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Abstract

We study pseudorandom generator (PRG) constructions Gf : {0, 1}l → {0, 1}l+s

from one-way functions f : {0, 1}n → {0, 1}m. We consider PRG constructions of
the form Gf (x) = C(f(q1) . . . f(qpoly(n))) where C is a polynomial-size constant depth
circuit (i.e. AC 0 ) and C and the q’s are generated from x arbitrarily. We show
that every black-box PRG construction of this form must have stretch s bounded as
s ≤ l · (logO(1) n)/m + O(1) = o(l). This holds even if the PRG construction starts
from a one-to-one function f : {0, 1}n → {0, 1}m where m ≥ 5n. This shows that
either adaptive queries or sequential computation are necessary for black-box PRG
constructions with constant factor stretch (i.e. s = Ω(l)) from one-way functions, even
if the functions are one-to-one.

On the positive side we show that if there is a one-way function f : {0, 1}n →
{0, 1}m that is regular (i.e. the number of preimages of f(x) depends on |x| but not
on x) and computable by polynomial-size constant depth circuits then there is a PRG
: {0, 1}l → {0, 1}l+1 computable by polynomial-size constant depth circuits. This
complements our negative result above because one-to-one functions are regular.

We also study constructions of average-case hard functions starting from worst-case
hard ones, i.e. hardness amplifications. We show that if there is an oracle procedure
Ampf in the polynomial time hierarchy (PH) such that Ampf is average-case hard
for every worst-case hard f , then there is an average-case hard function in PH uncon-

ditionally. Bogdanov and Trevisan (FOCS ’03) and Viola (CCC’03) show related but
incomparable negative results.
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1 Introduction

A rigorous notion of pseudorandom generators (PRGs) was introduced in the seminal works of
Blum and Micali [BM] and Yao [Yao] and have since found a striking variety of applications
in Cryptography and Complexity Theory. A PRG G : {0, 1}l → {0, 1}l+s is an efficient
procedure that stretches l inputs bits into l + s output bits such that the output of the PRG
is indistinguishable from random to efficient adversaries. That is, for every probabilistic
polynomial time machine (PPT) A we have

∣
∣
∣ Pr[A(G(Ul)) = 1]− Pr[A(Ul+s) = 1]

∣
∣
∣ ≤ ε

where Un denotes a uniform random variable in {0, 1}n and ε is negligible in l + s.
While the existence of PRGs is a major open problem, there has been a series of fasci-

nating works constructing PRGs from weaker and weaker assumptions. Most of these works
construct PRGs starting from one-way functions [BM, Yao, Lev, GL, GKL, HILL]. Infor-
mally, a function is one-way if it is easy to compute but hard to invert on average. (The
existence of one-way functions implies that P 6= NP , but the converse is not known to hold.)
For a discussion of pseudorandom generators we refer to the reader to the excellent book by
Goldreich [Gol].

1.1 PRG constructions with polynomial stretch

A crucial parameter of every PRG G : {0, 1}l → {0, 1}l+s is its stretch s, that one wants as
big as possible. Note that s is only relevant in relation with the input length l, since from
a PRG G′ : {0, 1}l → {0, 1}l+1 one can trivially construct, for every polynomial p, a PRG
G′′ : {0, 1}pl → {0, 1}pl+p with stretch p. G′′ is the concatenation of the output of p copies
of G′ on p independent seeds. However, in this way we will never get stretch equal to the
seed length (pl).

But in many applications one needs the stretch to be linear in the input length. Two
important such applications are Naor’s bit-commitment [Nao] and private-key encryption,
where starting from a small key of length l, one wants to generate many bits l + s� l that
can be used to encrypt messages in a “stream cipher”.

So suppose we want to build a PRG G : {0, 1}l → {0, 1}l+s where s = l. To achieve this,
using any of the known constructions [BM, Yao, Lev, GL, GKL, HILL], one works in two
steps. First, starting from a one-way function f one builds a PRG Gf

1 with small stretch,
say one bit:

Gf
1(x) = Hf (x) ◦ bf (x)

where Gf
1(x) : {0, 1}l → {0, 1}l+1, Hf : {0, 1}l → {0, 1}l and bf : {0, 1}l → {0, 1}. Then, to

get arbitrary polynomial stretch, one uses the following construction due to Goldreich and
Micali (see [Gol], Section 3.3.2): from Gf

1 construct Gf
2 : {0, 1}l → {0, 1}l+s defined as

Gf
2(x) := bf (x) ◦ bf (Hf (x)) ◦ bf (Hf (Hf (x))) ◦ · · · ◦ bf (Hf (· · · (Hf

︸ ︷︷ ︸

l+s−1

(x) · · · ). (1)

Construction (1) is very sequential in the following sense: the i-th evaluation of H depends
on the output of the (i− 1)-th evaluation of H, and hence the straightforward circuit for Gf

2

has depth at least s.
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Notice that, once we have a PRG with linear stretch, say G : {0, 1}l → {0, 1}2l, to improve
the stretch one can use the ‘very efficient’ construction given by Goldreich, Goldwasser and
Micali in [GGM]. However, there remains the problem of constructing a PRG with linear
stretch.

1.2 The main problem we study

The main question addressed in this paper is the following: Are PRG constructions with
arbitrary stretch inherently sequential? This problem is motivated by the question, both
practical and philosophical, of how much cryptography can be done in low complexity classes.

Of course, we must be more precise about what we mean by ‘PRG construction’ and
‘sequential’.

We now discuss PRG constructions. We consider black-box PRG constructions, as in
many other works starting with the seminal paper by Impagliazzo and Rudich [IR]. Roughly
speaking, Gf : {0, 1}l → {0, 1}l+s is a black-box PRG construction from one-way function f
if there is a fixed PPT M such that, for every (computationally unbounded) oracle function
f and adversary A, if A breaks the PRG then M inverts f . I.e., if A distinguishes the output
of PRG from truly random, then M , when given oracle access to both f and A, can find a
preimage of f(Un) with noticeable probability. The idea is that if f(Un) cannot be inverted
with noticeable probability by a PPT (i.e., if f is one-way) then no PPT can break Gf , and
so Gf is a PRG. Most results in Cryptography, and in particular most PRG constructions
(for example [BM, Yao, Lev, GL, GKL, HILL]) are proved via black-box constructions.

We now define parallel PRG constructions. The notion of a parallel PRG construction
we look at in this paper is the following, where l = l(n),m = m(n) and s = s(n):

PRG construction Gf : {0, 1}l → {0, 1}l+s from one-way function f : {0, 1}n → {0, 1}m

Gf (x) = Cx

(
f(qx,1) . . . f(qx,poly(n))

)

where Cx : {0, 1}poly(n) → {0, 1}l+s is a constant depth circuit of size poly(n),
and Cx, qx,1, . . . , qx,poly(n) are generated from x arbitrarily.

Table 1: Parallel PRG construction.

By a constant depth circuit we mean AC 0 , i.e. a constant depth circuit with OR,AND
gates, where AND, OR gates have unbounded fan-in (see e.g., [H̊as]).

PRG constructions in the form in Table 1 are intuitively parallel in the following sense:
(1) The queries made to f are non-adaptive (i.e. they do not depend on f but only on x), and
(2) Cx is a constant depth circuit. It seems interesting to study black-box PRG constructions
relaxing either (1) or (2), but we can prove our main negative results only when both apply.

Finally, note we do not make any assumption on how Cx, qx,1, . . . , qx,poly(n) are gener-
ated from x: This makes our negative result stronger, while in our positive results all the
computation is done by a constant depth circuit.
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1.3 Our Results on PRG Constructions

Next we discuss our results for PRG constructions. We have both positive and negative
results. We start with the latter.

Theorem 1.1 (This Paper). Let Gf : {0, 1}l → {0, 1}l+s be a black-box PRG construction
(Def. 2.1) in the form in Table 1. Then the following hold:

1. If Gf starts from one-way function f : {0, 1}n → {0, 1}m with m = logω(1) n and

m = nO(1), then s ≤ l · logO(1) n
m

+ O(1).

2. If Gf starts from one-to-one one-way function f : {0, 1}n → {0, 1}5n then s ≤ l ·
logO(1) n

5n
+ O(1).

Theorem 1.1-(1) shows that black-box PRG constructions from one-way functions can
only be parallel (i.e., in the form in Table 1) if s = o(l). And Theorem 1.1-(2) shows this
holds even if the PRG construction starts with one-to-one functions, as long as the range of
the one-to-one one-way function is sufficiently bigger than its domain.

In this work we also sketch a proof of the fact that (essentially) Theorem 1.1-(1) holds
even for a less restrictive kind of black-box constructions, i.e. mildly black-box constructions.

It seems natural at this point to ask: is there any PRG construction in the form in Table
1, even with stretch s = 1? The problems we must solve (to answer this question) depend
on what kind of one-way function the PRG construction starts from. We now explain these
problems and our contributions.

From (generic) one-way function: The only PRG construction that works in this case is
[HILL]. This construction, even to produce a PRG with stretch s = 1, uses as a component
the Goldreich-Micali Construction (1) discussed earlier in Section 1.1. As already noted,
Construction (1) is not parallel. In this case we do not know if there is any parallel PRG
construction.1

From one-to-one one-way function: The main problem here is that existing PRG con-
structions (e.g. [HILL]) apply randomness extractors [NZ] to the evaluations of the one-way
function. While it is known that constant-depth circuits cannot compute extractors with
good parameters [MNT, Vio], in this work we show that constant-depth circuits can compute
extractors for the setting of parameters that arises in some of these PRG constructions. Us-
ing this fact we obtain a parallel PRG construction (with some stretch s ≥ 1). We actually
show parallel PRG constructions starting from the more general class of regular one-way
functions, where a function f is regular if the number of preimages of f(x) depends on |x|
but not on x.

From one-way permutation π : {0, 1}n → {0, 1}n: In this case we can use the PRG
construction GLπ : {0, 1}2n → {0, 1}2n+1 by Goldreich and Levin and defined as GLπ(y, r) :=
(π(y), r, 〈y, r〉), where 〈y, r〉 is a general hard-core predicate (see [GL, Gol]). This is of the
form in Table 1, because for every input x = (y, r) the circuit Cx that has 〈y, r〉 and r
hardwired and is defined as Cx(π(y)) := (π(y), r, 〈y, r〉) is trivially constant depth. But what
happens if we require that all the computation be done in constant depth? We cannot use

1However, Construction (1) can be dispensed with if one allows for O(log n) bits of nonuniformity in the
PRG construction. One can then obtain a parallel PRG construction with our techniques. Details omitted.

4



directly the above construction since it requires computing a general hard-core predicate (i.e,
〈y, r〉), which cannot be done in constant depth [GNR]. We bypass this problem by showing
that it is sufficient to compute the output distribution of a general hard-core predicate over
a random input, and this in fact can be done by a constant-depth circuit.

We now state our positive results for PRG constructions.

Theorem 1.2 (This Paper). There is a black-box PRG construction Gf : {0, 1}l →
{0, 1}l+1 from regular one-way functions f : {0, 1}n → {0, 1}m such that G is of the form
in Table 1. Moreover, all the computation is done by a uniform constant depth circuit
of size poly(n). The input length of G is l = 2n starting from one-way permutations
π : {0, 1}n → {0, 1}n and l = poly(n) starting from regular one-way functions. In par-
ticular:

1. If there is a one-way permutation π : {0, 1}n → {0, 1}n computable by uniform constant
depth circuits of size poly(n) then there is a PRG G : {0, 1}2n → {0, 1}2n+1 computable
by uniform constant depth circuits of size poly(n).

2. If there is a regular one-way function f : {0, 1}n → {0, 1}m computable by uniform
constant depth circuits of size poly(n) then there is a PRG G : {0, 1}l → {0, 1}l+1

computable by uniform constant depth circuits of size poly(n).

Note Theorem 1.2-(2) matches Theorem 1.1-(2) because one-to-one functions are regular.

1.4 Related Work

A concurrent and beautiful work related to ours is the one by Applebaum, Ishai and Kushile-
vitz [AIK]. They show that the existence of a ‘moderately easy’ PRG, say in NC1 (i.e.
computable by circuits of polynomial-size and logarithmic-depth), implies the existence of
a PRG in NC0 (i.e. computable by circuits of polynomial-size and constant-depth with
bounded fan-in). Note that in this work we consider the strictly larger class AC 0 (the class
of functions computable by circuits of polynomial-size and constant depth with unbounded
fan-in.) However, the NC0 PRG of [AIK] has sublinear stretch even if the original NC1 PRG
has polynomial stretch. This is interesting in relation with our negative results that only rule
out parallel black-box PRG constructions with linear stretch. (They also prove analogous
connections for other cryptographic primitives, such as one-way functions.) Moreover, they
improve on our Theorem 1.2 obtaining the same results for constant-depth circuits with
bounded fan-in (whereas our Theorem 1.2 refers to constant-depth circuits with unbounded
fan-in, specifically our result uses fan-in log1+ε n). (This result of theirs uses techniques
similar to ours.)

Another beautiful work related to ours is the one by Gennaro and Trevisan [GT]. They
show that there is no black-box PRG construction Gπ : {0, 1}l → {0, 1}l+s that makes less
than s/ω(log n) queries to π. This holds even if Gf is a PRG construction from one-way
permutations. The work of Gennaro and Trevisan is thus a tradeoff between the stretch of
the PRG construction and the number of queries it makes to f . The difference with our
work is the following: We are not concerned with how many queries Gf makes to f , rather
we are concerned with how these queries are made and processed. Note that our bounds
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in Theorem 1.1 essentially do not depend on the number of queries made to f (except for
the hidden constant in the negligible factor logO(1) n). Rather, they depend on the parallel
structure of G.

There exist several other works addressing the complexity of PRGs. Kharitonov, Gold-
berg and Yung [KGY] and Yu and Yung [YY] prove strong negative results about the ability
of various automata and other space-restricted devices to compute PRGs. Linial, Mansour
and Nisan [LMN] prove that constant depth circuits cannot compute pseudorandom func-
tions (an object related to PRGs). Impagliazzo and Naor [IN] show how to construct PRGs
based on the assumed intractability of the subset sum problem. In particular, they show how
to construct a PRG : {0, 1}n → {0, 1}n+log n computable by constant depth circuits. Reif and
Tygar [RT] and Naor and Reingold [NR] construct PRGs under specific number-theoretic
complexity assumptions.

In [Vio] the author studies the complexity of a different kind of PRG constructions,
namely those based on the Nisan-Wigderson paradigm [NW]. The results in [Vio] do not
seem to be comparable to the ones in this paper, as they apply to this different kind of PRG
constructions. However, both works use results on the noise sensitivity of constant-depth
circuits in the proof of their negative results.

1.5 Worst-case Hardness Amplification

Another problem we study in this paper is the problem of worst-case hardness amplification,
which is the problem of producing an average-case hard function starting from a worst-case
hard function. A motivation for studying this problem is to establish connections between
average-case complexity and worst-case complexity, as it has been accomplished for high
complexity classes such PSPACE and EXP (e.g. [Lip, BF, BFL, FL, CPS, STV, TV, Vio]).
Most constructions in these works are black-box both in the use of the worst-case hard
function f and in the ‘proof of correctness’. Namely they exhibit efficient algorithms Amp
and R such that for every function f and every adversary A, if A computes Ampf well on
average then RA computes f everywhere. Note that if f is worst-case hard then RA cannot
be a small circuit. Since R is efficient this means that A cannot be a small circuit, and hence
Ampf is average-case hard.

There are results showing that such connections (i.e., between worst-case and average-
case hardness) for classes within the polynomial-time hierarchy (PH ) are unlikely to be
provable using these kind of black-box techniques: Bogdanov and Trevisan [BT], building on
[FF], show that every hardness amplification within NP such that its proof of correctness is
black-box and R is non-adaptive implies that the PH collapses, and therefore such a hardness
amplification is unlikely to exist. In a previous work [Vio] we showed (unconditionally) that
there is no hardness amplification within PH where both the use of f and the proof of
correctness are black-box.

In this paper we obtain the first negative result on hardness amplifications within PH
that are black-box only in the use of f . Specifically, we show that exhibiting such hardness
amplification procedures is equivalent to exhibiting an average-case hard function in PH, in
which case no hardness amplification is needed. We give one necessary definition and then
our result.
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Definition 1.3. A function f : {0, 1}n → {0, 1} is worst-case-hard (resp., ε-hard) for size
S if every circuit of size S fails to compute f on some input (resp., on at least ε fraction of
inputs).

Theorem 1.4 (This Paper). Let S(n) be such that for every c and sufficiently large n,
S(n) ≤ 2n/nc. Suppose there is a constant a and an oracle machine Amp in PH such that for
every f : {0, 1}n → {0, 1} that is worst-case hard for size S = S(n), Ampf : {0, 1}n

a

→ {0, 1}
is .3-hard for size S ′ = S ′(n). Then there is a constant b and a function f ′ in PH such that
f ′ : {0, 1}n

b

→ {0, 1} is .1-hard for size S ′(n).

1.6 Techniques

We now sketch the main ideas in the proof of Theorem 1.1-(1). Similarly to other works
[IR, GT], the idea is to choose the oracle function f at random from a certain distribution
F̃ , then show that (1) F̃ is one-way w.h.p. but also (2) there is an adversary that breaks

GF̃ w.h.p., thus contradicting the fact that G is a black-box PRG construction. The main
new ingredient in this work is that some of the bits in the truth-table of F̃ are fixed, and we
will give them for free to the adversary. We will then show that for this fixing of bits GF̃ is
easy to break. One of the challenges is of course showing that F̃ is still one-way after these
bits have been fixed. More specifically, the bits to be fixed are chosen by applying a random
restriction [FSS] to the truth table of the oracle f . Since Gf (x) is a constant depth function
of evaluations of f , and because after applying a random restriction to a constant depth
circuit the circuit ‘tremendously simplifies’ (see e.g. [FSS, H̊as]), it is possible to exhibit an
adversary that breaks the output of G. More specifically, we will use the fact that constant
depth circuits have low noise sensitivity [LMN, Bop, Vio], which means that after fixing
most of its input bits, a constant depth circuit becomes very biased, i.e. its output does not
change much when the few unfixed input bits are filled at random.

For Theorem 1.1-(2) we define a particular distribution on restrictions that also ensures
that the oracle f is one-to-one.

We now sketch the main ideas of our negative result about Hardness Amplification,
Theorem 1.4. As before, we will choose the oracle function f at random from a certain
distribution F̃ where some of the bits are fixed in such a way that, (1) F̃ is still worst-case

hard w.h.p., but (2) AmpF̃ is trivialized. Again, the bits to be fixed are chosen applying a

random restriction to the truth table of the oracle f . The idea now is that since AmpF̃ is
trivialized, we can dispense with the oracle and construct an average-case hard function h
from scratch, thus proving the theorem. But the problem is that we don’t know what is the
fixing of the bits that satisfies (1) and (2). An idea would be to include the fixing of the
bits in the input to the function h, but the problem is that the size of this fixing of bits is of
the order of the truth table of the oracle f , i.e. 2n, while we need the input length of h to
be polynomial in n (since the circuit size S ′ in Theorem 1.4 is relative to the input length
of f). To overcome this problem, we derandomize the random restriction. I.e., we create a
pseudorandom distribution on restrictions that can be generated using only poly(n) random
bits, yet still w.h.p. satisfies (1) and (2). Now, the function h takes σ as part of the input,
where σ is of size poly(n) and is used to generate a pseudorandom restriction. Now the
input length of h is polynomial in n and the theorem can be proved. This pseudorandom
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distribution on restrictions is obtained using Nisan’s unconditional PRG against constant
depth circuits [Nis]. The challenges of course are showing that after this derandomization (1)
and (2) still hold. In particular, for (2) we show that a constant depth circuit becomes very
biased even after applying a pseudorandom restriction. The idea of using Nisan’s generator
to derandomize restrictions already appeared in [CSS].

1.7 Organization

This paper is organized as follows. In Section 2 we discuss notation. In Section 3 we
prove our negative result for black-box PRG constructions in the form in Table 1 from one-
way function, i.e. we prove Theorem 1.1-(1). The analogous result for one-to-one one-way
functions is proved in Section 6. In Appendix B we sketch a proof of the fact that (essentially)
Theorem 1.1-(1) also holds for “mildly black-box” PRG constructions. In Section 4 we
prove our positive result about PRG constructions in constant-depth circuits from one-
way permutations, i.e. we prove Theorem 1.2-(1). We omit the details of the proof of
the analogous result for regular one-way function, i.e. Theorem 1.2-(2) (but the key idea
is discussed at the end of Section 4). Our negative result for hardness amplification, i.e.
Theorem 1.4, is proved in Section 5. We discuss some open problems in Section 7. Appendix
A contains some proof details.

2 Preliminaries

We denote by Un the uniform random variable over {0, 1}n and by F : {0, 1}n → {0, 1}m a
uniform random function. ∆(x, y) is the relative Hamming distance between vectors x, y ∈
{0, 1}n, i.e. Pri[xi 6= yi]. Throughout the paper ε(n) denotes a quantity negligible in n, i.e.
1/nω(1). We write ‘w.h.p.’ for ‘with high probability’, i.e. with probability 1− o(1).

Restrictions: A restriction ρ on t bits is an element of {0, 1, ∗}t, where we think of the
*’s as values yet to be chosen. For x ∈ {0, 1}t we denote by xρ ∈ {0, 1}t the string obtained
from ρ by substituting the *’s with the corresponding bits of x. Note xρ only depends on
the bits of x corresponding to * in ρ. We often consider restrictions on b · m bits, where
b can be as large as 2n, and it will be convenient to view such restrictions as functions
ρ : [b]→ {0, 1, ∗}m, where [b] := {1, . . . , b}. When ρ : {0, 1}n → {0, 1, ∗}m we think of ρ(i) as
a partial assignment to the output f(i) of some function f : {0, 1}n → {0, 1}m. The following
is a key definition: for a function f : {0, 1}n → {0, 1}m we denote by f ρ : {0, 1}n → {0, 1}m

the function defined by
fρ(x) := f(x)ρ(x).

For a fixed restriction ρ, a key random variable we will look at is F ρ (recall F : {0, 1}n →
{0, 1}m is a uniform random function). Note that F ρ can be seen as the distribution on
functions whose truth table is obtained starting from the truth table of ρ and replacing
each * with a uniform and independent random bit. The standard [FSS] distribution on
restrictions Rδ is the one where each symbol in the restriction is independently * with
probability δ and otherwise it is a uniform and independent random bit. When we say that
ρ : [b]→ {0, 1, ∗}m is random in Rδ we mean that each of the b ·m symbols in the truth table
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of ρ is independently * with probability δ and otherwise it is a uniform and independent
random bit.

We would like to point out some differences between our notation for restrictions (above)
and the notation more commonly used in literature (e.g. [FSS, H̊as]). The notation com-
monly used in literature is the following: for a function f : {0, 1}n → {0, 1}m and a restriction
ρ : {1, 2, . . . , n} → {0, 1, ∗} with s stars (i.e. exactly s distinct indexes i such that ρ(i) = ∗)
one denotes by f |ρ : {0, 1}s → {0, 1}m the function obtained by ‘restricting’ f on the s bits
mapped to ∗ by ρ, where the other bits are fixed as prescribed by ρ. Note that we have
fρ(x) = f |ρ(x)(y), where y ∈ {0, 1}s is the projections of x on the s bits mapped to ∗ by ρ.
Our notation is more convenient in our setting where the restriction applied to f depends on
the input x. To avoid confusion we will never use the notation f |ρ in the rest of the paper.

Black-box PRG constructions: Now we formally define black-box PRG constructions.

Definition 2.1 (Black-box PRG Construction). An oracle machine Gf : {0, 1}l →
{0, 1}l+s is a black-box PRG construction from one-way function f : {0, 1}n → {0, 1}m if
there exists an oracle PPT M such that for sufficiently large n, for every f : {0, 1}n →
{0, 1}m and every A : {0, 1}l+s → {0, 1}, if A breaks Gf , i.e.

∣
∣Pr[A(Gf (Ul)) = 1]− Pr[A(Ul+s) = 1]

∣
∣ ≥ 1/4

then M f,A inverts f , i.e.

Pr
[
f(M f,A(f(Un))) = f(Un)

]
≥ 1/n.

We say G is from one-to-one one-way function (resp., from regular one-way function) if
the above is only required to hold when f is one-to-one (resp., regular).

We think of l, s,m as functions of n. Recall a function f : {0, 1}∗ → {0, 1} is regular
if the number of preimages of f(x) depends on |x| but not on x. The values 1/4 and 1/n
in Definition 2.1 can be substituted by 1/p(n) for any polynomial p(n). We fix them for
concreteness. In Definition 2.1, and throughout the paper, probabilities are (implicitly)
taken also over the internal coin tosses of the PPTs. For more on black-box constructions
we refer the reader to the survey in the paper by Reingold, Trevisan and Vadhan [RTV] (in
their taxonomy, Definition 2.1 defines a ‘fully black-box’ PRG construction).

3 Proof of Theorem 1.1-(1)

In this section we prove our negative result about black-box PRG constructions that start
from (generic) one-way function, i.e Theorem 1.1-(1). We now proceed to sketch the main
ideas in the proof. Suppose Gf : {0, 1}l → {0, 1}l+s is a PRG construction from one-way
function f : {0, 1}n → {0, 1}m, and let M be the inverting machine required by Definition 2.1.
The high level idea is to come up with, for sufficiently large n, a function f : {0, 1}n → {0, 1}m

and a computationally unbounded adversary A : {0, 1}l+s → {0, 1} such that A breaks Gf

but M f,A does not invert f , thus contradicting the fact that Gf is a PRG construction
by Definition 2.1. The construction of f and A will be probabilistic, i.e. we will show a

9



distribution on functions and adversaries that w.h.p. satisfies the above. This certainly
ensures that there exist some f,A satisfying the above. Our final distribution on functions
will be F ρ for a suitable restriction ρ : {0, 1}n → {0, 1, ∗}m. Recall from Section 2 that F ρ

can be seen as the random function obtained from the truth table of ρ replacing the *’s with
(uniform and independent) random bits.

The main idea in the proof is to find a fixed restriction ρ : {0, 1}n → {0, 1, ∗}m that
satisfies the following two properties:

I. For every oracle A, with high probability over F , MF ρ,A does not invert F ρ, i.e.:

Pr
F,Un

[
F ρ(MF ρ,A(F ρ(Un))) = F ρ(Un)

]
≤ ε(n).

II. There is a fixed function g : {0, 1}n → {0, 1}m such that

EF,Ul

[
∆

(
GF ρ

(Ul), G
g(Ul)

)]
≤

poly log(n)

m
.

(Where E denotes expectation and recall that ∆ denotes relative Hamming distance.)

Intuitively, (I) says that F ρ is hard to invert just because of the randomness left in F
even after fixing some of the bits in its truth table according to ρ. (II) says that ρ trivializes
GF ρ

(Ul) because, on average, the output of GF ρ

(Ul) is close in Hamming distance to a vector
that does not depend on the oracle. Before discussing how to construct the restriction ρ, let
us show how to prove the theorem once we have such a ρ.

Proof of Theorem 1.1-(1), assuming ρ satisfies (I) and (II). Let g be the function given by
Property (II), and let d be a sufficiently large constant. Consider the following (computa-
tionally unbounded) adversary

Ag(z) := 1 iff ∃x ∈ {0, 1}l : ∆(Gg(x), z) ≤
logd n

m
.

Claim 3.1. There is a constant d′ such that if s ≥ l · log
d′ n
m

+ d′ then w.h.p. over F , we have
that Ag breaks GF ρ

(Ul), i.e.

∣
∣
∣
∣
Pr
Ul

[Ag(G
F ρ

(Ul)) = 1]− Pr
Ul+s

[Ag(Ul+s) = 1]

∣
∣
∣
∣
≥ 1/4.

The proof of the theorem follows from Claim 3.1 as follows: By the claim, w.h.p. over
F , Ag breaks GF ρ

(Ul), so by definition of black-box PRG construction, MF ρ,Ag inverts F ρ

w.p. at least 1/n. But this contradicts Property (I).

Proof of Claim 3.1. By Property (II) and Markov’s inequality, w.h.p. over F , we have

Pr
Ul

[Ag(G
F ρ

(Ul)) = 1] ≥ 1/2.

10



On the other hand, we also have:

Pr[Ag(Ul+s) = 1] ≤
|{z : Ag(z) = 1}|

2l+s

≤

∑

x∈{0,1}l |{z : ∆(Gg(x), z) ≤ (logd n)/m}|

2l+s
≤

2l · 2H( logd n
m

)·(l+s)

2l+s
,

where for every x we bound

|{z : ∆(Gg(x), z) ≤ (logd n)/m}| ≤ 2H( logd n
m

)(l+s),

where H(p) = p log(1/p) + (1 − p) log(1/(1 − p)) is the binary entropy function (see any
book on Coding Theory). Since H(logd n/m) ≤ logd′ n/m for some constant d′, we have
Pr[Ul+s ∈ Ag] ≤ 1/4 as

s ≥ (l + s)
logd′ n

m
+ 2.

To conclude, recall from the statement of Theorem 1.1-(1) that m = logω(1) n.

3.1 Constructing ρ

We now turn to the problem of constructing ρ that satisfies Properties (I) and (II). Again,
our construction of ρ will be probabilistic. That is, we will show a distribution on restrictions
that satisfies both Properties (I) and (II) w.h.p.. This certainly guarantees the existence of
one fixed ρ that satisfies both Properties (I) and (II). We start with some intuition and then
we give the actual construction.

Noise Sensitivity of Constant Depth Circuits: For property (II) we use the low noise
sensitivity of constant depth circuits. Recall from Section 2 that the standard distribution
on restrictions Rδ is the distribution on restrictions where each symbol is independently *
with probability δ and otherwise it is a uniform independent random bit.

Lemma 3.2 ([LMN, Bop] Low Noise Sensitivity of Constant Depth Circuits). Let
C : {0, 1}t → {0, 1}t

′

be a circuit of size S and depth d. Let ρ ∈ Rδ then

Eρ∈Rδ,Ut,U ′

t

[

∆
(

C(Ut
ρ), C(U ′

t
ρ
)
)]

≤ O(δ · logd−1 S).

For completeness, we show in Appendix A a simple derivation of Lemma 3.2 from known
results [Vio]. Then, assuming G makes r queries to f , we have the following, taking expec-
tations over random choice of uniform random functions F, F ′ : {0, 1}n → {0, 1}m, random
input x ∈ {0, 1}n and random ρ ∈ Rδ.

E
[

∆
(

GF ρ

(x), GF ′ρ

(x)
)]

= E
[

∆
(

Cx(F
ρ(q1), . . . , F

ρ(qr)), Cx(F
′ρ(q1), . . . , F

′ρ(qr))
)]

= E
[

∆
(

Cx(Urm
ρ), Cx(U

′
rm

ρ
)
)]

(2)

≤ O(δ logd−1 S) (By Lemma 3.2)
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Where Equation (2) follows from the definition of ρ and F ρ, assuming without loss of
generality that GF ρ

(x) never queries the same input twice. So by fixing F ′ = g and then
applying Markov’s inequality, we have that most ρ satisfy Property (II) with the expectation
at most O(δ logd−1 S), which is at most (poly log n)/m, as required by Property (II), when
δ ≤ (poly log n)/m (recall the size of Cx is S = poly n). The conclusion is that for property
(II) the standard distribution Rδ suffices when δ ≤ (poly log n)/m.

F ρ one-way: Recall for Property (I) we want F ρ to still be one-way after we fix ρ, even
relative to an oracle that depends on ρ (i.e. A). The main problem here is that the restriction
could conceivably leak information about the input. For example, if m = 2n, i.e. the range
of F is {0, 1}2n, then one could consider the pathological restriction ρ : {0, 1}n → {0, 1, ∗}2n

such that for every x the first n symbols of ρ(x) are x. Now the inversion of F ρ(x) is trivial,
because the output completely reveals the input. A similar problem arises w.h.p. when ρ is
selected according to the distribution Rδ for m sufficiently large. (In fact, we take advantage
of this in Section 6.) To overcome this problem we need another idea. The idea is to
ensure that for most x there is a superpolynomial number of y’s such that ρ(x) = ρ(y). This
implies that after we are given F ρ(Un) we have little information about Un, since information-
theoretically Un is uniform on a set of superpolynomial size. To achieve this we compose
a random restriction ρ : [b] → {0, 1, ∗}n in Rδ with a random function h : {0, 1}n → [b]
for b = nω(1). We now give the formal definition of this distribution and then show that it
satisfies properties (I) and (II) w.h.p..

Definition 3.3. The distribution R̃ on restrictions ρ0 ◦ h : {0, 1}n → {0, 1, ∗}m is defined
as follows. Set δ := log4 n/n and b := nlog n. Let ρ0 : [b]→ {0, 1, ∗}n be a random restriction
in Rδ. Let h : {0, 1}n → [b] be a random function, then

(ρ0 ◦ h)(x) := ρ0(h(x))

We now show that w.h.p. ρ0 ◦ h satisfies both Properties (I) and (II). Thus Theorem
1.1-(1) follows from the next two lemmas.

Lemma 3.4. A random ρ = ρ0 ◦ h ∈ R̃ satisfies Property (I) w.h.p.

Proof. We can assume without loss of generality that (ρ0 ◦ h)(y) contains at least log2 n *’s
for every y. This is because the probability that this does not happen is at most, using union
bounds (recall δ = log4 n/m, m = logω(1) n, m = nO(1), and b = nlog n):

b

(
m

m− log2 n

)

(1− δ)m−log2 n = b

(
m

log2 n

)

(1− δ)m−log2 n

≤ nlog n(e ·m)log2 n(1− δ)δ−1δ(m−log2 n) ≤ nlog neO(log3 n)(1/e)log4n−o(1) ≤ ε(n).

Now we fix any such ρ0 ◦ h and we analyze the inversion probability over random F and
random input X ≡ Un .

By the pigeon hole principle, there are at most b2n/2 inputs x such that there are fewer
than 2n/2 y’s such that h(x) = h(y), i.e. |h−1(h(x))| ≤ 2n/2. Since b = nlog n there is only an
exponentially small fraction of such x’s. So let us assume without loss of generality that X
is such that there are at least 2n/2 y’s such that h(X) = h(y).
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In the following we restrict our attention to the queries M makes to the oracle function
F ρ0◦h, and we make no assumption on the queries it makes to the adversary A. First, without
loss of generality assume that M queries its output (clearly it does not hurt for M to check
its answer before outputting it) and that M never queries any input twice (this can be
accomplished by keeping a simple list of the inputs queried and of the oracle answers).

Since M queries its output, the probability (over F,X) that M inverts F ρ0◦h(X) is the
probability that (1) M queries X or (2) M queries y 6= X such that F ρ0◦h(y) = F ρ0◦h(X).
We bound these two events separately.

(1): By our assumption, there are at least 2n/2 y’s such that h(X) = h(y). Therefore,
given F ρ0◦h(X), X is uniform on a set of inputs of size at least 2n/2. Hence the probability
that M queries X is negligible because M only makes poly(n) queries.

A more formal argument goes as follows: Suppose M queries X with nonnegligible proba-
bility. We construct another (computationally unbounded, depending on h and ρ0) machine
M ′ without oracle access to F ρ0◦h that outputs a polynomial size list containing X with
nonnegligible probability. But this is impossible because, as we said before, given F ρ0◦h(X),
X is uniform on a set of inputs of size at least 2n/2. M ′ simply simulates M and whenever
M queries F ρ0◦h at q, it adds q to the list and answers the query with U ′

m
ρ0◦h(q) where U ′

m

is uniform and independent from all the previous query answers. It is easy to see that the
probability that M queries X is the same as the probability that X is in the list that M ′

outputs.
(2): On the other hand, whenever M queries y 6= X then by definition F ρ0◦h(y) =

U ′
m

ρ0◦h(y), where U ′
m is uniform and independent from X and the state of M , since M

never queries the same input twice. Since by our assumption ρ0 ◦ h(y) has at least log2 n
*’s, it follows that with probability at most 1/nlog n we have F ρ0◦h(y) = F ρ0◦h(X). Again,
since M only makes poly(n) queries, the probability that M ever queries y 6= X such that
F ρ0◦h(y) = F ρ0◦h(X) is negligible.

Therefore, the total probability that M inverts F ρ0◦h(X) is negligible.

Lemma 3.5. A random ρ0 ◦ h ∈ R̃ satisfies Property (II) w.h.p.

Proof. In order to show Property (II) all we need is Equation (2) in Page 11 to go through
approximately. Let F, F ′ : {0, 1}n → {0, 1}m be random uniform random functions, x ∈
{0, 1}n a random input, ρ0 ◦ h a random restriction in R̃ and ρ a random restriction in Rδ

for δ := log4 n/m (i.e. the same δ in Definition 3.3.) Consider the random variable

V := ∆
(

Cx(F
ρ0◦h(q1), . . . , F

ρ0◦h(qr)), Cx(F
′ρ0◦h(q1), . . . , F

′ρ0◦h(qr))
)

.

We show
E

[

V
]

≤ E
[

∆
(

Cx(Urm
ρ), Cx(U

′
rm

ρ
)
)]

+ ε(n). (3)

Note Lemma 3.5 follows from Inequality 3 as explained before in Page 11: we use Lemma
3.2 to bound E[∆(Cx(Urm

ρ), Cx(U
′
rm

ρ))] by O(δ poly log n), then we fix F ′ = g and use
Markov’s inequality. So all we need to show is that Inequality 3 holds:

E
[

V
]

≤ E
[

V
∣
∣
∣∀i 6= j, h(qi) 6= h(qj)

]

+ Pr[∃i 6= j : h(qi) = h(qj)]

≤ E
[

∆
(

C(Urm
ρ), C(U ′

rm
ρ
)
)]

+ r2/b
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Where we use the fact that conditioned on the event “h(qi) 6= h(qj) for every i 6= j” the
induced distribution of ρ0 ◦ h is exactly Rδ. And then we use the fact that a random function
mapping in [b] has collision probability 1/b, i.e., for every a 6= b we have Prh[h(a) = h(b)] ≤
1/b. Since G makes only r queries to f , the probability that there are i 6= j, such that
h(qi) = h(qj) is at most r2/b. Noticing that r2/b is negligible because b = nlog n and r =
poly(n) concludes the proof.

4 PRG constructions in constant depth circuits

In this section we show our PRG construction in constant-depth circuits from one-way per-
mutations, i.e., we prove the following theorem which is a restatement of Theorem 1.2-(1).

Theorem 4.1 (Theorem 1.2-(1)). If there is a one-way permutation f : {0, 1}n → {0, 1}n

in constant depth circuits then there is PRG G : {0, 1}2n → {0, 1}2n+1 in constant depth
circuits.

We use the same pseudorandom distribution of Goldreich and Levin [GL], and our only
difficulty is showing how it can be generated in constant depth circuits. We denote by 〈x, y〉
the Goldreich-Levin general hard-core predicate [GL], i.e.

∑

i xiyi (mod 2).

Theorem 4.2 ([GL]). Let f : {0, 1}n → {0, 1}n be a one-way permutation. Then

GLf (x, y) := (f(x), y, 〈x, y〉)

is a PRG.

At first glance GLf does not seem to be computable in constant depth circuits, because
parity is not [FSS, H̊as]. In the following lemma we show how to circumvent this problem.

Lemma 4.3. There is a constant depth circuit C : {0, 1}2n → {0, 1}2n+1 such that for every
x ∈ {0, 1}n, C(x, Un) is distributed as (U ′

n, 〈x, U ′
n〉).

Theorem 4.1 follows from Lemma 4.3 simply defining Gf (x, y) := (f(x), C(x, y)).
The key observation to prove Lemma 4.3 is that while constant depth circuits cannot

compute the parity function, constant depth circuits can generate a random x together with
its parity. To see this, consider the constant depth circuit C : {0, 1}n → {0, 1}n+1 such that
C(r1, . . . , rn) := (r1, r2⊕ r1, r3⊕ r2, . . . , rn⊕ rn−1, rn). It is easy to see that C(Un) outputs a
random value in {0, 1}n and its parity, and moreover C is constant depth. This observation
is from [BL].

To prove Lemma 4.3 we use the same approach, but only on the bits of x that are 1.

Proof of Lemma 4.3. Let the input be x = x1, . . . , xn and r = r1, . . . , rn, and consider the
circuit C : {0, 1}2n → {0, 1}n+1, C(x, r) = r′b, where r′ = r′1, . . . , r

′
n and b ∈ {0, 1}, defined

as follows:

r′i :=







ri if xi = 0
ri if xi = 1 and 6 ∃j < i : xj = 1
ri ⊕ rj if xi = 1 and j

is the biggest indexj < i : xj = 1
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and

b := ri where i is the biggest index such that xi = 1 (b = 0 if there is no such i).

It is not too hard to see that C(x, Un) is distributed like (Un, 〈x, Un〉). It is also easy to
check that C can be implemented in constant depth. (Indeed, this follows from the fact that
we defined it using first-order logic.)

For constructions from one-to-one and regular one-way functions the only additional thing
we need are extractors. While constant-depth circuits cannot in general compute extractors
with good parameters [Vio], it can be shown that they can compute extractors (specifically,
one based on the hash function due to Carter and Wegman [CW]) for the parameters of
interest here (i.e. seed length polynomial in the source length) (details omitted).

5 Worst-case Hardness Amplification

In this section we prove Theorem 1.4. Let us first recall the definition of a hard function.

Definition 5.1. A function f : {0, 1}n → {0, 1} is worst-case-hard (resp., ε-hard) for size
S if every circuit of size S fails to compute f on some input (resp., on at least ε fraction of
inputs).

Before proving Theorem 1.4 we make some remarks.

Remarks on Theorem 1.4: (1) We focus on amplification up to constant (i.e. .3). Notice
that by Yao’s XOR lemma (cf. [GNW]) if PH has a 1/ poly(n)-hard function for size S ′(n)
then PH has a .3-hard function for size poly

(
S ′(nΩ(1))

)
.

(2) We required (in the statement of the theorem) that for every c and for sufficiently
large n, S(n) ≤ 2n/nc. This is because for S ≥ 2n/nc for some fixed constant c, the oracle
is already 1/ poly(n)-hard by a counting argument (given in [Vio]), and therefore by the
previous item PH has a .3-hard function.

(3) Similar results hold for hardness amplifications Ampf : {0, 1}l(n) → {0, 1} running in
time t(n) with a constant number of alternations, for a wide range of parameters l(n), t(n).
Here we set l(n) = poly(n) and t(n) = poly(n) for simplicity of exposition.

In this section functions are boolean. In particular F will denote a uniform random
function F : {0, 1}n → {0, 1}. Accordingly, we take restrictions ρ on 2n bits, ρ : {0, 1}n →
{0, 1}, which we see as a partial assignment to the truth table of f : {0, 1}n → {0, 1}.

To prove Theorem 1.4 we build a certain pseudorandom distribution on restrictions. This
is the main technical lemma of this section.

Lemma 5.2. For every constant c there is a distribution R̃c on restrictions ρ : {0, 1}n →
{0, 1, ∗} such that:

(1) Every ρ ∈ R̃c is described by poly(n) bits σ. We denote by ρσ the restriction described
by σ. For random σ, we have that ρσ is random in R̃c. There is a polynomial time algorithm
such that given σ and x ∈ {0, 1}n, computes ρσ(x).
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(2) For every circuit C of size 2nc

and depth c on t := 2n bits: w.p. 1−o(1) over ρσ ∈ R̃c,

BiasUt
[C(Ut

ρσ)] ≥ 1− o(1).

(Where the Bias of a 0− 1 random variable X is |Pr[X = 0]− Pr[X = 1]|.)
(3) There is a constant d such that w.h.p. over ρσ ∈ R̃c, ρσ has at least 2n/nd ∗’s.

We now assume the above Lemma and prove Theorem 1.4.

Proof of Theorem 1.4. By standard techniques (see e.g., [FSS, H̊as]), the oracle algorithm in
PH can be turned into an exponential size constant-depth circuit whose input is the truth
table of the oracle f . In particular, let c be such that Ampf (x) has depth c and size 2nc

when turned into a constant depth circuit whose only input is the truth table of f . Consider
the distribution on restrictions R̃c whose existence is guaranteed by Lemma 5.2. Consider
AmpF ρσ

, where ρσ ∈ R̃c. We need a couple of lemmas.

Lemma 5.3. W.h.p. over ρσ ∈ R̃c and F , F ρσ : {0, 1}n → {0, 1} is worst-case hard for size
S(n). In particular, w.h.p. over ρσ ∈ R̃c and F , AmpF ρσ

: {0, 1}n
a

→ {0, 1} is .3-hard for
size S ′(n).

Lemma 5.4. There is a PH machine A′ such that given σ and an input x rounds AmpF ρσ
(x)

to its most likely value, over the choice of F , whenever BiasF [AmpF ρσ
(x)] ≥ .2. I.e., if

PrF [AmpF ρσ
(x) = 1] ≥ .6 then A′(σ, x) = 1, and if PrF [AmpF ρσ

(x) = 0] ≥ .6 then A′(σ, x) =
0.

Now for the proof of Theorem 1.4. By Lemma 5.2, for every x, w.p. 1 − o(1) over σ,
BiasF [AmpF ρσ

(x)] ≥ 1− o(1). This holds because, for fixed x, Ampf (x) is a constant depth
function of the truth table of f . Let A′ be the oracle PH machine in Lemma 5.4. By Lemma
5.4 we have:

Pr
x,σ,F

[A′(σ, x) 6= AmpF ρσ
(x)] ≤ o(1) + o(1) = o(1). (4)

Thus there is a function η(n) = o(1) such that

Pr
σ,F

[∆(A′(σ, .), AmpF ρσ
) ≥ η(n)] ≤ η(n). (5)

Where ∆(f, f ′) denotes the relative Hamming distance of the truth tables of f, f ′ :
{0, 1}n → {0, 1}. Thus:

Pr
σ,F

[A′(σ, .)is not .2-hard for size S ′(n)] ≤

≤ Pr
σ,F

[

∆(A′(σ, .), AmpF ρσ
) > .1 or AmpF ρσ

is not .3-hard for size S ′(n)
]

≤ o(1) + o(1) (By Inequality (5) and Lemma 5.3)

≤ o(1).

(where we use the fact that if A′(σ, .) is at relative Hamming distance at most .1 from
AmpF ρσ

that is .3-hard, then A′(σ, .) must be .2-hard. For else the same circuit computing
A′(σ, .) with error less than .2 would compute AmpF ρσ

with error less than .2 + .1 = .3).
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Now, since w.h.p. over σ we have that A′(σ, .) is .2-hard for size S ′(n), we have that every
circuit of size S ′(n) fails to compute A′ on at least a .2(1− o(1)) > .1 fraction of inputs, and
thus A′ is .1-hard for size S ′(n).

To finish the proof note that A′ is in PH and that it has input length nb for some b.

We now discuss Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. This is a simple counting argument. By Lemma 5.2 there is a constant
d such that ρ has at least 2n/nd ∗’s w.h.p.. Whenever this happens, F ρ is uniform (over
the choice of F ) on a set of 22n/nd

functions. There are at most 2O(S·log S) circuits of size
S. By assumption, for sufficiently large n, S(n) ≤ 2n/nd+2. This means in particular
that for sufficiently large n, O(S · log S) ≤ (2n/nd)/2. Therefore, for sufficiently large n, the
probability (over F ) that F ρ is not worst-case hard for size S is at most 2O(S(n)·log S(n))−2n/nd

≤
22n/(2·nd) = o(1).

Lemma 5.4 was essentially proved by Nisan in [Nis] (see also [NW]) (In [Nis, NW] the
lemma is stated as “almost-PH=PH”). We omit the details here. (Note Lemma 5.4 does
not immediately follow from the more well-known fact that BPP ⊆ PH (even though the
latter result is used in Nisan’s proof). This is because in 5.4 the machine Amp has access
(through the oracle) to an exponential (as opposed to polynomial) number of random bits.)

5.1 Pseudorandom restrictions

In this section we prove Lemma 5.2. A key tool is Nisan’s pseudorandom generator against
constant depth circuits.

Theorem 5.5 ([Nis]). For every constant c and every n there is a generator
Nis : {0, 1}poly log n → {0, 1}n such that (1) given x and i ≤ n we can compute the i-th
bit of Nis(x) in time poly log(n) and (2) N is 1/n-pseudorandom for circuits of size n and
depth c. That is, for every circuit C : {0, 1}n → {0, 1} of size n and depth c:

∣
∣
∣ Pr[C(Nis(Upoly log n)) = 1]− Pr[C(Un) = 1]

∣
∣
∣ ≤ 1/n.

Proof of Lemma 5.2. Let δ := 1/nc2 . We know by Lemma 3.2 that for every circuit C :
{0, 1}t → {0, 1} of size 2nc

and depth c on t bits:

Pr
ρ∈Rδ ,Ut,U ′

t

[C(Ut
ρ) 6= C(U ′

t
ρ
)] ≤ O(δlogc−12nc

) = o(1). (6)

The above equation in turn implies that w.p. 1 − o(1) over Rδ, BiasUt
[C(Ut

ρ)] ≥ 1 − o(1)
(see below). Moreover by a Chernoff bound the fraction of ∗’s in ρ ∈ Rδ will be concentrated
around δ.

So Rδ satisfies Items (2) and (3) in Lemma 5.2. But the problem is that Rδ requires at
least 2n bits to be generated, while we aim to a distribution on restrictions which can be
generated with poly n bits. To this aim we derandomize Rδ.

Let W be a canonical circuit that given I := O(2n log(1/δ)) random bits generates Rδ

(say we use blocks of O(log(1/δ)) bits to put a ∗ with probability δ). It is easy to see that
there is such a circuit W of size poly(2n) and depth O(1).
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We now define R̃c. Consider Nis : {0, 1}log
d I → {0, 1}I which is 2nc′

-pseudorandom
against depth c′, for a constant c′ to be determined later. For every c′ there is a constant d
such that such a Nis exists according to theorem 5.5. Then

R̃c := W (Nis(Ulogd I)).

We now prove that R̃c has the required properties.
(1) By construction R̃c can be generated with poly(n) random bits. As shown in [Nis],

given i and the random bits σ we can compute the i-th symbol of ρσ ∈ R̃c in polynomial
time.

(2) Let t := 2n. First we show that, even under such restrictions, circuits of size 2nc

and
depth c still have low noise sensitivity, the claim about the bias then easily follows. To show
this we use an approach similar to one used in [HVV]. As noticed there, the noise sensitivity
of a constant depth circuit C equals the acceptance probability of another (slightly bigger)
constant depth circuit C ′ defined as follows: Given a restriction ρ, C ′ tosses coins for Ut

and U ′
t and answers 1 if and only if C(Ut

ρ) 6= C(U ′
t
ρ). It is easy to see that such a C ′ can

be implemented in constant depth. Combining C ′ with our constant depth circuit W that
given random bits generates a random restriction in Rδ we obtain another constant depth
circuit C ′′ := C ′ ◦W . Now, the acceptance probability of C ′′ over a truly random input is
the noise sensitivity of C with respect to Rδ, while the acceptance probability of C ′′ over
a pseudorandom input generated using Nisan’s PRG Nis is the noise sensitivity of C with
respect to R̃c. Therefore, since C ′′ cannot distinguish the output of Nisan’s PRG from truly
random, we deduce that the noise sensitivity of C with respect to R̃c is close to the noise
sensitivity of C with respect to Rδ.

Therefore, choosing a sufficiently large constant c′ in the definition of R̃c we have that,
for every C : {0, 1}t → {0, 1} of size 2nc

and depth c:

Pr
ρσ∈R̃c,Ut,U ′

t

[C(Ut
ρσ) 6= C(U ′

t
ρσ)]

≤ Pr
ρ∈Rδ,Ut,U ′

t

[C(Ut
ρ) 6= C(U ′

t
ρ
)] + o(1) (by pseudorandomness)

≤ o(1) (by Equation (6))

We now deduce a claim about the bias. By above there is a function η(n) = o(1) such that

Pr
ρσ∈R̃c

[

Pr
Ut,U ′

t

[C(Ut
ρσ) 6= C(U ′

t
ρσ)] ≤ η(n)

]

≥ 1− η(n).

Noticing that PrUt,U ′

t
[C(Ut

ρσ) 6= C(U ′
t
ρσ)] ≤ o(1) implies that BiasUt

[C(Ut
ρσ)] = 1− o(1)

concludes the proof of this item.
(3) Ajtai [Ajt] shows the following:

Lemma 5.6 ([Ajt]). For every i there is a circuit C of size poly(2n) and depth O(1) such
that, given u and a bit string of length 2n:

If the bit string has more than u + 2n/ni occurrences of ‘1’ then C outputs 1.
If the bit string has fewer than u− 2n/ni occurrences of ‘1’ then C outputs 0.
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We expect a random ρ ∈ Rδ to have δ2n ∗’s. By a concentration bound the probability
that it has less than (δ2n)/2 is o(1). Since δ = 1/nc2 = 1/ poly(n), by Lemma 5.6 there is
a constant depth circuit of size poly(2n) that can distinguish the cases, say, “more than δ/2
fraction of ∗’s” and “less than δ/3 fraction of ∗’s” (setting u := (δ2n)/2.5 in Lemma 5.6).
Therefore, choosing a sufficiently large constant c′ in the definition of R̃c, by pseudorandom-
ness, we have that ρσ ∈ R̃c has at least (δ2n)/3 ∗’s w.h.p..

6 PRG constructions from one-to-one one-way functions

In this section we prove our negative result for black-box parallel PRG constructions from
one-to-one one-way functions, i.e. the proof of Theorem 1.1-(2).

The problem is that the functions F ρ0◦h defined in Section 3 are not one-to-one. To ensure
this property, we define another distribution on restrictions and from this a new distribution
on one-to-one functions. This definition is slightly elaborate because injectivity is in tension
with the fact that we need ρ(x) to not uniquely identify x (to preserve the one-wayness of
the oracle, see Section 3).

We denote by ρ(x)k ∈ {0, 1, ∗} the k-th symbol of ρ(x). We say that a restriction
ρ : [b] → {0, 1, ∗}cn splits if for every i 6= j there is k > log2 n such that ρ(i)k = 1 and
ρ(j)k = 0, or ρ(i)k = 0 and ρ(j)k = 1. The idea is that if ρ splits then for every function
f : [b]→ {0, 1}cn we have that the function f ρ is injective. For technical reasons we require
k > log2 n.

Definition 6.1. Let c := 5. The distribution R on restrictions ρ0 ◦ h : {0, 1}n → {0, 1, ∗}cn

is defined in stages as follows. Set δ := (log4 n)/n and b := 2n−log2 n.
Let h : {0, 1}n → [b] be a random function such that for every i ∈ [b] there are exactly

nlog n inputs x ∈ {0, 1}n such that h(x) = i.
Let ρ′ : [b]→ {0, 1, ∗}cn be a random restriction in Rδ such that ρ′ splits. (We can think

of ρ′ as being generated by repeated sampling from Rδ until found one that splits.)
Then let the random restriction ρ0 be equal to ρ′ except for every i if ρ′(i) contains less

than log2 n *’s, then set ρ0(i)j := ∗ for every j ≤ log2 n. (I.e. this forces ρ0(i) to have at
least log2 n *’s for every i.) Then define

ρ0 ◦ h(x) := ρ0(h(x))

By F
ρ0◦h

: {0, 1}n → {0, 1}cn we denote a random one-to-one function F consistent

with ρ0 ◦ h, i.e. such that F (x)ρ0◦h(x) = F (x) for every x. In other words, F
ρ0◦h

is a
random function obtained from the truth table of ρ0 ◦ h replacing the *’s with random bits,

conditioned on the event that F
ρ0◦h

is one-to-one.
It is easy to check that the space of restrictions R is not empty, i.e. there exist restrictions

that satisfy Definition 6.1. It is also easy to see that this guarantees that the space of

functions F
ρ0◦h

is not empty, because in Definition 6.1 ρ splits and, for every i ≤ b, ρ(i) has
at least log2 n *’s and finally there are only nlog n inputs mapping to the same i through h.

All that is left to do is to show that ρ0 ◦ h satisfies Properties (I) and (II) from Page
10 w.h.p.. Of course, these properties must now be satisfied for our new space of random

functions, namely F
ρ0◦h

. Since this slightly changes the properties, we now repeat them.
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i. For every oracle A, with high probability over F
ρ0◦h

, MF
ρ0◦h

,A does not invert F
ρ0◦h

,
i.e.:

Pr
F

ρ0◦h
,Un

[

MF
ρ0◦h

,A(F
ρ0◦h

(Un)) = Un

]

≤ ε(n).

ii. There is a fixed function g : {0, 1}n → {0, 1}c·n such that

E
F

ρ0◦h
,Ul

[

∆

(

GF
ρ0◦h

(Ul), G
g(Ul)

)]

≤
poly log(n)

m
.

Note Property (i) is simpler than Property (I) on Page 10 because now F
ρ0◦h

is always
one-to-one.

Lemma 6.2. A random ρ0 ◦ h ∈ R satisfies Property (i) w.h.p..

Proof. The proof is similar to the proof of Lemma 3.4. Let X ≡ Un be a random input.
As in Lemma 3.4 assume that M queries its output and that never queries the same input

twice. Given F
ρ0◦h

(X), by construction X is uniform over a set superpolynomial size. Since
M only makes poly(n) query, M queries X with negligible probability.

A more formal argument goes as follows: Suppose M queries X with nonnegligible proba-
bility. We construct another (computationally unbounded, depending on h and ρ0) machine

M ′ without oracle access to F
ρ0◦h

that outputs a polynomial size list containing X with

nonnegligible probability. But this is impossible because, as we said before, given F
ρ0◦h

(X),
X is uniform on a set of inputs of superpolynomial size. M ′ simply simulates M and when-

ever M queries F
ρ0◦h

at q, it adds q to the list and answers the query with U ′
m

ρ0◦h(q), where

U ′
m is a uniform and independent random variable such that U ′

m
ρ0◦h(q) is different from all

the previous query answers and from F
ρ0◦h

(X) (this is always possible since M only makes
poly(n) queries and ρ0(i) contains at least log2 n *’s for every i). It is easy to see that the
probability that M queries X is the same as the probability that X is in the list that M ′

outputs.

Lemma 6.3. A random ρ0 ◦ h ∈ R satisfies Property (ii) w.h.p..

Proof. Again, in order to show Property (II) all we need is Inequality (2) in Page 11 to go
through approximately. Let x ∈ {0, 1}l be a random input, q1, . . . , qr the r ≤ poly(n) queries
made by Cx, ρ0 ◦ h be random in R, let ρ′ : [b] → {0, 1, ∗}m and ρ ∈ {0, 1, ∗}rm be truly
random restrictions in Rδ (for δ := (log4 n)/n as in Definition 6.1). Let c := 5 (again as in
Definition 6.1) and m := c · n.

Consider the random variable

V := ∆
(

Cx(F
ρ0◦h

(q1), . . . , F
ρ0◦h

(qr)), Cx(F ′ρ0◦h
(q1), . . . , F ′ρ0◦h

(qr))
)

.

As in Lemma 3.5, Lemma 6.3 follows from the following inequality:

E
[

V
]

≤ E
[

∆
(

Cx(Urm
ρ), Cx(U

′
rm

ρ
)
)]

+ ε(n). (7)
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To prove Inequality 7, notice that E[V ] is at most

E
[

V
∣
∣
∣∀i 6= j : h(qi) 6= h(qj)

]

+ Pr
[

∀i 6= j : h(qi) 6= h(qj)
]

≤ E
[

V
∣
∣
∣∀i 6= j : h(qi) 6= h(qj)

]

+ ε(n)

= E
[

∆
(

Cx(U
1
m

ρ0◦h(q1)
, . . . , U r

m
ρ0◦h(qr)), Cx(U

′1
m

ρ0◦h(q1)
, . . . , U ′r

m
ρ0◦h(qr)

)
)∣
∣
∣

∀i 6= j : h(qi) 6= h(qj)
]

+ ε(n)

≤ E
[

∆
(

Cx(U
1
m

ρ′(h(q1))
, . . . , U r

m
ρ′(h(qr))), Cx(U

′1
m

ρ′(h(q1))
, . . . , U ′r

m
ρ′(h(qr))

)
)∣
∣
∣

∀i 6= j : h(qi) 6= h(qj)
]

+ ε(n)

≤ E
[

∆
(

Cx(Urm
ρ), Cx(U

′
rm

ρ
)
)]

+ ε(n)

Above, the second inequality follows from the fact that b = nω(1) (this is not too hard to

check). In the next equality we use the fact that the distribution
(

F
ρ0◦h

(q1), . . . , F
ρ0◦h

(qr)
)

equals the distribution of
(

U1
m

ρ0◦h(q1)
, . . . , U r

m
ρ0◦h(qr)

)

whenever for every i 6= j we have

h(qi) 6= h(qj) (here we use that ρ0 splits).
In the next inequality (i.e. in the second to last), we replace ρ0 with ρ′ (recall ρ′ : [b]→

{0, 1}m is a truly random restriction). The inequality follows from the fact that, with high
probability, the distribution of any r = poly(n) fixed values of ρ0 looks like the distribution of
the corresponding values of ρ′. To show this latter claim we need to bound two probabilities.

First, the probability that ρ′ ∈ Rδ does not split can be bound as follows. Fix i 6= j. The
probability that does not exist k > log2 n such that ρ′(i)k = 1 and ρ′(i)k = 0, or ρ′(i)k = 0
and ρ′(i)k = 1 is at most

(δ + δ + 1/2)cn−log2 n ≤ (2/3)4n.

So by a union bound the probability that there are i 6= j such that does not exist k > log2 n
such that ρ′(i)k = 1 and ρ′(i)k = 0, or ρ′(i)k = 0 and ρ′(i)k = 1 is at most (2n)2 · (2/3)4n

which is negligible.
Second, the probability that there exists i ≤ r such that ρ′(h(qi)) has less than log2 n *’s

is at most

r

(
cn

n− log2 n

)

(1− δ)cn−log2 n

which is negligible (recall r = poly(n) and cf. the similar bound inside the proof of Lemma
3.4).

7 Open Problems

(1) Is there a parallel black-box PRG construction with linear stretch from one-way permu-
tations?

(2) Is there a uniform parallel black-box PRG construction with any stretch from one-way
functions? Our techniques only give a nonuniform one.
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(3) In Theorem 1.2-(2), can we achieve l = (n+m) poly log n? This would match Theorem
1.1-(2). It would be enough to show the existence of an extractor (that extracts almost all
the min-entropy) with linear seed length and computable by constant depth circuits. Such an
extractor is not ruled out by [Vio] nor given by our positive results, as we only get polynomial
seed length.
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[GNR] M. Goldmann, M. Näslund, and A. Russell. Complexity bounds on general hard-core
predicates. J. Cryptology, 14(3):177–195, 2001.

[Gol] O. Goldreich. Foundations of Cryptography. Volume 1 - Basic Techniques. Cam-
bridge University Press, Cambridge, 2001.

[GGM] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
J. ACM, 33(4):792–807, Oct. 1986.

[GKL] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom gen-
erators. SIAM J. Comput., 22(6):1163–1175, 1993.

[GL] O. Goldreich and L. A. Levin. A Hard-Core Predicate for all One-Way Functions. In
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
pages 25–32, Seattle, Washington, 15–17 May 1989.

[GNW] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma. Technical
Report TR95–050, Electronic Colloquium on Computational Complexity, March
1995. http://www.eccc.uni-trier.de/eccc.

23



[H̊as] J. H̊astad. Computational limitations of small-depth circuits. MIT Press, 1987.

[HILL] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Comput., 28(4):1364–1396 (electronic), 1999.

[HVV] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify hardness.
In Proceedings of the Thirty-Six Annual ACM Symposium on the Theory of Com-
puting, pages 192–201, Chicago, IL, 13–15 June 2004. Invited to SIAM Journal of
Computing, STOC Special Issue.

[IN] R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provably as Secure
as Subset Sum. Journal of Cryptology: the journal of the International Association
for Cryptologic Research, 9(4):199–216, Fall 1996.

[IR] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing, pages 44–61, Seattle, Washington, 15–17 May 1989.

[KGY] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower Bounds for Pseudorandom
Number Generators. In 30th Annual Symposium on Foundations of Computer Sci-
ence, pages 242–247, Research Triangle Park, North Carolina, 30 Oct.–1 Nov. 1989.
IEEE.

[Lev] L. A. Levin. One way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

[LMN] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform,
and learnability. J. Assoc. Comput. Mach., 40(3):607–620, 1993.

[Lip] R. Lipton. New Directions in Testing. In Proceedings of DIMACS Workshop on
Distributed Computing and Cryptography, 1989.

[MNT] Y. Mansour, N. Nisan, and P. Tiwari. The Computational Complexity of Universal
Hashing. In Proceedings of the 22nd Annual ACM Symposium on Theory of Com-
puting (May 14–16 1990: Baltimore, MD, USA), pages 235–243, New York, NY
10036, USA, 1990. ACM Press.

[Nao] M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology: the
journal of the International Association for Cryptologic Research, 4(2):151–158,
1991.

[NR] M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. In 38th Annual Symposium on Foundations of Computer Sci-
ence, pages 458–467, Miami Beach, Florida, 20–22 Oct. 1997. IEEE.

[Nis] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

24



[NW] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Computer & Systems
Sciences, 49(2):149–167, Oct. 1994.

[NZ] N. Nisan and D. Zuckerman. Randomness is Linear in Space. J. Comput. Syst. Sci.,
52(1):43–52, Feb. 1996.

[RT] J. H. Reif and J. D. Tygar. Efficient Parallel Pseudo-Random Number Genera-
tion. In H. C. Williams, editor, Advances in Cryptology—CRYPTO ’85, volume
218 of Lecture Notes in Computer Science, pages 433–446. Springer-Verlag, 1986,
18–22 Aug. 1985.

[RTV] O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility between Cryp-
tographic Primitives. In Proceedings of the 1st Theory of Cryptography Conference
(Feb 19-21, 2004: Cambridge, MA, USA). Springer-Verlag, 2004.

[STV] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. System Sci., 62(2):236–266, 2001. Special issue on the
Fourteenth Annual IEEE Conference on Computational Complexity (Atlanta, GA,
1999).

[TV] L. Trevisan and S. Vadhan. Pseudorandomness and Average-Case Complexity via
Uniform Reductions. In Proceedings of the 17th Annual IEEE Conference on Com-
putational Complexity, pages 129–138, Montréal, CA, May 2002. IEEE.
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A Proof of Lemma 3.2

The next lemma, from [Vio], is based on the result in [Bop].

Lemma A.1 ([Vio]). Let D : {0, 1}n → {0, 1} be a circuit of size S and depth d. Let X ∈
{0, 1}n be a random input and let X̃ be obtained from X by flipping each bit independently
with probability δ < 1/2. Then:

Pr
X,X̃

[D(X) 6= D(X̃)] ≤ O(δ logd−1 S).
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We obtain Lemma 3.2 as follows:

Eρ∈Rδ,Ut,U ′

t

[

∆
(

C(Ut
ρ), C(U ′

t
ρ
)
)]

= Pr
ρ∈Rδ ,Ut,U ′

t,i
[C(Ut

ρ)i 6= C(U ′
t
ρ
)i]

= Pr
X,X̃,i

[C(X)i 6= C(X̃)i]

(where X̃ is obtained from X flipping each bit independently with probability δ/2)

≤ O(δ logd−1 S). (by Lemma A.1)

B Mildly black-box PRG construction

In this section we elaborate on our claim that (essentially) the negative result in Theorem 1.1-
(1) also holds for mildly black-box PRG constructions, a less restrictive notion of black-box
construction (cf. [RTV]). We give one necessary definition and then we state our result.

Definition B.1 (Mildly black-box PRG construction). An oracle machine Gf : {0, 1}l →
{0, 1}l+s is a mildy black-box PRG construction from one-way function f : {0, 1}n → {0, 1}m

if for every PPT A there exists an oracle PPT M such that for sufficiently large n, for every
f : {0, 1}n → {0, 1}m if

∣
∣Pr[A(Gf (Ul))]− Pr[A(Ul+s)]

∣
∣ ≥ 1/4

then
Pr[f(M f (f(Un))) = Un] ≥ 1/n.

Theorem B.2 (This Paper). Let Gf : {0, 1}l → {0, 1}l+s be a mildly black-box PRG
construction (Def. B.1) in the form in Table 1, but with the additional requirement that
the circuit Cx and the queries qx,1, . . . , qx,poly(n) are generated from x in polynomial time (as
opposed to arbitrarily).

Suppose Gf starts from one-way function f : {0, 1}n → {0, 1}m with m = logω(1) n and
m = nO(1). Then there is a function η(n) = o(l) such that if s ≥ η(n) then P 6= NP .

We now give some intuition about the proof. Consider the proof of our negative result
for (fully) black-box PRG constructions (Section 3). Loosely speaking, we now want the
adversary A to be a PPT. One of the problems is that our adversary depends on the function g
in Property (II). Intuitively, however, A can invert Gg only knowing the restriction ρ := ρ0 ◦ h
(recall g is obtained probabilistically as g = f ρ for some f). This is because of the low
noise sensitivity of constant depth circuits: more formally, we know that the output of the
generator GF ρ

(x) will be very biased (over F ). Therefore, if A′ knew the restriction ρ and
the input x to the generator, it could compute RoundG g(x) which equals to GF ρ

(x) except
each bit is rounded according to the bias (over F ) of GF ρ

(x). Since G is biased, the output
of RoundGg(x) will be close in Hamming distance to GF ρ

(x). Thus A′ could tell if an input
comes from the generator by guessing an input x and a restriction ρ as follows:

A′(z) := 1 iff ∃x ∈ {0, 1}l,∃ρ : ∆(RoundG(x, ρ), z) ≤ η
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We need to ensure two things. First A′ must be efficient, and second A′ should be a good
distinguisher. Both problems will be solved by showing a certain pseudorandom distribution
on restrictions (for the efficiency of A′ we will also use P = NP). (Intuitively for A′ to be a
good distinguisher we need a description of restrictions which is shorter than the stretch of
the generator.) More formally we obtain the following distribution on restrictions:

Lemma B.3. For every constant c there is a distribution R̃c on restrictions ρ : {0, 1}n →
{0, 1, ∗}m such that:

(1) Every ρ ∈ R̃c is described by poly log n bits σ. We denote by ρσ the restriction
described by σ. For random σ, we have that ρσ is random in R̃c. There is a polynomial time
algorithm such that given σ and i ∈ {0, 1}n, computes ρσ(i).

(2) There is a function η′(n) = o(1) such that for every circuit C of size nc and depth c,
and fixed q1, . . . , qnc ∈ {0, 1}n: w.p. 1 − η′(n) over ρ ← R̃c, BiasF [C(F ρ(q1) . . . F ρ(qnc))] ≥
1− η′(n), where the bias is only over the choice of F (ρ is fixed).

(3) The probability over ρ ∈ R̃c that there is i ∈ {0, 1}n such that ρ(i) has less than log2 n
∗’s is negligible. For every ρ ∈ R̃c, the probability over x ∈ {0, 1}n that there are fewer than
2n/2 y’s such that ρ(x) = ρ(y) is negligible.

Then, similarly as we did in Section 3, we can prove the following two properties:

i. For every PPT M , with high probability over F and ρ ∈ R̃c, M does not invert F ρ,
i.e.:

Pr
F,Un

[F ρ(M(F ρ(Un))) = F ρ(Un)] ≤ ε(n).

ii. EF,Ul,ρ∈R̃c

[
∆

(
GF ρ

(Ul),RoundG(Ul, ρ)
)]
≤ o(1).

Property (i) can be shown as in Lemma 3.4 using Lemma B.3-(3). Property (ii) follows
from Lemma B.3-(2). The rest of the proof is similar to the proof on Page 10: A counting
argument shows that A′ is a good distinguisher when the stretch of the PRG is too big (i.e.
s ≥ l·η(n)). Here we use Property (ii). Then one shows that A′ is efficient (i.e. a PPT) under
the assumption that P = NP . This is because if P = NP then guessing x, ρ and computing
RoundG can be done in polynomial time. To compute RoundG first note that we required
(in the statement of the theorem) that the circuit Cx and the queries qx,1, . . . , qx,poly(n) are
generated from x in polynomial time. Then we use the fact that approximating the accep-
tance probability of a circuit is in PH , and that PH = P if P = NP . So by definition of
mildly black-box PRG construction there is a PPT M that inverts F ρ. But this contradicts
Property (i).

We conclude this section giving some intuition of how to obtain the distribution on
restrictions in Lemma B.3. Recall our distribution on restrictions in Section 3 consisted of
a hash function h : {0, 1}n → [b], for b = nlog n, and a restriction ρ0 : [b] → {0, 1, ∗}m. We
obtain the distribution in Lemma B.3 by derandomizing both h and ρ0.

Derandomization of h: For h we use any family of hash functions which can be generated
using poly log(n) random bits and that has low collision probability, for example the following
standard construction (which we use with m := log n.)
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Lemma B.4. Let n be a prime power. For every t there is a family of hash functions
h̃s : {0, 1}n → {0, 1}t log n with seed length |s| = t log n such that for every x 6= y, Prs[h̃s(x) =
h̃s(y)] ≤ 1/nt−1.

Proof. Construction Fix a field F of size nt. The seed s represents an element in F . We
see x as a univariate polynomial px : F → F where px has degree n/t log n ≤ n. Then
h̃s(x) := px(s).

Analysis: Fix x 6= y. Then clearly px 6= py. So

Pr
s

[px(s) = py(s)] ≤ n/|F | = 1/nt−1

where we use the well known fact that two distinct polynomial of degree ≤ n over F agree
in at most n/|F | fraction of points.

Derandomization of ρ0: The derandomization of ρ0 is similar to what we did in Section
5.1. It again uses Nisan’s unconditional PRG against constant depth circuits, Theorem 5.5.
Our new distribution on restrictions ρ̃0 : [b] → {0, 1, ∗}m is obtained by plugging a random
seed into Nisan’s PRG and interpreting its output bits as choices for {0, 1, ∗}.

We must ensure that Items (2) and (3) in Lemma B.3 hold. (Item (1) is easy to check.)
Item (3): First we need to ensure that w.h.p. for every i ∈ {0, 1}n ρ̃0(i) has log2 n *’s

. Since this holds for a truly random restriction ρ0 : [b] → {0, 1, ∗}m (by a concentration
bound), it would be enough to show that we can check with a constant depth circuit if a
block has log2 n *’s. Then the result follows from pseudorandomness of Nisan’s generator Nis
. But this seems problematic, because it is known that constant depth circuits cannot count!
(See e.g. [H̊as].) However, it was shown by Ajtai and Ben-Or [ABO] that constant depth
circuits of size poly(n) can count up to log2 n. So using their result we can guarantee that
ρ̃0 is such that w.h.p. for every i ∈ [b], ρ̃0(i) has at least log2 n *’s. The second statement in
Item (3) holds by a pigeon hole principle.

Item (2): First we argue that under ρ̃0 constant depth circuits still have high bias (over
the choice of the random bits for the *’s). This is obtained by showing (as in Section 5.1) that
the bias of a constant depth circuit C is essentially the acceptance probability of another
(slightly bigger) constant depth circuit C ′, then arguing by pseudorandomness of N . To
obtain Item (3) we argue as in the proof of Property (II) in Section 3. By an appropriate
choice of parameters for the hash function in Lemma B.4 (i.e. t := log n) we can ensure that
for every fixed q1, . . . , qr, their images through h̃ will be pairwise different w.p. 1 − ε(n).
Whenever this happens we have that the circuit will have high bias because what we said
above about ρ̃0.
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