and Oracle Constructions

John M. Hitchcock Department of Computer Science University of Wyoming jhitchco@cs.uwyo.edu

#### Abstract

Bennett and Gill (1981) proved that  $\mathbf{P}^A \neq \mathbf{NP}^A$  relative to a random oracle A, or in other words, that the set  $\mathcal{O}_{[\mathbf{P}=\mathbf{NP}]} = \{A \mid \mathbf{P}^A = \mathbf{NP}^A\}$  has Lebesgue measure 0. In contrast, we show that  $\mathcal{O}_{[\mathbf{P}=\mathbf{NP}]}$  has Hausdorff dimension 1.

This follows from a much more general theorem: if there is a *relativizable* and *paddable* oracle construction for a complexity theoretic statement  $\Phi$ , then the set of oracles relative to which  $\Phi$  holds has Hausdorff dimension 1.

We give several other applications including proofs that the polynomial-time hierarchy is infinite relative to a Hausdorff dimension 1 set of oracles and that  $\mathbf{P}^A \neq \mathbf{NP}^A \cap \mathbf{coNP}^A$  relative to a Hausdorff dimension 1 set of oracles.

## 1 Introduction

Bennett and Gill [1] initiated the study of random oracles in computational complexity theory. They showed that if an oracle A is chosen uniformly at random, then  $P^A \neq NP^A$  with probability 1. More precisely, they proved that the set of oracles

$$\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]} = \{A \mid \mathrm{P}^A = \mathrm{NP}^A\}$$

has Lebesgue measure 0.

Hausdorff dimension [7], the most commonly used fractal dimension, provides a quantitative distinction among the measure 0 sets. Every set  $\mathcal{O}$  of oracles has a Hausdorff dimension dim<sub>H</sub>( $\mathcal{O}$ ), a real number in [0, 1]. If  $\mathcal{O}$  does not have measure 0, then dim<sub>H</sub>( $\mathcal{O}$ ) = 1, but there are measure 0 sets of each possible dimension between 0 and 1.

It is therefore interesting to ask: what is the Hausdorff dimension of  $\mathcal{O}_{[P=NP]}$ ? We prove that

$$\dim_{\mathrm{H}}(\mathcal{O}_{[\mathrm{P}=\mathrm{NP}]}) = 1. \tag{1.1}$$

While  $\mathcal{O}_{[P=NP]}$  is probabilistically small, there is a dimension theoretic abundance of oracles A that satisfy  $P^A = NP^A$ .

We establish (1.1) as a corollary of a very general theorem. Let  $\Phi$  be a relativizable complexity theoretic statement. In Section 3 we prove that if there is a *paddable* and *relativizable* oracle construction for  $\Phi$ , then

$$\mathcal{O}_{[\Phi]} = \{A \mid \Phi \text{ holds relative to } A\}$$

has Hausdorff dimension 1. The proof of this theorem is facilitated by the equivalence of Hausdorff dimension and *log-loss unpredictability* [10].

In Section 4 we give several applications of the general theorem, including (1.1) and that some other measure 0 oracle sets including  $\mathcal{O}_{[NP=EXP]}$  and  $\mathcal{O}_{[P\neq BPP]}$  also have Hausdorff dimension 1. It is not known if  $P^A \neq NP^A \cap coNP^A$  relative to a random oracle A or if the polynomial-time hierarchy has infinitely many distinct levels relative to a random oracle A. We show that each of these statements holds relative to a Hausdorff dimension 1 set of oracles.

### 2 Dimension and Unpredictability

In this section we review Hausdorff dimension and an equivalent definition of it using log-loss prediction.

Hausdorff dimension is defined in any metric space. In this paper we use the *Cantor space*  $\mathbf{C} = \{0, 1\}^{\infty}$  of all infinite binary sequences. As is standard, each oracle  $O \subseteq \{0, 1\}^*$  is identified with its characteristic sequence  $\chi_O \in \mathbf{C}$  according to the lexicographic ordering of  $\{0, 1\}^*$ .

The metric on Cantor space is defined as  $\rho(S,T) = 2^{-k}$  where k is the length of longest common prefix of S and T. The *diameter* of a set  $Y \subseteq \mathbf{C}$  is diam $(Y) = \sup\{\rho(S,T) \mid S, T \in Y\}$ .

Let  $X \subseteq \mathbf{C}$  and  $\delta > 0$ . We say that a collection  $(Y_i)_{i=0}^{\infty}$  of subsets of  $\mathbf{C}$  is a  $\delta$ -cover of X if (i) diam $(Y_i) \leq \delta$  for all i and (ii)  $X \subseteq \bigcup_{i=0}^{\infty} Y_i$ . For each  $s \in [0, \infty)$ , we define

$$H^s_{\delta}(X) = \inf \left\{ \left| \sum_{i=0}^{\infty} \operatorname{diam}(Y_i)^s \right| (Y_i)_{i=0}^{\infty} \text{ is a } \delta \text{-cover of } X \right\}.$$

The s-dimensional Hausdorff outer measure of X is

$$H^s(X) = \lim_{\delta \to 0} H^s_{\delta}(X).$$

This limit always exists, but it may be infinite. For each X there is a unique  $s^* \in [0, 1]$  such that

$$s > s^* \Rightarrow H^s(X) = 0$$

and

$$s < s^* \Rightarrow H^s(X) = \infty.$$

This number  $s^*$  is the Hausdorff dimension of X.

**Definition.** The Hausdorff dimension of a set  $X \subseteq \mathbf{C}$  is

$$\dim_{\mathrm{H}}(X) = \inf\{s \mid H^{s}(X) = 0\}.$$

We have  $0 \leq \dim_{\mathrm{H}}(X) \leq 1$  for every  $X \subseteq \mathbf{C}$ . If X does not have Lebesgue measure 0, then  $\dim_{\mathrm{H}}(X) = 1$ . For each  $\alpha \in [0, 1]$  there exist sets X with  $\dim_{\mathrm{H}}(X) = \alpha$ . Hausdorff dimension therefore makes quantitative distinctions among the measure 0 sets. We refer to the book by Falconer [4] for more information about Hausdorff dimension.

We now recall an equivalent definition of Hausdorff dimension involving log-loss prediction [10].

**Definition.** A *predictor* is a function

$$\pi: \{0,1\}^* \times \{0,1\} \to [0,1]$$

that satisfies

$$\pi(w,0) + \pi(w,1) = 1$$

for all  $w \in \{0, 1\}^*$ .

Intuitively,  $\pi(w, b)$  is interpreted as the probability given by the predictor for b following w. The performance of a predictor is measured according to the log loss function, a very common loss function in the information theory literature. If probability p was assigned to the outcome that occurred, then the log loss is

$$\log \frac{1}{p}$$

**Definition.** Let  $\pi$  be a predictor.

1. The *cumulative log-loss* of  $\pi$  on a string  $w \in \{0, 1\}^*$  is

$$\mathcal{L}^{\log}(\pi, w) = \sum_{i=0}^{|w|-1} \log \frac{1}{\pi(w \upharpoonright i, w[i])}.$$

2. The log-loss rate of  $\pi$  on a sequence  $A \in \mathbf{C}$  is

$$\mathcal{L}^{\log}(\pi, A) = \liminf_{n \to \infty} \frac{\mathcal{L}^{\log}(\pi, A \upharpoonright n)}{n}.$$

3. The worst-case log-loss rate of  $\pi$  on a set  $X \subseteq \mathbf{C}$  is

$$\mathcal{L}^{\log}(\pi, X) = \sup_{A \in X} \mathcal{L}^{\log}(\pi, A).$$

Hausdorff dimension admits an equivalent definition as log-loss unpredictability. Let  $\Pi$  be the set of all predictors. The proof of the following theorem used Lutz's *gale characterization* of Hausdorff dimension [13].

**Theorem 2.1.** (Hitchcock [10]) For every  $X \subseteq \mathbf{C}$ ,

$$\dim_{\mathrm{H}}(X) = \inf_{\pi \in \Pi} \mathcal{L}^{\mathrm{log}}(\pi, X).$$

The following lemma can be derived from [13] and [10]; a direct proof is included here for completeness. Intuitively, if  $\pi$  stops making predictions after reading w, it will have loss  $\mathcal{L}^{\log}(\pi, wv') = \mathcal{L}^{\log}(\pi, w) + |v'|$ . Lemma 2.2 says that the strings  $v \in \{0, 1\}^l$  on which  $\pi$  can achieve a loss  $\log \alpha$  less than this for some prefix of v are at most a  $\frac{1}{\alpha}$  fraction of the length l strings.

**Lemma 2.2.** Let  $\pi$  be a predictor and let  $\alpha > 1$  be a real number. For all  $l \in \mathbb{N}$  and  $w \in \{0,1\}^*$ , there are at most  $\frac{2^l}{\alpha}$  strings  $v \in \{0,1\}^l$  for which

$$(\exists v' \sqsubseteq v) \ \mathcal{L}^{\log}(\pi, wv') \le \mathcal{L}^{\log}(\pi, w) + |v'| - \log \alpha$$

*Proof.* Let

$$A = \{ v \in \{0,1\}^l \mid (\exists v' \sqsubseteq v) \mathcal{L}^{\log}(\pi, wv') \le \mathcal{L}^{\log}(\pi, w) + |v'| - \log \alpha \}.$$

Let B be the set of all strings that  $v \in \{0,1\}^{\leq l}$  that satisfy  $\mathcal{L}^{\log}(\pi, wv) \leq \mathcal{L}^{\log}(\pi, w) + |v| - \log \alpha$ but no prefix of v satisfies this condition. Then  $A = \{v \in \{0,1\}^l \mid (\exists v' \sqsubseteq v)v' \in B\}$  and

$$|A| = \sum_{v \in B} 2^{l-|v|} = 2^l \sum_{v \in B} 2^{-|v|}$$

because *B* is a prefix set. Define a function  $\mu : \{0,1\}^{\leq l} \to [0,1]$  by  $\mu(\lambda) = 1$  and  $\mu(vb) = \mu(v)\pi(v,b)$  for all  $v \in \{0,1\}^{< l}$  and  $b \in \{0,1\}$ . Then since *B* is a prefix set, it can be verified that  $\sum_{v \in B} \mu(v) \leq 1$ . Also, we have  $\mu(v) \geq \alpha 2^{-|v|}$  for any  $v \in B$  because  $\mathcal{L}^{\log}(\pi, wv) - \mathcal{L}^{\log}(\pi, w) = \log \frac{1}{\mu(v)}$ . Putting everything together, we have

$$1 \ge \sum_{v \in B} \mu(v) \ge \sum_{v \in B} \alpha 2^{-|v|} = \alpha \frac{|A|}{2^l},$$

so  $|A| \leq \frac{2^l}{\alpha}$ .

### **3** Paddable and Relativizable Oracle Constructions

For each  $k \geq 1$ , define a padding function  $\operatorname{pad}_k : \{0,1\}^* \to \{0,1\}^*$  by

$$\operatorname{pad}_k(x) = 0^{|x|^k - |x|} x$$

and let

$$R_k = \operatorname{range}(\operatorname{pad}_k).$$

Let

$$\mathcal{O}_k = \{ B \subseteq \{0,1\}^* \mid B \cap R_k = \emptyset \}$$

be the class of all oracles that are disjoint from  $R_k$ .

**Definition.** Let  $\Phi$  be a relativizable complexity theoretic statement. We say that  $\Phi$  holds via a paddable and relativizable oracle construction if

$$(\forall k \geq 1)(\forall B \in \mathcal{O}_k)(\exists A) \Phi$$
 holds relative to the oracle  $\operatorname{pad}_k(A) \cup B$ .

It seems that most (if not all) oracle constructions for statements  $\Phi$  involving polynomially bounded computations are paddable and relativizable. First, they are *relativizable* in the sense that for every oracle *B* there exists an oracle *A* such that  $\Phi$  holds relative to the join  $A \oplus B = 0A \cup 1B$ . Second, they are *paddable* in that if  $\Phi$  holds relative to *A*, then  $\Phi$  also holds relative to pad<sub>k</sub>(*A*). Here we have combined these two concepts.

We now prove a general theorem that implies many complexity-theoretic statements  $\Phi$  hold relative to a Hausdorff dimension 1 set of oracles.

**Theorem 3.1.** If  $\Phi$  holds via a paddable and relativizable oracle construction, then

$$\mathcal{O}_{[\Phi]} = \{A \mid \Phi \text{ holds relative to } A\}$$

has Hausdorff dimension 1.

*Proof.* Let  $\pi$  be any predictor. By Theorem 2.1, it suffices to show that  $\mathcal{L}^{\log}(\pi, \mathcal{O}_{[\Phi]}) \geq 1$ .

Let  $\epsilon \in (0, 1)$ . For each  $n \in \mathbb{N}$ , define  $\alpha_n = \lceil 2^{n^{\epsilon}} \rceil$  and  $\beta_n = 2^{\epsilon n}$ . Choose  $n_0$  large enough so that  $n\alpha_n < \beta_n$  for all  $n \ge n_0$ .

We will define a sequence of strings  $v_n$  for  $n \ge 0$  inductively. For  $n < n_0$ , we let  $v_n = 0^{2^n - \alpha_n}$ . Now let  $n \ge n_0$  and assume that  $v_i$  has been defined for all i < n. We choose  $v_n$  of length  $2^n - \alpha_n$  such that for all

$$(u_0,\ldots,u_n) \in \prod_{i=0}^n \{0,1\}^{\alpha_n},$$

we have

$$\mathcal{L}^{\log}(\pi, u_0 v_0 \cdots u_n v'_n) > \mathcal{L}^{\log}(\pi, u_0 v_0 \cdots u_n) + |v'_n| - \beta_n$$
(3.1)

for all  $v'_n \sqsubseteq v_n$ . Since Lemma 2.2 tells us that for each  $(u_0, \ldots, u_n)$  there are at most  $2^{2^n - \alpha_n - \beta_n}$ strings  $v \in \{0, 1\}^{2^n - \alpha_n}$  that satisfy  $\mathcal{L}^{\log}(\pi, u_0 v_0 \cdots u_n v') \leq \mathcal{L}^{\log}(\pi, u_0 v_0 \cdots u_n) + |v'| - \log 2^{\beta_n}$  for some  $v' \sqsubseteq v$  and there are  $\prod_{i=0}^n 2^{\alpha_i} \leq 2^{n\alpha_n}$  choices of  $(u_0, \ldots, u_n)$ , we know that such a string  $v_n$ exists because

$$2^{n\alpha_n} \cdot 2^{2^n - \alpha_n - \beta_n} < 2^{2^n - \alpha_n}$$

Let B have the characteristic sequence that is the concatenation of  $0^{\alpha_n}v_n$  for all  $n \in \mathbb{N}$ . In other words, B is empty on the first  $\alpha_n$  strings of length n, and the remaining strings are decided according to  $v_n$ .

Let  $k > \frac{1}{\epsilon}$ . We have  $B \in \mathcal{O}_k$ , so by the hypothesis there is some A such that  $\Phi$  holds relative to the oracle  $C = \text{pad}_k(A) \cup B$ .

Let  $w_n$  be the length  $2^n - 1$  prefix of C. For any u with  $w_n u \sqsubseteq C$  and  $|u| \le \alpha_n$  we have

$$\mathcal{L}^{\log}(\pi, w_n u) \geq \mathcal{L}^{\log}(\pi, w_n) \\ \geq \mathcal{L}^{\log}(\pi, w_n) + |u| - \alpha_n.$$

For u, v with  $w_n uv \sqsubseteq C$ ,  $|u| = \alpha_n$ , and  $|v| \le 2^n - \alpha_n$ , we know that

$$\mathcal{L}^{\log}(\pi, w_n uv) > \mathcal{L}^{\log}(\pi, w_n u) + |v| - \beta_n$$
  

$$\geq \mathcal{L}^{\log}(\pi, w_n) + |v| - \beta_n$$
  

$$= \mathcal{L}^{\log}(\pi, w_n) + |uv| - \alpha_n - \beta_n$$

Let  $m = 2^{n_0} - 1$  and let  $c = \mathcal{L}^{\log}(\pi, C \upharpoonright m)$ . Let  $w'_n$  such that  $|w'_n| \leq 2^n$  and  $w_n w'_n \sqsubseteq C$ . We have by induction that

$$\mathcal{L}^{\log}(\pi, w_n w'_n) \ge c + |w_n w'_n| - m - \sum_{i=n_0}^n (\alpha_n + \beta_n) \ge |w_n w'_n| - m - n(\alpha_n + \beta_n).$$

It follows that  $\mathcal{L}^{\log}(\pi, C) \geq 1$  since *m* is a constant and  $n(\alpha_n + \beta_n) = o(2^n - 1)$ . Since  $C \in \mathcal{O}_{[\Phi]}$ , we have  $\mathcal{L}^{\log}(\pi, \mathcal{O}_{[\Phi]}) \geq 1$ .

We remark that the proof of Theorem 3.1 can be extended to yield a stronger scaled dimension [11] result. It can be shown that the set of oracles has  $-2^{nd}$ -order dimension 1.

We conclude this section with a variation of Theorem 3.1 involving random oracles that will be useful in an application. For each  $k \ge 1$ , let

$$\operatorname{shift}_k : \{0,1\}^* \to R_k^c$$

be the bijection that preserves the lexicographic ordering.

**Theorem 3.2.** Suppose that for every  $k \ge 1$  there exists an oracle A such that relative to a random oracle R

 $\Phi$  holds relative to the oracle  $\operatorname{pad}_k(A) \cup \operatorname{shift}_k(R)$  (3.2)

with probability 1. Then  $\mathcal{O}_{[\Phi]}$  has Hausdorff dimension 1.

Proof. In the proof of Theorem 3.1 we showed that sequence  $v_0, v_1, \ldots$  of strings exists by a combinatorial argument. In fact, randomly chosen  $v_0, v_1, \ldots$  suffice with high probability. If we choose an oracle R randomly, let  $B = \text{shift}_k(R)$ , and write  $B = w_0 v_0 w_1 v_1 \cdots$  where  $|w_n| = \alpha_n$  and  $|v_n| = 2^n - \alpha_n$ , then with probability 1 the sequence  $v_0, v_1, \ldots$  will satisfy (3.1) for all sufficiently large n. Since (3.2) holds with probability 1, there exists an oracle R with the property of the previous sentence such that (3.2) also holds. Fix such an R. Then  $\Phi$  holds relative to  $C = \text{pad}_k(A) \cup B$  and the rest of the proof goes through to show  $\mathcal{L}^{\log}(\pi, C) \geq 1$ .

## 4 Applications

In this section we apply Theorems 3.1 and 3.2 to some fundamental oracle constructions. We begin with an easy example.

**Theorem 4.1.**  $\mathcal{O}_{[P=PSPACE]}$  has Hausdorff dimension 1.

*Proof.* The standard example of an oracle A with  $P^A = PSPACE^A$  is to let A be PSPACE-complete. We now verify that this is a paddable and relativizable oracle construction.

Let  $k \geq 1$  and let  $B \in \mathcal{O}_k$ . We use

$$K^B = \{ \langle x, i, 0^t \rangle \mid M^B_i \text{ accepts } x \text{ in } \leq t \text{ space} \},\$$

the canonical PSPACE<sup>B</sup>-complete language. Here  $M_i$  is the  $i^{\text{th}}$  oracle Turing machine. Let

$$A = \operatorname{pad}_k(K^B) \cup B.$$

Then A is also PSPACE<sup>B</sup>-complete. Since we can directly answer queries to  $\text{pad}_k(K^B)$  in polynomial space with access to oracle B, we have PSPACE<sup>A</sup> = PSPACE<sup>B</sup>. Therefore

$$\mathbf{P}^A \subset \mathbf{PSPACE}^A = \mathbf{PSPACE}^B \subset \mathbf{P}^A$$

so  $\mathbf{P}^A = \mathbf{PSPACE}^A$ .

Using the fact that Hausdorff dimension in *monotone*, i.e.  $X \subseteq Y$  implies  $\dim_{\mathrm{H}}(X) \leq \dim_{\mathrm{H}}(Y)$ , the first result mentioned in the introduction follows from Theorem 4.1.

#### **Corollary 4.2.** $\mathcal{O}_{[P=NP]}$ has Hausdorff dimension 1.

Since Bennett and Gill [1] proved that  $NP^A \neq coNP^A$  relative to a random oracle A, we know that  $\mathcal{O}_{[NP=EXP]}$  has measure 0. Using Heller's construction of an oracle A with  $NP^A = EXP^A$  [8], we have a contrasting dimension result.

**Theorem 4.3.**  $\mathcal{O}_{[NP=EXP]}$  has Hausdorff dimension 1.

*Proof.* We will show that Heller's oracle construction is paddable and relativizable. Let  $k \ge 1$  and let  $B \in \mathcal{O}_k$ . For any oracle A let  $A \oplus_k B = \text{pad}_k(A) \cup B$  and define the language

$$D_k(A, B) = \{ \langle i, x, l \rangle \mid M_i^{A \oplus_k B} \text{ accepts } x \text{ in } < l \text{ steps} \}$$

Then  $D_k(A, B)$  is always  $\text{EXP}^{A \oplus_k B}$ -complete. To apply Theorem 3.1 it suffices to construct an oracle A so that  $D_k(A, B) \in \text{NP}^{A \oplus_k B}$ . We will construct A to satisfy

$$x \in D_k(A, B) \iff (\exists y)|y| = 3|x| \text{ and } xy \in A$$

for all x. Then  $D_k(A, B) \in \mathrm{NP}^A \subseteq \mathrm{NP}^{A \oplus_k B}$ .

We construct A in stages. Initially  $A = \emptyset$ . In stage m, we consider of all x of length m that encode some triple  $x = \langle i, a, l \rangle$ . We simulate  $M_i^{A \oplus_k B}$  on input a for l steps, using the current oracle A. Reserve for  $A^c$  all strings  $z \notin A$  such that  $\text{pad}_k(z)$  is queried in this computation. If  $M_i^{A \oplus_k B}$ accepts a in fewer than l steps, we choose some y of length 3m such that xy is not reserved for  $A^c$ and add xy to A. As argued in [8], we can always choose such a y. This completes stage m.

The most famous counterexample to the random oracle hypothesis [1] is IP = PSPACE [12, 14, 3]. While IP = PSPACE holds unrelativized, the set  $\mathcal{O}_{[IP=PSPACE]}$  has measure 0. Since NP<sup>A</sup>  $\subseteq$  IP<sup>A</sup>  $\subseteq$  PSPACE<sup>A</sup>  $\subseteq$  EXP<sup>A</sup> relative to every oracle A, we have the following corollary of Theorem 4.3.

#### **Corollary 4.4.** $\mathcal{O}_{[IP=PSPACE]}$ has Hausdorff dimension 1.

It is not known if  $P^A \neq NP^A \cap coNP^A$  relative to a random oracle A. By the Kolmogorov zero-one law, one of the complementary sets  $\mathcal{O}_{[P=NP\cap coNP]}$  and  $\mathcal{O}_{[P\neq NP\cap coNP]}$  has measure 1, but it is an open problem to determine which one. From Corollary 4.2, Theorem 4.3, and monotonicity we now know that they both have dimension 1.

**Corollary 4.5.**  $\mathcal{O}_{[P=NP\cap coNP]}$  and  $\mathcal{O}_{[P\neq NP\cap coNP]}$  both have Hausdorff dimension 1.

Bennett and Gill also showed that  $P^A = BPP^A$  relative to a random oracle A, or that  $\mathcal{O}_{[P\neq BPP]}$  has measure 0. Heller [9] constructed an oracle A with  $BPP^A = NEXP^A$ . We can show this oracle construction is paddable and relativizable to establish the following.

**Theorem 4.6.**  $\mathcal{O}_{[BPP=NEXP]}$  has Hausdorff dimension 1.

**Corollary 4.7.**  $\mathcal{O}_{[P\neq BPP]}$  has Hausdorff dimension 1.

Yao [15] (see also Håstad [6]) constructed an oracle relative to which the polynomial-time hierarchy has infinitely many distinct levels. Whether this holds relative to a random oracle is an open problem. We now use Theorem 3.2 and a relativized theorem of Book [2, 5] to show that it holds relative to a dimension 1 set of oracles.

**Theorem 4.8.**  $\mathcal{O}_{[(\forall i)\sum_{i}^{p} \neq \sum_{i=1}^{p}]}$  has Hausdorff dimension 1.

*Proof.* Let A be an oracle such that  $\Sigma_i^{p,A} \neq \Sigma_{i+1}^{p,A}$  for all *i*. By Corollary 3.5 in [5] we know that for a random oracle R,  $\Sigma_i^{p,A\oplus R} \neq \Sigma_{i+1}^{p,A\oplus R}$  for all *i* with probability 1. Noting that  $\Sigma_i^{p,A\oplus R} = \Sigma_i^{p,\text{pad}_k(A)\cup\text{shift}_k(R)}$  for every oracle R and  $k \geq 1$ , we apply Theorem 3.2 and establish the theorem.

Acknowledgments. I thank Lance Fortnow, Xiaoyang Gu, and Jack Lutz for very helpful comments and suggestions.

#### References

- [1] C. H. Bennett and J. Gill. Relative to a random oracle  $A, P^A \neq NP^A \neq co-NP^A$  with probability 1. SIAM Journal on Computing, 10:96–113, 1981.
- [2] R. V. Book. On collapsing the polynomial-time hierarchy. Information Processing Letters, 52(5):235-237, 1994.

- [3] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Håstad, D. Ranjan, and R. Rohatgi. The random oracle hypothesis is false. *Journal of Computer and System Sciences*, 49(1):24–39, 1994.
- [4] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, 1990.
- [5] L. Fortnow. Relativized worlds with an infinite hierarchy. *Information Processing Letters*, 69(6):309–313, 1999.
- [6] J. Håstad. Computational Limitations for Small-Depth Circuits. The MIT Press, 1986.
- [7] F. Hausdorff. Dimension und äußeres Maß. Mathematische Annalen, 79:157–179, 1919.
- [8] H. Heller. On relativized polynomial and exponential computations. SIAM Journal on Computing, 13(4):717–725, 1984.
- [9] H. Heller. On relativized exponential and probabilistic complexity classes. Information and Control, 71:231-243, 1986.
- [10] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science, 304(1–3):431–441, 2003.
- [11] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform complexity. Journal of Computer and System Sciences, 69(2):97–122, 2004.
- [12] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. *Journal of the ACM*, 39(4):859–868, 1992.
- [13] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259, 2003.
- [14] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.
- [15] A. Yao. Separating the polynomial-time hierarchy by oracles. In 26th IEEE Symposium on Foundations of Computer Science, pages 1–10. IEEE Computer Society Press, 1985.

| ECCC                                               | ISSN 1433-8092 |
|----------------------------------------------------|----------------|
| http://www.eccc.uni-trier                          | r.de/eccc      |
| ftp://ftp.eccc.uni-trier.de/pub/eccc               |                |
| ftpmail@ftp.eccc.uni-trier.de, subject 'help eccc' |                |