
A Top-Down Approach to Search-Trees:

Improved Algorithmics for 3-Hitting Set

Henning Fernau

Universität Tübingen, WSI für Informatik, Sand 13,

72076 Tübingen, Germany

fernau@informatik.uni-tuebingen.de

University of Newcastle, School of Electr. Eng. & Computer Sci.,

University Drive, Callaghan, NSW 2308, Australia

July 9, 2004

Abstract

In this paper, we show how to systematically improve on parame-
terized algorithms and their analysis, focusing on search-tree based al-
gorithms for d-Hitting Set, especially for d = 3. We concentrate on
algorithms which are easy to implement, in contrast with the highly so-
phisticated algorithms which have been elsewhere designed to improve
on the exponential base in the algorithms.

The algorithm analysis is based on a novel way to exploit a so-called
auxiliary parameter, a technique which we believe can be used in other
circumstances, as well.

1 Introduction

1.1 Our approach—in general

We exhibit how to systematically design and analyze search-tree algorithms
within the framework of parameterized algorithmics. Here, we advocate a
top-down design as opposed to a rather bottom-up approach, because

• in terms of algorithm design, the top-down approach appears to be
more natural and the correctness of the resulting algorithms can be
comparatively easily shown in a generic fashion,

• we can defer often nasty and intricate analysis of cases as far as pos-
sible, only driven and guided by demand, and

1

Electronic Colloquium on Computational Complexity, Report No. 73 (2004)

ISSN 1433-8092

1 INTRODUCTION 2

• the resulting algorithms tend to be simpler than via the opposite ap-
proach, pretty much resembling heuristic pruning techniques as used
in branch-and-cut algorithms for solving hard problems.

We will exemplify this approach by developing and analyzing simple
algorithms for Hitting Set problems. Note that previous algorithms, no-
tably for 3-Hitting Set, were much more elaborate; yet, their analysis
yielded worse upper bounds for the running time of those algorithms. On
the downside, our approach requires a more sophisticated analysis of the
running time of the (simple) search-tree algorithm. This might of course
also indicate that, by a tricky algorithm analysis, the earlier published more
intricate algorithms can be proven to have better worst-case running times
than previously attributed to them.

Hitting Set problems show up in many places. For example, Reiter’s
theory of diagnosis is based upon so-called Hitting Set Trees, see [10].

This problem has attracted interest not from the point of view of ap-
proximation (a recent reference being [4]) but also from the parameterized
viewpoint [9]. We will follow the latter approach here, too.

1.2 General notions and definitions

Since we are focusing on Hitting Set, we now introduce some terminology
on hypergraphs. A hypergraph G = (V,E) is given by its finite set of vertices
V and its set of (hyper)-edges E, where a hyperedge is a subset of V . The
cardinality of a hyperedge e is also called its degree, written δ(e). Likewise,
the cardinality of the set of edges which contain a specific vertex v is called
the degree of v, written δ(v). A hypergraph is called d-regular if all vertices
have degree d.

While |S| is used to denote the cardinality of an arbitrary set S, we use
#dS to count the number of edges (or vertices) of the edge (or vertex) set
S which have degree d. Moreover, for a vertex x, δd(x) is the number of
hyperedges of degree d that contain x.

d-Hitting Set can be viewed as a “vertex cover problem” on hyper-
graphs More formally, this problem can be stated as follows:
Problem name: d-Hitting Set

Given: A hypergraph G = (V,E) with edge degree bounded by d
Parameter: k
Output: Is there a hitting set (or cover) of size at most k: ∃C ⊆ V ∀e ∈
E(C ∩ e 6= ∅)?

We are going to develop search-tree algorithms and apply a parame-
terized analysis of the search-tree size. If we then say that the algorithm

1 INTRODUCTION 3

has O∗(f(k)) running time, where k is the parameter, this means that the
search-tree has size T (k) = O(f(k)), since the work in each search-tree node
will be at worst polynomial in n. In actual fact, all analysis that follows will
be a clever estimate on the size of the search-tree.

1.3 Previous work

We are only aware of one paper dealing with d-Hitting Set for d > 2
from a parameterized perspective, namely Niedermeier and Rossmanith’s [9].
Niedermeier and Rossmanith also present a simple linear-time kernelization,
i.e., a preprocessing step typical for parameterized algorithms which leaves
us with an instance of size g(k) (instead of n). By a quite generic approach,
they can bound the size of the search-tree for d = 3 by T (k) ≤ 2.42k.
The base c of the exponential term in the formula estimating T (k) ≤ ck

is also known as branching number, since it is derived from the analysis
of the branching behavior of search trees. By an intricate case analysis
of a comparatively complicated algorithm, they were able to arrive at an
O(2.270k + n) algorithm for 3-Hitting Set.

For the special case of 2-Hitting Set, likewise known as Vertex Cover,

in a kind of race (using more and more involved case analysis) an O(1.285k + n)-

algorithm [2] has been obtained. As the so-called auxiliary parameter (discussed

below) we chose for our approach to Hitting Set problems would become trivial,

we cannot tackle Vertex Cover in this paper.

1.4 The results of this paper

We are improving on Niedermeier and Rossmanith’s results for 3-Hitting Set
Basically, we are doing a better analysis of a simple search-tree algorithm
guided by so-called heuristic priorities. In contrast to earlier approaches, we
don’t produce complicated algorithms this way. The better analysis is based
on the introduction of a second auxiliary parameter, a technique which can
be useful in other analyses of parameterized algorithms, as we believe. This
way, we obtain an O(2.179k + n) algorithm for 3-Hitting Set.

Most advanced search-tree algorithms for parameterized problems were
developed in a bottom-up fashion. By this, we mean that in order to lower
the basis c in O∗(ck) algorithms, situations were identified that produced
better branchings by a local analysis. To find these “good situations,” new
case distinctions had to be incorporated in the program code for the search-
tree itself. This not only makes implementations of the proposed algorithms
a rather tedious task, but we were informed by practitioners (personal com-

2 HEURISTICS AND REDUCTIONS FOR D-HITTING SET 4

munication by P. Shaw) that sometimes when they leave out these “sub-case
optimizations”, the code runs faster. Moreover, it would be hard to rigor-
ously prove the correctness of such an elaborate search-tree algorithm.

The top-down approach we advocate here produces comparatively sim-
ple algorithms. The best published example of such a simple search-tree
algorithm (where a formal correctness proof would be close to trivial) is
Planar Dominating Set, see [1]. These algorithms are created by ap-
plying easily understandable heuristic rules that decide how to branch in
a given situation. For Dominating Set, it is obviously good to always
branch on vertices of smallest degree. The burden now lies mainly on the
analysis of the running time. This analysis is undertaken in this paper by
using a so-called auxiliary parameter. In the case of d-Hitting Set, this
is the number of small edges (i.e., edges of degree at most (d − 1)). The
intuition is: the more small edges we have, the better the branching.

2 Heuristics and reductions for d-Hitting Set

2.1 A generic algorithm and its correctness

simple-HS-heuristic-binary(G, k, S):
Exhaustively apply the reduction rules.

// call the resulting instance (G, k) and the intermediate solution S
IF (G, k) is a simple instance

THEN solve in polynomial time and return solution S ′

ELSE

choose some edge e and some x ∈ e; // acc. to heuristic priorities

S′ = ∅; // solution to be constructed

G′ = (V \ {x}, {e ∈ E | x /∈ e});
S′ = simple-HS-heuristic-binary(G′ , k − 1, S ∪ {x});
IF S′ == ∅ THEN // try x not in solution

G − x = (V \ {x}, {e \ x | e ∈ E});
S′ = simple-HS-heuristic-binary(G − x, k, S)

return S′

In contrast to earlier approaches, we use binary branching in our algorithm
for d-Hitting Set: take x into the cover or not. This generic algorithm
contains a couple of black boxes which will be explained in the following:

• Reduction rules are a very powerful technique to simplify given in-
stances. In general, they will modify the given graph and also the
parameter. Such rules have been previously employed to prove small
so-called problem kernels for parameterized problems (an issue com-
pletely neglected in this paper) and are here for the first time systemat-

2 HEURISTICS AND REDUCTIONS FOR D-HITTING SET 5

ically used for a different purpose: to obtain substantial improvements
in the running time analysis.

• Simple instances belong to classes of instances for which polynomial
time algorithms are known. We will also refer to these classes as
stopping situations.

• Heuristic priorities specify, in our case, how to “choose” e and x ∈ e
for the subsequent branching, e.g., preferring to branch on small edges.

The main advantages of this “generic approach” are the following ones:

• The whole algorithm is very transparent and modular, which pretty
much simplifies the task of producing a correct implementation of the
algorithm. Moreover, different parts of the algorithm can be tested
rather independently, and a quick implementation of a running proto-
type is possible.

• As can be seen in the proof of the correctness of the algorithm, the
correctness is only affected by the correctness of the reduction rules
and the correctness of the rules for simple instances.

• When we try to improve the algorithm (in order to prove better run
time bounds), we will henceforth only change the heuristic priorities
or add new sound reductions. This can never affect the correctness of
the algorithm.

The reader is encouraged to compare these points with earlier approaches to
improve on running times for parameterized algorithms. There, in principle,
it is crucial to always prove the correctness of the algorithm after seemingly
small changes of the algorithm performed in order to tweak the efficiency.

Lemma 1 If the reduction rules and the procedure solving simple instances are
correct, then calling simple-HS-heuristic-binary(G, k, ∅) either returns a cor-
rect solution to the d-Hitting Set instance (G, k) or it returns ∅, which is only a
correct solution if G has no edges; otherwise, ∅ signals that (G, k) has no solution.

2.2 Reduction rules

We now define reduction rules which we will always exhaustively apply at
the beginning of each recursive call. When arguing about the branching in
the search-tree, we can therefore always assume that we deal with reduced
instances, i.e., instances to which none of the reduction rules are applicable.

2 HEURISTICS AND REDUCTIONS FOR D-HITTING SET 6

1. (hyper)edge domination: A hyperedge e is dominated by another hy-
peredge f if f ⊂ e. In that case, delete e.

2. tiny edges: Delete all hyperedges of degree one and place the corre-
sponding vertices into the hitting set.

3. vertex domination: A vertex x is dominated by a vertex y if, whenever
x belongs to some hyperedge e, then y also belongs to e. Then, we can
simply delete x from the vertex set and from all edges it belongs to.

Lemma 2 The three reduction rules are sound.

The rules themselves are not new: the last two are also used by Nieder-
meier and Rossmanith. Actually, the rules seem to be “around” since many
years. The oldest reference (which was found by Regina Barretta, Newcas-
tle) is to our knowledge [6, Chapter 8]. They are also known for related
problems as, e.g., the Path Cover Problem, see [11]. Note that in the
advanced analysis of the 3-Hitting Set algorithm, we finally propose two
other reduction rules (left out in the extended abstract).

Lemma 3 In a reduced instance with at least two vertices, no vertex has
degree less than two.

The following observation (a consequence of edge domination) is used as
a guideline for heuristics and in some parts of the algorithm analysis:

Lemma 4 If e is an edge in a hypergraph G = (V,E) (as an instance of
d-Hitting set) to which the edge domination rule is not applicable, then
in the branch where x ∈ e is not taken into the cover, the instance G − x
will have

#d−1E + δd(x) − δd−1(x) (1)

many edges of degree (d − 1).

2.3 Simple instances

It is possible to classify instances with maximum vertex degree of two as
“simple:” they can be solved in polynomial time by matching techniques.1

This then gives the following corollary:

1This result was communicated to us by G. Woeginger; the idea is to relate it with an
edge covering set problem by interpreting the vertices of degree two as edges of a graph
and the hyperedges as vertices.

3 A SIMPLE APPROACH TO 3-HITTING SET 7

Corollary 5 Some vertex in a non-simple reduced instance has degree at
least three.

Since the correctness of the stopping condition is hence known and the
soundness of the reduction rules is stated in Lemma 2, Lemma 1 proves:

Theorem 6 The algorithm simple-HS-heuristic-binary is correct.

2.4 Heuristic priorities

We will further the analysis of simple-HS-heuristic-binary. To this end,
we will refine the conditions telling us which edges and vertices the algorithm
will select next for branching. Besides the mentioned reduction rules, these
conditions (which we call heuristic priorities) are a key ingredient for the
analysis of the algorithm. One simple rule that will be always used is to
preferably branch on edges of low degree. Heuristic priorities have to be
always designed in a way that if in a certain branch no sufficient gain in terms
of the (main) parameter is possible, an (analyzable) gain in the auxiliary
parameter should show up.

3 A simple approach to 3-Hitting Set

3.1 How to analyze the generic d-Hitting Set algorithm

The idea of making favorable branches first has also another bearing, this
time on the way we are going to analyze the running time of our algorithm.
Let T `

d(k), ` ≥ 0 denote the size (more precisely, the number of leaves) of
the search-tree when assuming that exactly ` edges in the given instance
(with parameter k) have a degree of (at most) d − 1. So, ` is the auxiliary
parameter in our analysis. Sometimes, we will shortcut our discussions by
using T≥`

d (k), denoting the situation of a search-tree assuming that at least
` edges in the given instance (with parameter k) have a degree of (at most)
(d − 1). The intuition is that, e.g., in the case of 3-Hitting Set, T 4

3
(k)

would describe a situation which is “more like” 2-Hitting Set than T 3
3
(k).

Therefore, we can conclude: T≥`
d (k) ≤ T `

d(k). Regarding an upperbound
on the size Td(k) of the search-tree of the whole problem, we can estimate
Td(k) ≤ T 0

d (k), since the worst case is that we have no edges of low degree.
In the following, we are exhibiting mutually recursive relationships between
different T `

d(k); solving these recursions will yield the bounds on the size of
the search-tree and hence on the running time.

3 A SIMPLE APPROACH TO 3-HITTING SET 8

Lemma 7 T 0

d (k) ≤ T 0

d (k − 1) + T 3

d (k).

Proof. Due to Cor. 5, the instance G contains (immediately before the
branching) a vertex x of degree 3 (or larger). One branch is that x is put
into the cover. If x is not put into the cover, then at least three new edges
of degree (d − 1) are created.

Lemma 8 T 1

d (k) ≤ T 0

d (k − 1) + T 1

d (k − 1) + T 2

d (k − 1) + · · ·+ T d−2

d (k − 1).

Proof. Due to Lemma 3, all vertices have degree at least two. If the
chosen x ∈ e is not put into the cover, then at least one new edge of degree
(d− 1) is created besides the edge e′ = e \ {x} of degree (d− 2). According
to the heuristic priorities, we would continue branching at some vertex from
e′. The argument then repeats, yielding the formula as claimed, since every
time a new edge of degree (d − 1) is created, since otherwise the reduction
rules would trigger and reduce the number of branches, so that in that case
an even better analysis would be possible.

Observe that, when plugging in T `
d ≤ T 1

d for ` ≥ 1, we obtain the follow-
ing recurrences:

T 0

d (k) ≤ T 0

d (k − 1) + (d − 1)T 1

d (k − 1)

T 1

d (k) ≤ T 0

d (k − 1) + (d − 2)T 1

d (k − 1)

These are exactly the recurrences derived by Niedermeier and Rossmanith
(actually for a different algorithm), which immediately entails that we can
only beat their results with our analysis. We will show this in the following
for the special case d = 3 and an analysis involving T 0

3
, T 1

3
and T 2

3
.

3.2 Heuristics for 3-Hitting Set

We us the following heuristic priorities. H1 is motivated by Lemma 4.

H0 Prefer small edges. More formally, let E0 = {e ∈ E | δ(e) = 2}. If
E0 = ∅, set E0 = E.

H1 Maximize Eq. (1), i.e., let V1 = {x ∈
⋃

e∈E0
| δ3(x)−δ2(x) is maximum}.

H2 Choose some x ∈ V1 of maximum degree.

In the next lemma, we show a first step into a strategy which will finally
give us better branching behaviors. Namely, we try to exploit the effect of
reduction rules triggered in different sub-cases.

3 A SIMPLE APPROACH TO 3-HITTING SET 9

Lemma 9 T 1
3
(k) ≤ max{2k, T 0

3
(k − 1) + T 2

3
(k − 1)}.

Proof. The instance G has an edge e = {x, y} of degree two. Assume that
δ(x) ≥ δ(y), so that we branch at x. By Lemma 3, δ(x) ≥ δ(y) ≥ 2.

We distinguish now two cases: 1. δ(y) = 2. If we take x into the cover,
then y will become of degree one and hence will get deleted by the reduction
rules (see Lemma 3), producing one new edge e′ of degree at most two with
e′ 6= e due to edge domination. So this gives a T 1

3
(k−1)-branch. Not taking

x into the cover means to take y into the cover by the tiny edge rule, and at
least one other edge of degree two (from the ones which have been incident
to x) is created in the instance G− x. This gives another T 1

3
(k− 1)-branch.

The corresponding recurrence can be solved by 2k as claimed.
2. δ(y) > 2. The worst case is that δ(y) = δ(x) = 3. If x goes into the

cover, we only get a T 0
3
(k − 1)-branch. If x is not put into the cover, y will

be in the cover. Moreover, at least two new edges of degree two are created,
yielding a T 2

3
(k − 1)-branch in this subcase.

Lemma 10 Assuming two edges of degree two, we get the following bound:

T 2

3 (k) ≤ max{T 1

3 (k−1)+T 2

3 (k−1), T 0

3 (k−2)+T 1

3 (k−1), T 0

3 (k−1)+T 2

3 (k−2)}.

Proof. We consider first the situation that the two edges e1 and e2 of
degree two are disjoint. Then, basically the analysis of the previous lemma
applies, showing that

T 2

3 (k) ≤ max{2k, T 1

3 (k − 1) + T 3

3 (k − 1)} ≤ T 1

3 (k − 1) + T 2

3 (k − 1). (2)

Otherwise, let e1 = {x, y} and e2 = {x, z}. Then, δ(y) ≥ 2 and δ(z) ≥ 2
according to Lemma 3, because when branching, we always have reduced
instances. We again make some case distinctions:

1. If δ(x) = 2, then (since δ3(x) = 0 and δ3(y) > 0, δ3(z) > 0) we can
assume we branch (w.l.o.g.) at y. If y is put into the cover, then x
will be removed from the vertex set by the reduction rules (since it
then has degree one) and z will be put into the cover, as well, giving a
T 0

3
(k − 2)-branch. If y is not put into the cover, x will be by the tiny

edge rule, covering both e1 and e2. Moreover, since δ3(y) > 0, at least
one new edge ey of degree two is created. Since the edge domination
rule was not applicable to the instance under consideration, x /∈ ey,
because otherwise e1 ⊂ ey ∪ {y}. This branch is of type T 1

3
(k − 1).

This yields:
T 2

3 (k) ≤ T 0

3 (k − 2) + T 1

3 (k − 1). (3)

3 A SIMPLE APPROACH TO 3-HITTING SET 10

2. If δ(x) = 3 and say δ(y) = 2, assume we branch at x (due to heuristic
priority H2). If x goes into the cover, then the vertex domination
rule eliminates y, producing a new edge of degree two. This gives a
T 1

3
(k−1)-branch. Otherwise, both y and z must go into the cover, and

δ3(x) = 1 gives us a new edge of degree two (due to edge domination).
This yields a T 1

3
(k − 2)-branch. In conclusion, we have:

T 2

3 (k) ≤ T 1

3 (k − 1) + T 1

3 (k − 2).

This is always better than Eq. (3) and won’t be considered any further.

3. If δ(x) ≥ 3 and δ(y) ≥ 3, assume we branch at y (due to heuristic
priority H1). A simple analysis yields (cf. Eq. (2))

T 2

3 (k) ≤ T 1

3 (k − 1) + T 2

3 (k − 1).

4. If δ(x) ≥ 4, then assume that we branch at x. When x is not put into
the cover, then we gain two new small edges. Therefore,

T 2

3 (k) ≤ T 0

3 (k − 1) + T 2

3 (k − 2).

3.3 Estimating running times

As has been successfully done in other search-tree analyses, we will focus in
the the following on analyzing “pure” cases, where we assume that we fix
the possible branching scenarios for T 1

3
and for T 2

3
, assuming that the worst

case will show up in these pure cases. Of course, in practice, “mixed cases”
will happen, where in the same search-tree different branching cases occur.
This restriction to the worst-case analysis of pure branching scenarios brings
along another benefit: looking closely at the analysis given in Lemma 10,
one can notice that the worst case is always happening if the inequalities
are satisfied with equality. Hence, we have to deal with the following set of
recursions.

T 0
3
(k) = T 0

3
(k − 1) + T 2

3
(k)

T 1
3
(k) = T 0

3
(k − 1) + T 2

3
(k − 1)

(1) T 2
3
(k) = T 1

3
(k − 1) + T 2

3
(k − 1)

(2) T 2
3
(k) = T 0

3
(k − 2) + T 1

3
(k − 1)

(3) T 2
3
(k) = T 0

3
(k − 1) + T 2

3
(k − 2)

We are looking for a solution ci such that T 0
3
(k) = ck

i for i = 1, 2, 3,
corresponding to case (i) in the list of equations above. Note that we left
out the cases where obviously T j

3
(k) ≤ 2k can be shown; this is justified by

the following analysis which always gives worse branchings.

4 CONCLUSIONS 11

1. In this case, we have to tackle the following equations:

T 0

3 (k) = T 0

3 (k − 1) + T 2

3 (k)

T 1

3 (k) = T 0

3 (k − 1) + T 2

3 (k − 1)

T 2

3 (k) = T 1

3 (k − 1) + T 2

3 (k − 1) = T 0

3 (k − 2) + T 2

3 (k − 1) + T 2

3 (k − 2)

The first equation gives T 2
3
(k) = T 0

3
(k)−T 0

3
(k−1); plugged in the last

relation, we get:

(T 0
3 (k)−T 0

3 (k−1)) = (T 0
3 (k−1)−T 0

3 (k−2))+T 0
3 (k−2)+(T 0

3 (k−2)−T 0
3 (k−3))

This simplifies as follows:

T 0

3 (k) = 2T 0

3 (k − 1) + T 0

3 (k − 2) − T 0

3 (k − 3)

which implies that T 0
3
(k) = ck

1
with c1 ≤ 2.2470 .

2. Similar algebra gives T 0
3
(k) = ck

2
≤ 2.1701k.

3. Some algebra yields T 0
3
(k) = ck

3
≤ 2.2470 k.

In other words, even with the two worst-case cases (highlighted by putting
frames around them) we arrive at a better branching behavior than Nieder-
meier and Rossmanith did with their more intricate “bottom-up” approach.

By a more involved but similar analysis (based on slightly different
heuristic priorities and two more reduction rules), together with the ker-
nelization as explained by Niedermeier and Rossmanith, we can show:

Theorem 11 3-Hitting Set can be solved in O(2.1788k + n) time.

4 Conclusions

We have developed and analyzed new, simple parameterized algorithms for
3-Hitting Set. We believe that the methodology we used (deeply analyzing
search-tree behaviors of simple algorithms) is suitable for the development
of other improved parameterized algorithms, as well. In order to apply this
method, we need a kind of second auxiliary parameter in the problem which
we try to improve on in case the main parameter cannot be improved. In
the case of Hitting Set, the number of edges of small degree is such an
auxiliary parameter.

REFERENCES 12

We are currently working on similar problems in order to apply the “top-
down” analysis methodology to them. More specifically, recent work on d-
Hitting Set for d ≥ 4, Weighted Hitting Set and on biplanarization
problems (improving on the constants derived in [5]) gives promising results.

It would be interesting to see if the approach presented in this paper can
be combined with other attempts at improving on the analysis of search-
trees, as reported in [3, 7, 8]; this might lead to even better upper bounds
on the running times of exact algorithms.

References

[1] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and
U. Stege. Refined search tree techniques for the planar dominating set problem.
In Mathematical Foundations of Computer Science (MFCS), volume 2136 of LNCS,
pp. 111–122, 2001.

[2] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

[3] J. Chen, I. A. Kanj, and G. Xia. Labeled search trees and amortized analysis:
improved upper bounds for NP-hard problems. In International Symposium on Al-
gorithms and Computation (ISAAC), volume 2906 of LNCS, pp. 148–157, 2003.

[4] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and
the hardness of hypergraph vertex cover. In ACM Symp. on Theory of Computing
(STOC), pp. 595–601, 2003.

[5] V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.
Wood. A fixed-parameter approach to two-layer planarization. In International
Symp. on Graph Drawing (GD’01), volume 2265 of LNCS, pp. 1–15, 2002.

[6] R. S. Garfinkel and G. L. Nemhauser. Integer Programming. John Wiley & Sons,
1972.

[7] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of search
tree algorithms for graph modification problems. In Algorithms—ESA, volume 2832
of LNCS, pp. 642–653, 2003.

[8] O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223:1–72, 1999.

[9] R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for 3-

Hitting Set. Journal of Discrete Algorithms, 1:89–102, 2003.

[10] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95,
1987.

[11] K. Weihe. Covering trains by stations or the power of data reduction. In Algo-
rithms and Experiments ALEX 98, pp. 1–8. http://rtm.science.unitn.it/alex98/
proceedings.html, 1998.

5 APPENDIX I: OMITTED PROOFS 13

5 Appendix I: Omitted proofs

5.1 Proof of Lemma 1

Proof. Formally, the proof is done by induction on the number of vertices of the
graph. The base is solved by rules for simple instances. Assume that the correctness
of the algorithm has been shown for all graphs up to n vertices. Consider now an
instance (G, k) where G has n + 1 vertices. If after applying the reduction rules, G
has n vertices, the correctness follows by the induction hypothesis. Otherwise, let
us call the resulting instance (G, k), as well. Possibly, (G, k) can be correctly solved
by rules for simple instances. If not, we encounter a binary branching, covering two
mutually exclusive cases for some chosen vertex x:

1. If x is taken into the hitting set, then in the recursive call the following
instance is created:

• x is removed from the vertex set; hence, the induction hypothesis is
applicable to the created instance.

• The parameter k is accordingly decremented.

• x is put into the hitting set S which is going to be recursively con-
structed.

• All hyperedges to which x belongs are covered and hence deleted.

2. If x is not put into the hitting set, then in the recursive call the following
instance is created:

• x is removed from the vertex set; hence, the induction hypothesis is
applicable to the created instance.

• The hitting set S which is going to be recursively constructed is not
changed.

• The parameter k is not changed.

• From all hyperedges to which x belongs, x is removed.

The second branch is only executed when the first branch returns the empty set.
This is correct, since x will be in each correct cover that is returned in the first case,
and hence if the empty set is returned, this clearly signals that the corresponding
branch shows no solution.

Since the described actions are obviously correct, the correctness of the algo-
rithm follows by induction.

5.2 Proof of Lemma 2

Although the reduction rules were elsewhere mentioned, we are not aware of any
formal correctness proof. Since the soundness of the reductions is essential to the
correctness of the overall algorithm, we provide the corresponding soundness proofs
right here.

5 APPENDIX I: OMITTED PROOFS 14

Proof. We have to show that, whenever S is a solution to an instance (G, k), then
there is a solution S′ to the instance (G′, k′), where (G′, k′) is obtained from (G, k)
by applying any of the reduction rules. We must also show the converse direction.

1. (hyper)edge domination: Let e and f be hyperedges in G such that f ⊂ e.
If S is a solution to (G, k), then trivially S is also a solution to the instance
(G′, k) obtained from (G, k) by applying the edge domination rule to the
situation f ⊂ e. Conversely, if S ′ is a solution to (G′, k), then in particular
S′ ∩ f 6= ∅, which means that S ′ ∩ e 6= ∅, so that S′ is a solution to (G, k), as
well.

2. tiny edges: Hyperedges of degree one can only be covered by the vertices
they contain.

3. vertex domination: Let x and y be vertices in G such that x is dominated
by y. If S is a solution to (G, k) which does not contain x, then S is also a
solution to the instance (G′, k) obtained from (G, k) by applying the vertex
domination rule triggered by the domination of x by y. If S is a solution to
(G, k) which contains x, then because x is dominated by y, (S \ {x})∪{y} is
also a solution to (G, k) and, by the preceding sentence, this is a solution to
the reduced instance (G′, k), as well. Conversely, if S ′ is a solution to (G′, k),
S′ is a solution to (G, k), since no edges are deleted when forming G′.

5.3 Proof of Lemma 3

Proof. In the reduced instance, there are no vertices of degree zero, since this
would trigger the vertex domination rule, because there are at least two vertices.
The vertex domination rule would also get rid of vertices of degree one that are
connected to other vertices. Vertices of degree one that are not connected to other
vertices are coped with by the tiny edge rule.

5.4 Proof of Lemma 4

Proof. Not taking x into the cover means that, in order to cover edges e ∈ E
with x ∈ e, some z ∈ e\{x} must go into the cover. Therefore, the “next instance”
is G−x. The question is if e \ {x} ∈ E for any e with x ∈ e, because then less than
δd(x) edges of degree (d − 1) would be created. But this is ruled out by the edge
domination rule. Since δd−1(x) edges of degree (d − 1) are “destroyed” in G − x,
the formula is valid.

5.5 Some algebra left out before Theorem 11

We are looking for a solution ci such that T 0
3 (k) = ck

i for i = 1, 2, 3, corresponding
to case (i) in the list of equations above. Note that we left out the cases where
obviously T j

3 (k) ≤ 2k can be shown; this is justified by the following analysis which
always gives worse branchings.

5 APPENDIX I: OMITTED PROOFS 15

1. In this case, we have to tackle the following equations:

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 1
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 1)

T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2)

The first equation gives T 2
3 (k) = T 0

3 (k) − T 0
3 (k − 1); plugged in the last

relation, we get:

(T 0
3 (k)−T 0

3 (k−1)) = (T 0
3 (k−1)−T 0

3 (k−2))+T 0
3 (k−2)+(T 0

3 (k−2)−T 0
3 (k−3))

This simplifies as follows:

T 0
3 (k) = 2T 0

3 (k − 1) + T 0
3 (k − 2) − T 0

3 (k − 3)

which implies that T 0
3 (k) = ck

1 with c1 ≤ 2.2470 .

2.

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 1
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 1)

T 2
3 (k) = T 0

3 (k − 2) + T 1
3 (k − 1)

Hence, T 2
3 (k) = 2T 0

3 (k − 2) + T 2
3 (k − 2) which implies

T 0
3 (k) − T 0

3 (k − 1) = 3T 0
3 (k − 2) − T 0

3 (k − 3),

meaning that T 0
3 (k) ≤ 2.1701k.

3.

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2)

By using the first equation, we get:

(T 0
3 (k) − T 0

3 (k − 1)) = T 0
3 (k − 1) + (T 0

3 (k − 2) − T 0
3 (k − 3))

which yields

T 0
3 (k) = 2T 0

3 (k − 1) + T 0
3 (k − 2) − T 0

3 (k − 3)

Therefore T 0
3 (k) = ck

3 ≤ 2.2470 k.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 16

6 Appendix II: 3-Hitting Set; advanced analysis

Lemma 7 may give us another perspective on our analysis: we finally must analyze
T 3

3 , as well. This will be our first attempt at improving the analysis of 3-Hitting

Set. To this end, we will refine our heuristic priorities (in order to simplify the
case analysis for T 3

3) and design two new reduction rules (special to the case d = 3).
The following time analysis shows that the “weak point” of the algorithm (leading
to the worst-case running times) is when the three edges of degree two intersect in
a star-like fashion. This motivates a further modification of the heuristic priorities.
A further look at the situations which then lead to the worst-case branchings drives
us into a deeper combinatorial analysis, again slightly modifying the heuristic pri-
orities. Since at that time, many different situations are at least very close to the
worst-case branching, we stop the analysis.

The message to be taken from the presentation is that we can afford having our
analysis guided by the demand for improving on the “weakest spot” of the earlier
running time analysis. As long as the changes in the heuristic priorities only affect
these special situations, we need not have another look at the other parts of the
earlier analysis. Adding further reduction rules won’t affect the validity of earlier
analysis, either. This sort of modularity is therefore very helpful to improve on
algorithms to an extent that is hard to achieve with the traditional, bottom-up
methodology.

6.1 Refined heuristic priorities and more reduction rules

In order to be able to better handle the situation that some of the small edges
don’t intersect, we refine our heuristic priorities as follows. Note that the additional
heuristic rule we introduce does not affect the analysis of T `

3 for ` < 3.

H0 Prefer small edges. More formally, let δE
min = min{δ(e) | e ∈ E} and let

E0 = {e ∈ E | δ(e) = δE
min}.

H0′ Prefer small lonely edges If δE
min = 2, then if there is an edge e′ ∈ E0 such

that ∀e ∈ E0 \ {e
′}(e ∩ e′ = ∅) then set E0 = {e′}.

H1 Maximize Eq. (1), i.e., let V1 = {x ∈
⋃

e∈E0
| δ3(x) − δ2(x) is maximum}.

H2 Choose some x ∈ V1 of maximum degree.

Moreover, we employ the following two special case reduction rules, specific to
the case of 3-Hitting Set:

1. path reduction Let G = (V, E) contain the small edges e1 = {x, y}, e2 =
{y, z} and e2 = {u, x}, u 6= z. Assume that δ(x) = δ(y) = 2. If z is
dominated by u in G − e2 = (V, E \ {e2}), then delete z, i.e., reduce G to
G′ = G − z = (V \ {z}, {e \ {z} | e ∈ E}) without changing the value of the
parameter.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 17

x y z

u

(a) path

x y z

u

(b) star

x y z

(c) triangle

Figure 1: Three situations for arranging three edges.

2. triangle reduction Consider the instance (G, k), where G = (V, E) contains
the small edges e1 = {x, y}, e2 = {y, z} and e3 = {x, z} with δ(x) = 2.
Then, put y into the cover, i.e., reduce to (G′, k − 1) with G′ = (V ′, E′),
E′ = {e ∈ E | y /∈ e} and V ′ = {v ∈ V | ∃e ∈ E′(v ∈ e)}.

These rules can be seen as a variant of the vertex domination rule; small pictures
can be found in Fig. 1(a) and Fig. 1(c), respectively.

Lemma 12 The path reduction rule is sound.

Proof. Consider a situation as described in the reduction rule. Assume that S is
a solution to the instance G = (V, E). Then if z /∈ S, S is also a solution to G− z.
If z ∈ S, then

• if u ∈ S, then since z is dominated by u in G − e3, the only “purpose” of
z ∈ S is to cover e2, so that S ∪ {y} \ {z} is another solution of G and of
G − z;

• if u /∈ S, then x ∈ S in order to cover e3; then, S ∪ {u, y} \ {x, z} is another
solution of G and of G − z.

Conversely, if S′ is a solution to the instance G − z, we can assume that S ′ was
obtained by first applying the (general) reduction rules to G − z. Hence, y ∈ S ′

by the tiny edge rule. Therefore, x /∈ S ′ by the vertex domination rule that puts

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 18

u ∈ S′. Because z is dominated by u in G− e3, S′ is also a solution to the instance
G.

Lemma 13 The triangle reduction rule is sound.

Proof. Consider a situation as described in the reduction rule. Assume that S is a
solution to the instance G = (V, E). If y ∈ S, then S ′ = S \{y} is clearly a solution
to the reduced instance G′. Conversely, if S′ is a solution to G′, then any instance
obtained from G′ by adding a vertex y plus some incidence relations with y can be
solved by S = S′ ∪ {y}; in particular, this is true for G.

Hence, we only have to consider that S is a solution to the instance G = (V, E)
with y /∈ S. Obviously, the “triangle” formed by x, y, z requires two out of these
three vertices to go into the cover. Hence, x, z ∈ S. Since z ∈ S, then only
“purpose” of x being in the hitting set is to cover the edge {x, y}. This can be done
equally well by putting y instead of x into the hitting set, so that S ′ = S \ {x} is a
solution to the reduced instance G′ (as argued before).

6.2 Analyzing T
3

3

Lemma 14 T 3
3 (k) ≤ max{T 0

3 (k − 2) + T 1
3 (k − 2), T 1

3 (k − 1) + T 1
3 (k − 2), T 0

3 (k −
3) + T 1

3 (k − 1) + T 1
3 (k − 2), T 0

3 (k − 1) + T 1
3 (k − 3), 2T 2

3 (k − 1)}.

Proof. Let e1, e2 and e3 denote the edges of degree two.
If not all the three edges of degree two interact, say e3 ∩ e2 = ∅ and e3 ∩ e2 = ∅,

then the heuristic priority H0′ would choose say e3. The chosen vertex x ∈ e3 which
would be branched at satisfies δ(x) ≥ 2 according to Lemma 3, so that δ3(x) ≥ 1
follows. Since the other two small edges remain untouched, a trivial branching
analysis yields:

T 3
3 (k) ≤ T 2

3 (k − 1) + T 3
3 (k − 1). (4)

Observe that—in the case when x is not taken into the cover—the fact that the
graph instance is reduced implies that at least one new small edge is created.

Assume then that all three edges of degree two interact. Formally, this means
that the graph induced by the edge set E0 = {e ∈ E | δ(e) = 2} is connected. This
could happen in three different ways, as depicted in Figure 1. Namely, without loss
of generality, we may assume that e1 = {x, y} and e2 = {y, z} are two of the edges.
A third edge of degree two can interact with these two given ones in essentially the
following different ways:

1. The third edge is connected to exactly one of x or z, so that the edges form
a path. Without loss of generality, we discuss the case of an edge e3 = {u, x}
in the following, with u 6= z.

2. The third edge is connected to y: e1 = {x, y}, e2 = {y, z}, e3 = {y, u}. This
means that the edge-2-component forms a small star.

3. The third edge is connecting both x and z, yielding a triangle.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 19

We will discuss the mentioned three situations in details in what follows. Ob-
serve that Lemma 3 applies, since we are always dealing with reduced instances, so
that all vertices of interest have degree at least two.

1. e1 = {x, y}, e2 = {y, z}, e3 = {u, x}, with u 6= z. We distinguish several
sub-cases:

(a) δ(x) = δ(y) = 2. After having applied the reduction rules, δ(u), δ(z) ≥
2. W.l.o.g., δ(z) ≤ δ(u). H1 would let us branch at u. If u is put into
the cover, then x would not go into the cover by the vertex domination
rule (see Lemma 3), so that the tiny edge rule puts y into the cover,
as well. This is a T 0

3 (k − 2)-branch. If u is not put into the cover,
then x and z will go into the cover, the latter by vertex domination.
Unfortunately, the new edge (formerly incident with u) which would
be created could be already covered by z, so we cannot count this edge
that easily. But if all edges incident with u (besides e3) are also incident
with z, the path reduction rule would have applied. Hence, we can be
sure that in the case that u is not put into the cover, always one new
small edge is created that does not contain z. Therefore,

T 3
3 (k) ≤ T 0

3 (k − 2) + T 1
3 (k − 2). (5)

(b) If δ(x) > 2 (the case δ(y) > 2 is symmetric), then first assume that
we branch at u. Due to the priority H2, this means that δ(u) > 2. A
simple branching analysis then gives:

T 3
3 (k) ≤ T 2

3 (k − 1) + T 3
3 (k − 1).

This equation already showed up in (4).

(c) If δ(x) > 2 and we branch at x, then two sub-cases arise:

• If δ(u) = 2, δ(x) = 3 is the worst case (cf. H2). In the case that
we put x into the cover, u will be dominated by its two neighbors
and be hence discarded by the vertex domination rule, producing
another edge of degree two this way. Thereby, we get

T 3
3 (k) ≤ T 2

3 (k − 1) + T 2
3 (k − 2).

Observe that this inequality is always better than Eq. (9) below
(also better than the refined analysis of that situation). Therefore,
we can ignore it in the following.

• If δ(u) > 2, then δ(x) > 3. A simple branching analysis then gives:

T 3
3 (k) ≤ T 1

3 (k − 1) + T 2
3 (k − 2).

Again, this situation is better than Eq. (9).

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 20

2. e1 = {x, y}, e2 = {y, z}, e3 = {y, u}. These three edges form a small star.
Again, we consider some sub-cases:

(a) If δ(y) = 3, then we branch (w.l.o.g.) at x due to the reduction rules,
since min{δ(u), δ(x), δ(z)} ≥ 2, so that δ3(x) ≥ 1. If x is taken into
the cover, then in the next recursive call of our algorithm, the edge-
2-component {e2, e3} will be analyzed.2 Looking into the proof of
Lemma 10 tells us that the T 2

3 (k) ≤ T 0
3 (k − 2) + T 1

3 (k − 1) case is
encountered, since δ(y) = 2 then. If x is not put into the cover, y will
be. Moreover, at least one new edge of degree two is created. Alto-
gether, we obtain:

T 3
3 (k) ≤ T 0

3 (k − 3) + T 1
3 (k − 1) + T 1

3 (k − 2). (6)

(b) If δ(y) ≥ 4 and if we branch at y, then a trivial analysis yields:

T 3
3 (k) ≤ T 0

3 (k − 1) + T 1
3 (k − 3). (7)

(c) If δ(y) ≥ 4 and if we branch at say x. By the heuristic priorities, We
have δ(x) ≥ 3. So, not taking x into the cover gives two new edges of
degree two. A simple branching analysis would then yield:

T 3
3 (k) ≤ 2T 2

3 (k − 1). (8)

Observe that this relation is always worse than the inequality derived
in Eq. (4), so that Eq. (4) is not mentioned in the formulation of the
lemma.

3. e1 = {x, y}, e2 = {y, z}, e3 = {x, z}. Hence, the edge-2-component is a
triangle. By the triangle reduction rule, δ(x), δ(y), δ(z) ≥ 3. If x is going
into the cover, then the edge {y, z} will remain “untouched.” If x is not put
into the cover, then both y and z must go into the cover, and at least one
edge (incident to x) is now an edge of degree two. Therefore, we get

T 3
3 (k) ≤ T 1

3 (k − 1) + T 1
3 (k − 2). (9)

Note that Eq. (9) is always better than Eq. (6) and will be hence ignored.

The reader can easily check that this is a complete case distinction.
Note that we already simplified the “limiting expression” in the formulation

of this lemma as far as possible: whenever two “comparable” branching arose, we
erased the better one.

2A locality-preserving implementation will do so also in the case of T≥3

3
.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 21

6.3 Solving the recurrence equations

Note that we can stop our analysis here, since we have no recurrences for T 3
3 which

refer to say T 4
3 . Since we have only one case for T 1

3 to analyze—namely, T 1
3 (k) ≤

T 0
3 (k− 1) + T 2

3 (k− 1)—and since the expressions for T 3
3 don’t contain T 3

3 itself, we
can rewrite the equations for T 3

3 as equations for T 0
3 as follows:

T 0
3 (k)

Eq.(5)

≤ T 0
3 (k − 1) + T 0

3 (k − 2) + T 0
3 (k − 3) + T 2

3 (k − 3) (10)

T 0
3 (k)

Eq.(6)

≤ T 0
3 (k − 1) + T 0

3 (k − 2) + 2T 0
3 (k − 3) + T 2

3 (k − 2) + T 2
3 (k − 3) (11)

T 0
3 (k)

Eq.(7)

≤ 2T 0
3 (k − 1) + T 0

3 (k − 4) + T 2
3 (k − 4) (12)

T 0
3 (k)

Eq.(8)

≤ T 0
3 (k − 1) + 2T 2

3 (k − 1) (13)

This plugging-in also shows that Eq. (10) is always better than Eq. (11) and
needs not be considered in what follows. Let us now discuss the two worst-case
scenarios from Lemma 10. Note that the left-out sub-case in the analysis of that
Lemma already gives a satisfactory branching number when analysed up to T 2

3 , and
hence needs no further refined analysis with the help of T 3

3 .

Case 1: T 2
3
(k) = T 1

3
(k−1)+T 2

3
(k−1) = T 0

3
(k−2)+T 2

3
(k−1)+T 2

3
(k−2) I

A simple argument shift in Eq. (11) gives:

T 0
3 (k + 1) = T 0

3 (k) + T 0
3 (k − 1) + 2T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2) II

Subtracting II from I, we get:

T 2
3 (k) = T 0

3 (k + 1) − T 0
3 (k) − T 0

3 (k − 1) − T 0
3 (k − 2)

Eq. (11) can be hence rewritten as follows:

T 0
3 (k) = T 0

3 (k − 1) + T 0
3 (k − 2) + 2T 0

3 (k − 3)

+(T 0
3 (k − 1) − T 0

3 (k − 2) − T 0
3 (k − 3) − T 0

3 (k − 4))

+(T 0
3 (k − 2) − T 0

3 (k − 3) − T 0
3 (k − 4) − T 0

3 (k − 5))

= 2T 0
3 (k − 1) + T 0

3 (k − 2) − 2T 0
3 (k − 4) − T 0

3 (k − 5).

This gives

T 0
3 (k) ≤ 2.2274k .

Since Eq. (12) only contains one T 2
3 occurrence, we can immediately get the

following equation by plugging into I: T 0
3 (k + 4) − 2T 0

3 (k + 3) − T 0
3 (k) = T 0

3 (k −

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 22

2) + (T 0
3 (k + 3)− 2T 0

3 (k + 2)− T 0
3 (k − 1)) + (T 0

3 (k + 2)− 2T 0
3 (k + 1)− T 0

3 (k − 2)).
This yields

0 = T 0
3 (k + 4) − 3T 0

3 (k + 3) + T 0
3 (k + 2) + 2T 0

3 (k + 1) − T 0
3 (k) + T 0

3 (k − 1).

Hence,
T 0

3 (k) ≤ 2.1638k.

Similarly, Eq. (13) can be used, after multiplying the equation for T 2
3 with two.

T 0
3 (k + 1) − T 0

3 (k) = 2T 0
3 (k − 2) + (T 0

3 (k) − T 0
3 (k − 1)) + (T 0

3 (k − 1) − T 0
3 (k − 2)).

Therefore,
0 = T 0

3 (k + 1) − 2T 0
3 (k) + 0T 0

3 (k − 1) − T 0
3 (k − 2).

This gives

T 0
3 (k) ≤ 2.2056k .

Case 2: T 2
3
(k) = T 0

3
(k − 1) + T 2

3
(k − 2)

Eq. (11) is now a bit tricky. We first make the ansatz that T 0
3 (k) = ck. This gives:

0 = ck − ck−1 − ck−2 − 2ck−3 − (T 2
3 (k − 2) + T 2

3 (k − 3)). Applying the recursion
given by Case 2 entails:

T 2
3 (k − 2) + T 2

3 (k − 3) = T 0
3 (k − 3) + T 2

3 (k − 3) + T 2
3 (k − 4).

Repeating this argument, we obtain:

T 2
3 (k − 2) + T 2

3 (k − 3) =

k−3∑

i=0

T 0
3 (i).

Hence, our ansatz yields:

0 = ck − ck−1 − ck−2 − 2ck−3 −
k−3∑

i=0

ci

= ck − ck−1 − ck−2 − 2ck−3 − (ck−2 − 1)/(c − 1)

= ck+1 − ck − ck−1 − 2ck−2 − ck−2 + 1 − (ck − ck−1 − ck−2 − 2ck−3)

≈ ck+1 − 2ck + 0ck−1 − 2ck−2 + 2ck−3

This gives

T 0
3 (k) ≤ 2.2227k .

Eq. (12) can be solved as before: T 0
3 (k + 4) − 2T 0

3 (k + 3) − T 0
3 (k) = T 0

3 (k − 1) +
(T 0

3 (k + 2) − 2T 0
3 (k + 1) − T 0

3 (k − 2)). Hence,

T 0
3 (k + 4)− 2T 0

3 (k + 3)− T 0
3 (k + 2) + 2T 0

3 (k + 1)− T 0
3 (k)− T 0

3 (k − 1) + T 0
3 (k − 2).

This gives
T 0

3 (k) ≤ 2.1582k.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 23

Similarly, Eq. (13) can be used, after multiplying the equation for T 2
3 with two.

T 0
3 (k + 1) − T 0

3 (k) = 2T 0
3 (k − 1) + (T 0

3 (k − 1) − T 0
3 (k − 2)). Therefore, 0 = T 0

3 (k +
1) − T 0

3 (k) − 3T 0
3 (k − 1) + T 0

3 (k − 2). This gives

T 0
3 (k) ≤ 2.1701k.

We boxed the branching numbers which (albeit being better than the worst case
in the preceding section) are worse than the “best case” in the previous section.

6.4 A further hit at 3-Hitting Set

Regarding Lemma 14, we can observe that all worst cases are found in the “star
case,” of which the branch at the center appears to yield the best branching be-
havior. Is it after all favorable to branch in centers of “large stars” even if this
contradicts the heuristic priorities we have set up to now? Let us try. The trivial
branch then yields

T 3
3 (k) ≤ T 0

3 (k − 1) + T 0
3 (k − 3).

Hence,

T 0
3 (k) ≤ 2T 0

3 (k − 1) + T 0
3 (k − 3) ≤ 2.2056k . (14)

Is there some intuition why this branch is (sometimes) more favorable then the
analysis we did up to now? Maybe, we simply neglected the effect which is incurred
by taking lots of vertices into the cover in one stroke. So, our heuristic priorities
would now become:

H0 Prefer small edges. More formally, let δE
min = min{δ(e) | e ∈ E} and let

E0 = {e ∈ E | δ(e) = δE
min}.

H0′ Prefer small lonely edges If δE
min = 2, then if there is an edge e′ ∈ E0 such

that ∀e ∈ E0 \ {e
′}(e ∩ e′ = ∅) then set E0 = {e′}.

Hnew Prefer center branch If there is an x ∈
⋃

e∈E0
e with δ2(x) > 2, then update

E0 = {x}.

H1 Maximize Eq. (1), i.e., let V1 = {x ∈
⋃

e∈E0
| δ3(x) − δ2(x) is maximum}.

H2 Choose some x ∈ V1 of maximum degree.

Observe that rule Hnew can only trigger if there are at least three edges of small
degree in the instance, so that it does not influence our earlier analysis of T 0

3 , T 1
3

or T 2
3 . Furthermore, it is obvious that the mentioned “star case” is the only place

where Hnew applies to, so that the rest of our analysis is still valid.
The revised lemma for T 3

3 now reads as follows, where the recurrences are listed
according to the sequence they appear; they correspond to Eq. (4), Eq. (5), Eq. (9),
and Eq. (14). Notice that the first and the third equations were “neglected” by
the earlier analysis, since they were already “covered” by worse cases in the former
“star analysis.” Since the analysis of the star case did change, they have to be
reconsidered now.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 24

Lemma 15 T 3
3 (k) ≤ max{T 2

3 (k − 1) + T 3
3 (k − 1), T 0

3 (k − 2) + T 1
3 (k − 2), T 1

3 (k −
1) + T 1

3 (k − 2), T 0
3 (k − 1) + T 0

3 (k − 3)}.

Since the first recurrence in that list is surely better than Eq. (13) analyzed
above (which in turn was based on Eq. (8)), and since that analysis gave the same
branching number as Eq. (14), we need not deal with that case further here. The
second and third recurrences still have to be analyzed.

The second recursion yields

T 3
3 (k) = T 0

3 (k − 2) + T 1
3 (k − 2) = T 0

3 (k − 2) + T 0
3 (k − 3) + T 2

3 (k − 3),

while the third recursion gives:

T 3
3 (k) = T 1

3 (k − 1) + T 1
3 (k − 2) = T 0

3 (k − 2) + T 0
3 (k − 3) + T 2

3 (k − 2) + T 2
3 (k − 3).

Since this is always worse than the previous recursion, we only have to consider the
following case:

T 0
3 (k) = T 0

3 (k − 1) + T 0
3 (k − 2) + T 0

3 (k − 3) + T 2
3 (k − 2) + T 2

3 (k − 3). (15)

According to the remarks from the previous section, the possible worst case
scenarios left to be analyzed are two. Observe that Eq. (15) is always better than
Eq. (11).

1.

T 0
3 (k) = T 0

3 (k − 1) + T 0
3 (k − 2) + T 0

3 (k − 3) + T 2
3 (k − 2) + T 2

3 (k − 3)

T 2
3 (k − 1) = T 0

3 (k − 3) + T 2
3 (k − 2) + T 2

3 (k − 3)

Hence, T 2
3 (k− 1) = T 0

3 (k) + T 0
3 (k− 3)−T 0

3 (k− 1)−T 0
3 (k− 2)−T 0

3 (k− 3) =
T 0

3 (k) − T 0
3 (k − 1) − T 0

3 (k − 2), which yields
0 = (−T 0

3 (k)+T 0
3 (k− 1)+T 0

3 (k− 2))+T 0
3 (k− 3)+ (T 0

3 (k− 1)−T 0
3 (k− 2)−

T 0
3 (k − 3)) + (T 0

3 (k − 2) − T 0
3 (k − 3) − T 0

3 (k − 4)) =
− T 0

3 (k) + 2T 0
3 (k − 1) + T 0

3 (k − 2) − T 0
3 (k − 3) − T 0

3 (k − 4). Hence,

T 0
3 (k) ≤ 2.1479k.

2.

T 0
3 (k) = T 0

3 (k − 1) + T 0
3 (k − 2) + T 0

3 (k − 3) + T 2
3 (k − 2) + T 2

3 (k − 3)

T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2)

We again make the ansatz that T 0
3 (k) = ck. After some algebra as in the

previous section, this gives

T 0
3 (k) ≤ 2.1177k.

Let us look again where the worst case scenarios appeared, leading to the ex-
ponential base 2.2056:

1. We took over the analysis of Eq. (13).

2. According to the revised heuristic priorities, Eq. (14) arose.

We try to cope with these situations in the next section.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 25

6.5 A final hit at 3-Hitting Set

First of all, we should look what happens if we actually and explicitly analyze
Eq. (4). Recall that this relation explicitly appears in the formulation of Lemma 15,
but we refrained from an explicit analysis by referring to the earlier analysis of
Eq. (13) which was “good enough” at that point. This is important, since if we
would gain nothing compared to our “shortcut analysis,” we would not like to
analyze this case further.

Is it all worthwhile doing? With the identity T 0
3 (k) = T 0

3 (k − 1) + T 3
3 (k),

we get

T 2
3 (k − 1) = T 3

3 (k) − T 3
3 (k − 1)

= T 0
3 (k) − 2T 0

3 (k − 1) + T 0
3 (k − 2)

Again, we have to distinguish two sub-cases stemming from our analysis of T 2
3 :

• T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2):

Plugging in the expression we just derived for T 2
3 (k − 1) yields:

0 = (−T 0
3 (k + 1) + 2T 0(k)− T 0

3 (k − 1)) + T 0
3 (k − 2) + (T 0

3 (k)− 2T 0
3 (k − 1) +

T 0
3 (k − 2)) + (T 0

3 (k − 1) − 2T 0
3 (k − 2) + T 0

3 (k − 3)) =
− T 0

3 (k + 1) + 3T 0
3 (k) − 2T 0

3 (k − 1) + T 0
3 (k − 3). Hence,

T 0
3 (k) ≤ 2.1788k .

• T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2):

A similar plug-in gives:

0 = −T 0
3 (k + 1) + 2T 0

3 (k) + T 0
3 (k − 1) − 2T 0

3 (k − 2) + T 0
3 (k − 3)

Hence,
T 0

3 (k) ≤ 2.1323k.

In short, it might be worthwhile further analyzing the second bad situation
after all. In fact, the framed branching number will turn out to be the worst case
in this analysis, which again backs our intention to stop the analysis here, since
otherwise a detailed analysis of T 4

3 seems to be inevitable. Correctly keeping track
of all those situations is probably close to a nightmare.

Observe that up to now we only did a very rough analysis of the star case
branching from the center. Can we improve on the general situation under some
circumstances? In the following discussion, we refer again to Fig. 1(b).

1. If the center vertex y has degree four, then we would gain a new edge of
degree two if we don’t take y into the cover. More specifically, we get the
recurrence:

T 3
3 (k) ≤ T 0

3 (k − 1) + T 1
3 (k − 3) (16)

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 26

2. If the center vertex y has degree three and at least one of the vertices u, x, z
has degree two, we would gain a new edge of degree two if we take y into the
cover by the reduction rules. Then, we get:

T 3
3 (k) ≤ T 1

3 (k − 1) + T 0
3 (k − 3) (17)

3. The worst case leading to Eq. (4) actually happens when δ(y) = 3 and
δ(u), δ(x), δ(z) ≥ 3. This situation might be handled by again changing
our heuristic priorities, since in that case δ3(x)− δ3(y) ≥ 2, so that heuristic
priority H1 (if that would be bothered about again) would very clearly prefer
branching at x to branching at y. We will discuss details below.

To estimate if the idea of changing heuristic priorities (again) might be useful
at all, let us compute the branching behavior for Eq. (16) and for Eq. (17):

Analyzing Eq. (16): Using Lemma 9, we get

T 3
3 (k) = T 0

3 (k − 1) + T 1
3 (k − 3) = T 0

3 (k − 1) + T 0
3 (k − 4) + T 2

3 (k − 4).

With the identity T 0
3 (k) = T 0

3 (k − 1) + T 3
3 (k), we obtain

T 2
3 (k − 4) = T 0

3 (k) − 2T 0
3 (k − 1) − T 0

3 (k − 4).

Again, we have to distinguish two sub-cases stemming from our analysis of T 2
3 :

• T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2):

Plugging in the expression we just derived for T 2
3 (k − 4) yields:

0 = T 2
3 (k) − T 0

3 (k − 2) − T 2
3 (k − 1) − T 2

3 (k − 2)
= (T 0

3 (k + 4)− 2T 0
3 (k + 3)− T 0

3 (k))− T 0
3 (k − 2)− (T 0

3 (k + 3)− 2T 0
3 (k + 2)−

T 0
3 (k − 1)) − (T 0

3 (k + 2) − 2T 0
3 (k + 1) − T 0

3 (k − 2))
= T 0

3 (k+4)−3T 0
3 (k+3)+T 0

3 (k+2)+2T 0
3 (k+1)−T 0

3 (k)+T 0
3 (k−1). Hence,

T 0
3 (k) ≤ 2.1638k.

• T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2):

A similar plug-in gives:

0 = T 0
3 (k+4)−2T 0

3 (k+3)−T 0
3 (k+2)+2T 0

3 (k+1)−T 0
3 (k)+T 0

3 (k−1)−T 0
3 (k−2).

Hence,
T 0

3 (k) ≤ 2.1582k.

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 27

Analyzing Eq. (17): Using Lemma 9, we get

T 3
3 (k) = T 1

3 (k − 1) + T 0
3 (k − 3) = T 0

3 (k − 2) + T 0
3 (k − 3) + T 2

3 (k − 2).

With the identity T 0
3 (k) = T 0

3 (k − 1) + T 3
3 (k), we obtain

T 2
3 (k − 2) = T 0

3 (k) − T 0
3 (k − 1) − T 0

3 (k − 2) − T 0
3 (k − 3).

Again, we have to distinguish two sub-cases stemming from our analysis of T 2
3 :

• T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2):

Plugging in the expression we just derived for T 2
3 (k − 4) yields:

0 = T 2
3 (k) − T 0

3 (k − 2) − T 2
3 (k − 1) − T 2

3 (k − 2) =
(T 0

3 (k+2)−T 0
3 (k+1)−T 0

3 (k)−T 0
3 (k−1))−T 0

3 (k−2)− (T 0
3 (k+1)−T 0

3 (k)−
T 0

3 (k − 1) − T 0
3 (k − 2)) − (T 0

3 (k) − T 0
3 (k − 1) − T 0

3 (k − 2) − T 0
3 (k − 3)) =

T 0
3 (k + 2)− 2T 0

3 (k + 1)− T 0
3 (k) + T 0

3 (k − 1) + T 0
3 (k − 2) + T 0

3 (k − 3). Hence,

T 0
3 (k) ≤ 2.0868k.

• T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2):

A similar plug-in gives:

0 = T 0
3 (k + 2) − T 0

3 (k + 1) − 2T 0
3 (k) − T 0

3 (k − 1) + T 0
3 (k − 2) + T 0

3 (k − 3).

Hence,
T 0

3 (k) ≤ 2.0437k.

The case when δ(y) = 3 and δ(u), δ(x), δ(z) ≥ 3. Since we know that we
would get no improvement when branching at y, let us assume for the moment we
would have modified our heuristic priorities in a way that they force us to branch at
say x. By our case distinction, if x is not taken into the cover, y would be put into
the cover, and in addition, two new small edges show up, giving a T 2

3 (k−1)-branch.
If x is put into the cover, we would get another T 2

3 (k − 1)-branch. But observe
that, since δ(y) = 3 before the branching, we are now in the first sub-case of
Lemma 10. Overall, this yields—using Lemma 9:

T 3
3 (k) ≤ T 2

3 (k − 1) + T 0
3 (k − 3) + T 1

3 (k − 2) ≤ 2T 0
3 (k − 3) + T 2

3 (k − 1) + T 2
3 (k − 3).

With the identity T 0
3 (k) = T 0

3 (k − 1) + T 3
3 (k), we obtain

T 2
3 (k − 1) + T 2

3 (k − 3) = T 0
3 (k) − T 0

3 (k − 1) − 2T 0
3 (k − 3). (18)

Again, we have to distinguish two sub-cases stemming from our analysis of T 2
3 :

• T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2):

This time, we cannot simply “plug in” as in earlier computations, but we
have to do some further algebra. An argument shift and some re-arranging
of the latter equation gives:

T 2
3 (k − 1) − T 2

3 (k − 3) = T 0
3 (k − 3) + T 2

3 (k − 2) (19)

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 28

Subtracting Eq. (18), rearranging and an argument shift yields:

T 2
3 (k − 1) = T 0

3 (k + 1) − T 0
3 (k) + 0T 0

3 (k − 1) − 3T 0
3 (k − 2) − 2T 2

3 (k − 2).

Conversely, taking twice the sum of Eq. (18) and (19) leads to:

4T 2
3 (k − 1) = 2T 0

3 (k) − 2T 0
3 (k − 1) + 0T 0

3 (k − 2) − 2T 0
3 (k − 3) + 2T 2

3 (k − 2).

Adding the last two equations together gives:

5T 2
3 (k − 1) = T 0

3 (k + 1) + T 0
3 (k) − 2T 0

3 (k − 1) − 3T 0
3 (k − 2) − 2T 0

3 (k − 3).

The last equation can be plugged into five times Eq. (18), giving:
0 = −5T 0

3 (k)+5T 0
3 (k− 1)+10T 0

3 (k− 3)+ (T 0
3 (k +1)+T 0

3 (k)− 2T 0
3 (k− 1)−

3T 0
3 (k − 2) − 2T 0

3 (k − 3)) + (T 0
3 (k − 1) + T 0

3 (k − 2) − 2T 0
3 (k − 3) − 3T 0

3 (k −
4) − 2T 0

3 (k − 5)) =
T 0

3 (k+1)−4T 0
3 (k)+4T 0

3 (k−1)−2T 0
3 (k−2)+6T 0

3 (k−3)−3T 0
3 (k−4)−2T 0

3 (k−5).
Hence,

T 0
3 (k) ≤ 2.1834k .

• T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2): This case is much easier to handle; an

argument shift leads to:

T 2
3 (k − 1) − T 2

3 (k − 3) = T 0
3 (k − 2), (20)

and simply adding the shift with Eq. (18) gives:

2T 2
3 (k − 1) = T 0

3 (k) − T 0
3 (k − 1) + T 0

3 (k − 2) − 2T 0
3 (k − 3).

This can be plugged in twice of Eq. (20), leading to
0 = −2T 0

3 (k − 2) + 2T 2
3 (k − 1) − 2T 2

3 (k − 3) =
− 2T 0

3 (k − 2) + (T 0
3 (k)− T 0

3 (k − 1) + T 0
3 (k − 2)− 2T 0

3 (k − 3))− (T 0
3 (k − 2)−

T 0
3 (k − 3) + T 0

3 (k − 4) − 2T 0
3 (k − 5)) =

T 0
3 (k) − T 0

3 (k − 1) − 2T 0
3 (k − 2) − T 0

3 (k − 3) − T 0
3 (k − 4) + 2T 0

3 (k − 5).
Hence,

T 0
3 (k) ≤ 2.1523k.

The first of these cases is obviously still slightly worse than our “target base”
2.1788 announced before. What can we do about it? The idea we are following
now is to re-analyze the “star-case branching” for T 2

3 , as well. More formally, our
heuristic priorities would now—and finally—become:

H0 Prefer small edges. Let δE
min = min{δ(e) | e ∈ E} and let E0 = {e ∈ E | δ(e) =

δE
min}.

H0′ Prefer small lonely edges If δE
min = 2, then if there is an edge e′ ∈ E0 such

that ∀e ∈ E0 \ {e
′}(e ∩ e′ = ∅) then set E0 = {e′}.

H ′

new Prefer sometimes center branch If there is an x ∈
⋃

e∈E0
e

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 29

• with δ2(x) > 2 or with δ2(x) = 2 and |E0| = 2,

• such that δ3(y) = 1 for all neighbors y ∈
⋃

e∈E0
e of x,

then update E0 = {x}.

H1 Maximize Eq. (1), i.e., let V1 = {x ∈
⋃

e∈E0
| δ3(x) − δ2(x) is maximum}.

H2 Choose some x ∈ V1 of maximum degree.

Analyzing T 2
3

in the star-case. This means that we are facing the following
situation: we have edges e1 = {x, y} and e2 = {x, z}. We discuss the following
mutually exclusive possibilities:

1. δ(x) ≥ 3 and we branch at x: This gives according to the analysis contained
in Lemma 10:

T 2
3 (k) ≤ max{T 1

3 (k − 1) + T 1
3 (k − 2), T 0

3 (k − 1) + T 2
3 (k − 2)} (21)

2. δ(x) ≥ 3 and we do not branch at x: The analysis contained in Lemma 10
shows:

T 2
3 (k) ≤ T 1

3 (k − 1) + T 2
3 (k − 1) (22)

3. δ(x) = 2 and δ(y) = δ(z) = 2. Then, according to H ′

new, we will branch at
x. Two sub-cases arise:

• There is an edge e = {y, u, z}. If we then branch at x, the following
scenario arises: If we put x into the cover, y and z will be dominated
by u, so that u will go into the cover by the tiny edge rule, leading to a
T 0

3 (k − 2)-branch. If x is not put into the cover, y and z will be, giving
another T 0

3 (k − 2)-branch.

• Otherwise, there are two different edges ey and ez (each of size three)
such that y ∈ ey and z ∈ ez . If x is put into the cover, then y and
z won’t be in the cover, leading to two new small edges ey \ {y} and
ez \ {z}. This is a T 2

3 (k − 1)-branch. If x is not going into the cover,
then y and z will go. This gives a T 0

3 (k − 2)-branch.

Summarizing, we can state:

T 2
3 (k) ≤ max{2T 0

3 (k − 2), T 0
3 (k − 2) + T 2

3 (k − 1)} (23)

4. δ(x) = 2 and (w.l.o.g.) δ(y) > 2. Then, the priority H1 applies and let us
branch at y. If y is put into the hitting set, x will become of degree one and
hence will be dominated by z, which is then put into the cover by the tiny
edge rule. This is a T 0

3 (k − 2)-branch. If y is not put into the cover, x will
go. Since δ3(y) ≥ 2, at least two new small edges will be created, leading to
a T 2

3 (k − 1)-branch. So, this case yields:

T 2
3 (k) ≤ T 0

3 (k − 2) + T 2
3 (k − 1),

a branching behavior already observed in Eq. (23).

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 30

In short, the only relations that are “new” in comparison with Lemma 10 are
that from Eq. (23). Now, let us first analyze these new relations for T 0

3 , T 1
3 and T 2

3 .

• Plugging T 2
3 (k) ≤ 2T 0

3 (k − 2) directly into T 0
3 (k) ≤ T 0

3 (k − 1) + T 0
3 (k) gives:

T 0
3 (k) ≤ T 0

3 (k − 1) + 2T 0
3 (k − 2).

This of course implies the not very stringent condition T 0
3 (k) ≤ 2k.

• Into T 2
3 (k) ≤ T 0

3 (k − 2) + T 2
3 (k − 1), we can plug T 2

3 (k) = T 0
3 (k)− T 0

3 (k − 1),
yielding
0 = T 0

3 (k) − T 0
3 (k − 1) − T 0

3 (k − 2) − (T 0
3 (k − 1) − T 0

3 (k − 2)) =
T 0

3 (k) − 2T 0
3 (k − 1), which again gives T 0

3 (k) ≤ 2k.

So, the only case where this new case analysis may affect the overall run time
analysis is the special T 3

3 -branching situation we discussed before making this de-
tour, since that is the only case when we actually rely on that one of the new T 2

3

analyses applies.

Stars in T 3
3
: the new special cases. When returning to the discussion of

the star case, observe that we (again) can restrict our attention to assuming that “in
other circumstances,” the two branching scenarios for T 2

3 we always discussed apply,
since otherwise the discussion of the “new cases” we just performed is applicable,
showing a very nice estimate for T 0

3 (k). In fact, our earlier analysis shows that we
may restrict ourselves on analyzing

T 2
3 (k) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2).

The still critical case in Fig. 1(b) is if δ(y) = 3 and δ(u), δ(x), δ(z) ≥ 3. Then,
H ′

new will not apply, so that H1 lets us branch at say x. If x does not go into the
cover, then since δ(x) ≥ 3 at least two new small edges are created and y is put into
the cover, giving a T 2

3 (k − 1)-branch. If x comes into the cover, then we enforce a
T 2

3 -situation as studied in the previous subsection. Overall, this leaves us with two
cases for a final study:

1. If the enforced T 2
3 -situation is solved with a branch yielding the recursion

T 2
3 (k) ≤ 2T 0

3 (k − 2), we are left with:

T 3
3 (k) ≤ 2T 0

3 (k − 3) + T 2
3 (k − 1).

The equation T 3
3 (k) = T 0

3 (k) − T 0
3 (k − 1) allows to rewrite:

T 0
3 (k) − T 0

3 (k − 1) − 2T 0
3 (k − 3) = T 2

3 (k − 1).

This has to be studied combined with

T 2
3 (k) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2),

giving
0 = (T 0

3 (k + 1) − T 0
3 (k) − 2T 0

3 (k − 2)) − T 0
3 (k − 2) − (T 0

3 (k) − T 0
3 (k − 1) −

6 APPENDIX II: 3-HITTING SET; ADVANCED ANALYSIS 31

2T 0
3 (k − 3)) − (T 0

3 (k − 1) − T 0
3 (k − 2) − 2T 0

3 (k − 4)) =
T 0

3 (k + 1) − 2T 0
3 (k) + 0T 0

3 (k − 1) − 2T 0
3 (k − 2) + 2T 0

3 (k − 3) + 2T 0
3 (k − 4).

This can be solved by T 0
3 (k) = 2.1372k.

2. If the enforced T 2
3 -situation is solved with a branch yielding the recursion

T 2
3 (k) ≤ T 0

3 (k − 2) + T 2
3 (k − 1), we arrive at:

T 3
3 (k) ≤ T 0

3 (k − 3) + T 2
3 (k − 1) + T 2

3 (k − 2).

Hence, T 3
3 (k) = T 0

3 (k) − T 0
3 (k − 1) allows to rewrite:

T 0
3 (k) − T 0

3 (k − 1) − T 0
3 (k − 3) = T 2

3 (k − 1) + T 2
3 (k − 2).

This can be directly put into

T 2
3 (k) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2),

giving
T 2

3 (k) = T 0
3 (k) − T 0

3 (k − 1) + T 0
3 (k − 2) − T 0

3 (k − 3).

Therefore,
0 = T 0

3 (k) − T 0
3 (k − 1) − T 0

3 (k − 3) − T 2
3 (k − 1) − T 2

3 (k − 2) =
T 0

3 (k)−T 0
3 (k− 1)−T 0

3 (k− 3)− (T 0
3 (k− 1)−T 0

3 (k− 2) + T 0
3 (k− 3)−T 0

3 (k−
4)) − (T 0

3 (k − 2) − T 0
3 (k − 3) + T 0

3 (k − 4) − T 0
3 (k − 5)) =

T 0
3 (k) − 2T 0

3 (k − 1) + 0T 0
3 (k − 2) − T 0

3 (k − 3) + 0T 0
3 (k − 4) + T 0

3 (k − 5).
This amounts in T 0

3 (k) ≤ 2.1676k.

Together with the kernelization as explained by Niedermeier and Rossmanith,
we have now proved Theorem 11.

6.6 Some hints at the implementation

One of our arguments for advocating the top-down approach was the claim that it
would simplify the implementation of parameterized algorithms. It should be clear
that generically implementing simple-HS-heuristic-binary is a pretty straight-
forward task. However, what about implementing the “details,” i.e., the reduction
rules and the heuristic priorities? In actual fact, implementing them will go hand
in hand. Since our main priority always is to branch on small edges, we would
suggest keeping the list of edges sorted by increasing size. Since all operations are
basically of local nature, maintaining this order during the run of the algorithm is
comparatively straightforward. This ordering obviously supports the tiny edge rule
and the edge selection for branching. Similarly, keeping track of the degrees and
Eq. (1) helps select the vertex to branch at. Again by observing the local nature of
the hypergraph modifications incurred by the algorithm, only a few vertices need
to be checked in time for vertex domination, and a few edges for edge domination.
A similar comment applies to the path and the triangle reduction rules.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

