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Abstract. Many real-world optimization problems in, e. g., engineering
or biology have the property that not much is known about the func-
tion to be optimized. This excludes the application of problem-specific
algorithms. Simple randomized search heuristics are then used with sur-
prisingly good results. In order to understand the working principles
behind such heuristics, they are analyzed on combinatorial optimization
problems whose structure is well-studied. The idea is to investigate when
it is possible to “simulate randomly” clever optimization techniques and
when this random search fails. The main purpose is to develop methods
for the analysis of general randomized search heuristics. The maximum
matching problem is well suited for this approach since long augmenting
paths do not allow local improvements and since our results on random-
ized local search and simple evolutionary algorithms can be compared
with published results on the Metropolis algorithm and simulated an-
nealing.

1 Introduction

Jerrum and Sorkin (1998) analyze the Metropolis algorithm (which is simulated
annealing at a fixed temperature) for the graph bisection problem and they mo-
tivate their paper in the following way: “Our main contribution is not, then, to
provide a particularly effective algorithm for the minimum bisection problem on
random instances, but to analyse the performance of a popular heuristic applied
to a reasonably realistic problem in combinatorial optimization.” Here, we inves-
tigate the performance of simple randomized search heuristics on the maximum
matching problem for different graph classes. The choice of the maximum match-
ing problem will be motivated later. First, we want to motivate the analysis of
search heuristics which certainly will not outperform clever algorithms designed
for the solution of the considered problem.

We investigate randomized local search (RLS) and a simple but fundamen-
tal evolutionary algorithm ((1+1) EA) and compare our results with results of
Sasaki and Hajek (1988) and Jerrum and Sorkin (1998) for the Metropolis algo-
rithm (MA) and simulated annealing (SA). Jerrum (1992) describes MA as “just
one level of sophistication beyond randomized local search.” The same holds for
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the (1+1) EA. SA is a little more sophisticated than MA since it adaptively
controls its temperature with a cooling schedule.

Following Jerrum and Sorkin (1998) we also are convinced that these search
heuristics do not outperform the best known algorithms on the famous and well-
investigated problems of combinatorial optimization. Why do we nevertheless
analyze these heuristics? Are there applications for these simple heuristics? We
claim that there are many of them in real-world applications. In large projects,
one has to solve algorithmic problems which are well structured, but efficient
algorithmic solutions of such problems are not published. The development of
such algorithms is possible, but there are not enough resources (time, money, or
experts) to design such an algorithm. Then people are satisfied with random-
ized heuristics. More important is the following scenario, also called black-box
scenario. There exists a function f : S → R to be optimized, but no compact
description of f is available. The only possibility to gain information on f is to
measure f(x) by an experiment or the computer simulation of such an experi-
ment. This is a typical scenario in, e.g., engineering and sciences. In engineering,
one has to optimize some kind of machine where there are m free parameters,
the ith one taking values in Ai. Then S = A1 × · · · × Am and nobody can
predict the “quality” f(a1, . . . , am) of the machine corresponding to the choice
of the parameter combination (a1, . . . , am). Simple randomized search heuristics
are quite successful in such situations. We add the description of a particular
problem from molecular biology. Enantioselective catalysts are used to separate
molecules with good chemical or pharmaceutical properties from their chiral
counterparts. Reetz (2001) has applied a simple evolutionary algorithm for the
optimization of such catalysts (the f -values are determined by experiments) and
has produced the best-known results in this area revealing also new biological
insights which then have been used to further improve the results.

Hence, simple randomized search heuristics find applications and it would be
useful to understand why they are efficient for some problems and not for others.
Moreover, it would be interesting to understand which heuristic is appropriate
for certain types of problems. However, it is impossible to analyze an algorithm
on problem instances where the considered function f is not known. Our hope is
that we can learn something on these questions when we analyze the heuristics
on problems with well-investigated structures.

The maximum matching problem is well suited for our purposes. Improve-
ments of non-maximum matchings are possible by exchanging the roles of match-
ing and non-matching edges on augmenting paths (Hopcroft and Karp (1973)).
Algorithms like the blossom algorithm that search for augmenting paths are
clever and their correctness proofs are non-trivial. The best known algorithms
are complicated (Micali and Vazirani (1980), Vazirani (1994)). Motwani (1994)
and Bast et al. (2004) have proved that, with high probability, for each matching
of a randomized graph in the G(n, p)-model, p ≥ c/(n − 1) and c ≥ ln n in the
first paper and c ≥ 35.1 in the second paper, there exists an augmenting path of
length O(log n) only. Short augmenting paths support the optimization process
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of randomized search heuristics. Most results of our paper consider situations
where long augmenting paths are possible.

In Section 2, we introduce the fundamental search heuristics which are dis-
cussed later on. In particular, we present the search principles that will be com-
pared. In Section 3, we present the results of other papers and motivate our
results discussed in the later sections. In Section 4, it is proved that RLS and
the (1+1) EA are polynomial-time randomized approximation schemes for all
graphs, i. e., (1+ε)-optimal solutions can be obtained in expected polynomial
time, and also in polynomial time with overwhelming probability. Because of
this result we are later only interested in the time for exact optimization.

In Section 5 and Section 6, we investigate the behavior of the search heuristics
on simple graphs, namely paths and trees. The case of RLS on paths is simple,
but for the (1+1) EA on paths one already has to control the effect of non-local
steps. Trees can be handled by RLS in expected polynomial time. In Section 7, a
class of graphs which is particularly difficult for search heuristics (see also Sasaki
and Hajek (1988)) is introduced. In Section 8, it is proved that RLS and the
(1+1) EA need an exponential expected time to produce maximum matchings
on these graphs, and, in Section 9, it is shown for a subclass of these graphs
that the optimization time is exponential even with overwhelming probability.
In Section 10, we discuss how our results can be generalized to other search
heuristics. We finish the paper with some conclusions.

2 Randomized Search Heuristics and the Maximum
Matching Problem

We work with the following model of the maximum matching problem. For
graphs with n vertices and m edges, the search space S equals {0, 1}m and the
search point s is interpreted as the characteristic vector of the set of chosen
edges. The function f : S → Z is defined by f(s) := s1 + · · ·+ sm if s describes a
matching, i. e., no two chosen edges share a node. There are two possibilities to
handle non-matchings. The first one is to start with the empty set and to forbid
to accept non-matchings. The second one is to define a penalty for non-matchings
which directs the search towards matchings. The penalty p(v) of a vertex v with
degree d(v) with respect to the chosen edges equals r · max{0, d(v) − 1} where
r ≥ m + 1. Then f(s) equals the number of chosen edges s1 + · · · + sm minus
the sum of all p(v). The scaling factor r ≥ m+1 ensures that the fitness of non-
matchings is strictly worse than the fitness of any matching. An individual-based
randomized search heuristic on {0, 1}m looks as follows.

Initialization: Choose s ∈ {0, 1}m according to some probability distribution.

Search: Let q(s) be a probability distribution on {0, 1}m. Let s′ be chosen ac-
cording to q(s).

Selection: Based on f(s) and f(s′) decide whether s or s′ is chosen as search
point s for the next step of the infinite loop consisting of search and selection.
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We are interested in the time T until an optimal search point is created.
Time is measured as the number of calls of search and selection. We discuss
three search distributions q(s):

– choose a Hamming neighbor of s uniformly at random (RLS1),
– with probability 1/2 choose a Hamming neighbor of s uniformly at random,

and otherwise, choose a search point in Hamming distance 2 uniformly at
random (RLS2),

– for each bit position i, let s′i := 1 − si with probability 1/m and s′i = si,
otherwise; the bit positions are handled independently (GS).

RLS1 is the typical operator of randomized local search. For the matching
problem and all maximal but non-maximum matchings, RLS1 produces only
smaller matchings or non-matchings. The other local search operator RLS2 may
shorten or lengthen augmenting paths by two edges. The global search operator
GS is the typical so-called mutation operator from evolutionary computation.

We discuss two selection procedures:

– choose s := s′ if and only if f(s′) ≥ f(s) (elitist strategy),
– choose s := s′, if f(s′) ≥ f(s), and otherwise choose s := s′ with probability

p(s, s′) ∈ (0, 1) depending on f(s) − f(s′).

Randomized local search (RLS) uses a local search operator and the elitist
selection strategy; in our case this makes sense only for RLS2. The (1+1) EA
combines the elitist selection strategy with the global search operator GS. Con-
sidering long time intervals also steps happen where s′ is quite different from s.
This can help to escape from local optima and makes the analysis more difficult.
The Metropolis algorithm (MA) with temperature T combines RLS1 with the
non-elitist strategy where p(s, s′) = exp(−(f(s)−f(s′))/T ). Moreover, MA does
not accept non-matchings. All these strategies are static ones. Dynamic search
strategies vary their parameters. A dynamic (1+1) EA as analyzed by Droste
et al. (2001) varies the probability that the GS operator flips a bit. The dynamic
version of the Metropolis algorithm which varies the parameter “temperature T”
is known as simulated annealing (SA). It is interesting to analyze the different
search heuristics.

A typical situation for the heuristics is a non-maximum but maximal match-
ing. The situation seems to be more difficult if no augmenting path is “short.”
MA and SA are based on the operator RLS1 which flips exactly one bit per step.
Hence, they have to accept worse matchings to have a chance to find a better
matching. RLS and the (1+1) EA do not accept worse matchings. In particular,
RLS differs from the “frozen MA”, i. e., MA at temperature T = 0. RLS has to
search on the so-called “plateau” of matchings of the same size. If there is an
augmenting path of length 2` + 1, RLS may shorten the augmenting path by
accepted 2-bit flips. It is possible to produce a selectable edge within ` such steps
and then to increase the matching size by an accepted 1-bit flip. The (1+1) EA
can work in the same way. Steps flipping many bits may lead to search points
with a quite different set of augmenting paths. In any case, the search on fitness



5

plateaus (investigated in general by Jansen and Wegener (2001)) is the main
problem of RLS and the (1+1) EA if f can take only polynomially many values
(which is true for many problems in combinatorial optimization).

A search heuristic is called efficient if the expected optimization time E (T )
is small. Our upper bounds on E (T ) hold for arbitrary initial search points.
Then we can conclude that T is small even with overwhelming probability. By
Markov’s inequality, the success probability within 2 ·E (T ) steps is at least 1/2.
All disjoint phases of length 2 ·E (T ) independently have this success probability
implying that the success probability within p(n) · (2 · E (T )) steps is at least
1 − 2−p(n).

It is possible that Prob(T ≤ p1(m)) ≥ 1/p2(m) for polynomials p1 and p2

although E (T ) grows exponentially with respect to m. Then the following dy-
namic multi-start variant of the algorithm works in expected polynomial time
without knowing p1(m) and p2(m).

In Phase i, i ≥ 0, perform ri = 2ir0 independent runs of the considered
heuristic and stop each run after ti = 2it0 steps.

The cost of Phase i equals riti = 4ir0t0. Obviously, r0 and t0 should be
polynomially bounded. A typical setting would be r0 = 1 and t0 = m. Pes-
simistically, we assume that the early phases are unsuccessful, more precisely,
the Phases 0, . . . , k := dlog p(m)e where p(m) := max{dp1(m)/t0e, dp2(m)/r0e}.
Their total cost is O(p(m2) · r0 · t0). If i > k, we have 2ir0 ≥ 2i−kp2(m) runs
working 2it0 ≥ 2i−kp1(m) steps. The probability that they all are unsuccessful
is bounded above by

(

1 − 1/p2(m)
)p2(m)·2i−k

= e−Ω(2i−k).

The cost of Phase i is 4ir0t0 = O(p(m)2 · r0 · t0) · 4i−k and this phase has to be

preformed with a probability of e−Ω(2i−1−k). Hence the expected cost is bounded
by

O
(

p(m)2 · r0 · t0
)

·
(

1 +
∑

1≤j<∞

4je−Ω(2j)
)

= O
(

p(m)2 · r0 · t0
)

.

and, therefore, polynomially bounded. In applications, multi-start variants of
randomized search heuristics are quite popular. In order to prove that also these
variants are inefficient it is sufficient to prove that the success probability within
exponentially many steps is exponentially small. Hence, for negative results, we
are mostly interested in results of this kind.

3 Previous Results

There is some literature on the theoretical analysis of different kinds of RLS,
MA, and SA. Their common feature is the locality of the search operator. Evo-
lutionary algorithms differ mainly in three aspects from these heuristics, namely
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– a more global search operator,
– an additional search operator (recombination or crossover) working on more

than one search point, and
– a population of more than one search point considered at the same time.

The (1+1) EA focuses on the first aspect and has been analyzed theoretically in
several papers. There are papers analyzing the (1+1) EA on classes of functions:

– unimodal functions (Droste et al. (1998)),
– linear functions (Droste et al. (2002)),
– quadratic polynomials (Wegener and Witt (2004a)), and
– monotone polynomials (Wegener (2001), Wegener and Witt (2004b)).

The analysis of the (1+1) EA on problems of combinatorial optimization is still
in its infancy. Scharnow et al. (2002) have studied sorting as minimization of
unsortedness of a sequence. They have analyzed several measures of unsortedness
leading to different optimization problems. Moreover, they have investigated how
evolutionary algorithms solve the single-source-shortest-path problem. Neumann
and Wegener (2004) have done the same for the minimum spanning tree problem.
These problems allow improvements by local steps which is not always the case
for the maximum matching problem investigated in this paper.

Sasaki and Hajek (1988) and Jerrum and Sinclair (1989) have shown that MA
and SA are polynomial-time randomized approximation schemes for the maxi-
mum matching problem. We obtain similar results for RLS and the (1+1) EA
in Section 4. There are no classes of graphs where a polynomial bound on the
expected time for exact optimization has been proved for any of the heuristics.
Our results in Section 5 and Section 6 are first results of this kind.

It is interesting to investigate graphs which are difficult for heuristics without
global knowledge. Such a class of graphs Gh,` has been presented by Sasaki and
Hajek (1988), see Section 7. They prove that SA has an exponential expected
optimization time on these graphs if one starts with the empty matching and
h is large. Sasaki (1991) describes a general lower bound technique for MA
which is large if there are many more search points with the same fitness f ∗

than better search points reachable with positive probability from search points
where the fitness is at most f∗. Sasaki (1991) has applied his method to maximum
matchings for Gh,`, traveling salesperson, and graph bisection. Jerrum (1992) has
applied similar ideas to (2 − ε)-approximations of maximum cliques in random
graphs. The disadvantage of this method is that it ensures only the existence of a
search point s such that the expected optimization time is exponentially large if
one starts with s. We investigate the same class of graphs. In Section 9, we prove
that RLS and the (1+1) EA need exponentially many steps with a probability
exponentially close to 1. This bound holds for h = ω(log m) and h ≤ `− 2 when
starting with the empty matching, with a matching containing “several” edges
not contained in the unique perfect matching, or a randomly chosen matching.
The maximal degree of a node in Gh,` is h + 1. It is of interest to prove that the
heuristics can be fooled by graphs of constant degree. In Section 8, we obtain
weaker results for 2 ≤ h ≤ `−2 and, therefore, results for the smallest nontrivial
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node degree, namely 3. It is worth noticing that G2,` is planar. For these cases
we obtain an exponential lower bound on the expected optimization time when
starting with an arbitrary non-optimal search point. However, the probability
of an exponential run time is only proved to be Ω(1/m). For this result, it is
sufficient to prove that an almost perfect matching (one edge less than a perfect
matching) is created and then to analyze the plateau of almost perfect matchings.
This plateau ensures the existence of a unique augmenting path which simplifies
the analysis. In Section 9, we have to analyze earlier stages of the search where
the search points correspond to matchings with many augmenting paths.

Remark. This paper contains results of two extended abstracts (Giel and We-
gener (2003, 2005)).

4 RLS and the (1+1) EA are PRAS

In evolutionary computation, the initial search point is typically chosen uni-
formly at random. For most graphs, it is likely that such a search point describes
a non-matching. Regardless of the initial search point, RLS and the (1+1) EA
find matchings efficiently.

Lemma 1. RLS and the (1+1) EA find matchings in expected time O(m log m).

Proof. Let p = r · k be the sum of the vertex penalties for the search point s.
Then k is less than 2m, the sum of all vertex degrees. Until a matching is found,
the fitness function rewards the decrease of p. By definition, there are at least
dk/2e ≤ m edges chosen by s whose elimination decreases k. The probability
for a specific 1-bit flip equals Θ(1/m) for both algorithms. Hence, the expected
waiting time to decrease k is bounded by O(m/k). Summing up for 1 ≤ k < 2m
yields the claim. ut

The key to prove that RLS and the (1+1) EA are a PRAS for the maxi-
mum matching problem is the following result which follows from the theory on
maximum matchings.

Lemma 2. Let G = (V, E) be a graph, M a non-maximum matching, and M ∗

a maximum matching. Then there exists an augmenting path with respect to M
whose length is bounded by L := 2b|M |/(|M ∗| − |M |)c + 1.

Proof. With respect to M , the edges not belonging to M are called free. A node
is called free or exposed iff all adjacent edges are free. An augmenting path
connects two free nodes and alternates between free edges and M -edges. Let
G′ = (V, E′) be the graph whose edge set is defined by E ′ := M ⊕M∗ where ⊕
denotes the symmetric difference. The graph G′ consists of node-disjoint cycles
and paths. Each cycle and each path of even length has the same number of
M -edges and M∗-edges. Paths of odd length alternate between M -edges and
M∗-edges. There is no such path starting and ending with an M -edge. Oth-
erwise, it would be an augmenting path with respect to M ∗. Hence, there are
|M∗| − |M | disjoint augmenting paths with respect to M . At least one has at
most b|M |/(|M∗| − |M |)c M -edges and, therefore, at most L edges. ut
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Theorem 1. For ε > 0, RLS and the (1+1) EA find a (1+ε)-optimal matching
in expected time O(m2d1/εe) independently from the choice of the first search
point.

Proof. The first phase of the search finishes when a matching is found. By
Lemma 1, this phase is short enough. Afterwards, let M be the current match-
ing and let M∗ be an arbitrary maximum matching. The search is successful if
|M∗| ≤ (1 + ε)|M |. Otherwise, by Lemma 2, there exists an augmenting path
for M whose length is bounded above by L := 2b|M |/(|M ∗| − |M |)c + 1. Since
|M∗| > (1 + ε)|M |, we conclude that

|M |
|M∗| − |M | < ε−1.

Consequently,

⌊ |M |
|M∗| − |M |

⌋

≤
{

bε−1c = dε−1e − 1 if ε−1 is not an integer,

bε−1c − 1 = dε−1e − 1 if ε−1 is an integer.

In any case, L ≤ 2d1/εe − 1.
The probability that the (1+1) EA flips exactly the edges of an augmenting

path of length ` is Θ(m−`). The expected waiting time is Θ(m`). It is sufficient
to wait |M∗| ≤ m times for such an event where ` is always at most L. This
proves the result for the (1+1) EA.

RLS can flip the augmenting path in b`/2c + 1 steps. In each of the first
b`/2c steps, the length of the augmenting path is decreased by 2 by flipping the
first two or the last two edges and in the last step the remaining edge of the
augmenting path is flipped. The probability that a phase of length b`/2c + 1 is
successful is bounded below by Ω((m−2)b`/2c · m−1) = Ω(m−`) where we used
the fact that the length ` of an augmenting path is odd. The expected number
of unsuccessful phases preceding a successful phase is O(m`). Again ` ≤ L. The
difference to the case of the (1+1) EA is that a phase may consist of more
than one step. However, in each step the probability that a phase is continued
successfully is bounded above by O(m−1). Hence, the expected phase length is
O(1). This also holds under the assumption that a phase is unsuccessful. The
length of the successful phase equals b`/2c + 1. Hence, the expected number of
steps to improve the matching again is bounded by O(` + m`) = O(m`) which
proves the theorem. ut

Let c be a constant such that Theorem 1 holds for the bound c ·m2d1/εe. The
next corollary follows by an easy application of Markov’s inequality.

Corollary 1. If we run RLS or the (1+1) EA for 4cm2d1/εe iterations of the
loop, we obtain a PRAS for the maximum matching problem, i. e., indepen-
dently from the choice of the first search point, the probability of producing a
(1 + ε)-optimal solution is at least 3/4.
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5 RLS and the (1+1) EA on Paths

After having seen that RLS and the (1+1) EA find good approximations to
maximum matchings in expected polynomial time, we are interested in graphs
where even maximum matchings are found in expected polynomial time. We
start with the simple graph consisting of a path of m edges. This graph allows
a matching of maximal size for connected graphs, namely dm/2e. The analysis
of RLS and the (1+1) EA on this graph is not too difficult but it is interesting
since it contains already aspects of more difficult analyses performed in later
sections.

The first lemma gives the hitting time of a random walk that is essential
for our analyses. The random walk is similar to the random walk describing the
gambler’s ruin problem but has a reflecting barrier. The lemma is proven by
standard arguments.

Lemma 3. Given the homogeneous Markov chain with state space S = {0, . . . , `},
initial state ` ≥ 2, and positive transition probabilities p(0, 0) = 1, p(1, 0) = r,
p(1, 2) = s, p(i, i− 1) = p for i ∈ {2, . . . , `}, p(i, i + 1) = q for i ∈ {2, . . . , `− 1},
and p(`, `) = q, where 0 < p, r < 1, q = 1 − p, and s = 1 − r (see Fig. 1). The
expected time to reach state 0 for the first time starting in state ` is

h`,0 =























`2 +
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r
− 3
)

` − 1

r
+ 2 if p = q = 1/2,

1

q − p

((

q
p

)` − 1
q
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+
s

r

(q

p

)`−1

− ` − s

r

)

+
1

r
if p 6= q.

In particular, for p = q = r = s = 1/2, h`,0 = `2 + `.
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Fig. 1. The Markov chain in Lemma 3.

Proof. We claim that

h1,0 =
1

r
+

s

r
h2,1 and, for j ≥ 2, hj,j−1 =











2(` − j + 1) if p = q = 1/2,
(

q
p

)`−j+1 − 1

q − p
if p 6= q.

Summing up the terms hj,j−1 for j ∈ {1, . . . , `} yields the lemma. By the law of
total probability, h1,0 = 1 + r · 0 + s · (h2,1 + h1,0). This implies the first part
of the claim. We prove the second part by induction on j. In accordance with
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the claim (for p = q = 1/2 and for p 6= q), h`,`−1 = 1/p since the transition
(`, ` − 1) is the only transition leaving state ` with positive probability p. For
` − 1 ≥ j ≥ 2, hj,j−1 = 1 + p · 0 + q(hj+1,j + hj,j−1) implying that

hj,j−1 =
1

p
(1 + q · hj+1,j).

We apply the induction hypothesis and consider the cases p = q = 1/2 and p 6= q
separately. In the first case, we obtain

hj,j−1 =
1

p

(

1 + q
(

2(` − (j + 1) + 1)
)

)

= 2(` − j + 1),

and in the second case,

hj,j−1 =
1

p

(

1 + q

(

q
p

)`−j − 1

q − p

)

=

q
p − 1

p( q
p − 1)

+

(

q
p

)`−j+1 − q
p

q − p
=

(

q
p

)`−j+1 − 1

q − p
.

This proves the claim and finishes the proof. ut

In many situations, we will consider the number R of so-called relevant steps
rather than the total number of steps T . The definition of a relevant step will
depend on the situation. If an expected number of E (R) relevant steps is neces-
sary to reach some target, and every step is relevant with probability at least p,
then the expected total number of steps E (T ) is at most p−1 · E (R).

Theorem 2. For a path of m edges, the expected optimization time of RLS is
O(m4) independently from the choice of the first search point.

Proof. By Lemma 1, the expected waiting time for a matching is small enough.
The size of a maximum matching equals dm/2e. If the current matching size is
dm/2e− i, there exist at least 2i− 1 ≥ i augmenting paths and one of length at
most ` := m/i. In every step, we select a shortest augmenting path P . Now a
step is called P -relevant if it is accepted and P is altered. The probability of a
P -relevant step is Ω(1/m2): If the length of P is at least 3, it is lower bounded by
the probability that a pair of edges at one end of P flips (Fig. 2), otherwise, it is
even Ω(1/m). If we can show that an expected number of O(`2) P -relevant steps
is sufficient to improve the matching by one edge, then

∑

1≤i≤dm/2e O((m/i)2) =

O(m2) P -relevant steps are sufficient, and the expected optimization time is
O(m4).

| {z }

p1

| {z }

p2

| {z }

p3

| {z }

p4

P
z }| {r r r r r r r r r r r r r r r r r r r r

Fig. 2. In a P -relevant step, any of the pairs p1, . . . , p4 flips.
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If |P | ≥ 3, there are no selectable edges. Only mixed mutation steps, where a
free edge and a matching edge flip, can be accepted. Since each free edge e has at
least one neighbor e′ in the matching, e′ must flip, too. That means only a free
edge e incident upon a free node together with a matching edge e′ such that e
and e′ have an endpoint in common can flip. As our graph is a path, only pairs of
neighbored edges located at one end of an alternating path can flip in an accepted
step, and only the pairs p1, . . . , p4 indicated in Fig. 2 are P -relevant. Since, for
|P | ≥ 3, the pairs p2 and p3 are always present, P shrinks with a probability
of at least 1/2 in every P -relevant step. If |P | = 1, the probability that the
length of the path is decreased to 0 in the next step is at least 1/(2m), and the

probability that it grows at either end is at most 2 ·(1/2) ·
(

m
2

)−1
= 2/(m(m−1)).

Hence, the conditional probability that the next P -relevant step is decreasing is
at least 1/(1 + 4/(m− 1)) ≥ 1/2, for m ≥ 5. If we identify the current length j,
j ∈ {0, 1, 3, 5, . . . , `} of P with the state dj/2e of the Markov chain in Lemma 3,
where p = r = 1/2, the states are {0, . . . , d`/2e}. Pessimistically assuming that
the initial state is d`/2e, the expected number of P -relevant steps to improve
the matching is O(`2). ut

The essential difference between RLS and the (1+1) EA is that the (1+1) EA
may flip many bits in one step. We are only interested in P -relevant steps. For our
analysis, we define P -clean steps which are P -relevant steps causing only small
changes of P . Then a phase including Θ(`2) P -relevant steps is called P -clean if
all its P -relevant steps are P -clean. The idea is to prove that a phase is P -clean
with probability Ω(1) and that a P -clean phase plus the next P -relevant step
improve the matching with probability Ω(1).

Theorem 3. For a path of m edges, the expected optimization time of the
(1+1) EA is O(m4) independently from the choice of the first search point.

Proof. For the definition of P , `, and P -relevant steps see the proof of Theorem 2.
With the same argument used there, it suffices to prove that the expected number
of P -relevant steps to improve the matching is O(`2).

P -clean steps are only defined for situations without selectable edges. Let u
and v be the endpoints of P , and let Eu = {{w, z} ∈ E | dist(u, w) ≤ 3} be the
set of edges where one endpoint has at most a distance of 3 to u, analogously
for Ev (see Fig. 3). Then we call a P -relevant step a P -clean step if

– at most three edges in E ′ := Eu ∪ Ev flip, and

– at most two of the flipping edges in E ′ are neighbors.

| {z }

Eu

| {z }

Ev

u vr r r r r r r r r r r r r r r r r r r r r rd d d d

Fig. 3. Environments Eu and Ev . Free nodes are marked by a circle.
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We describe the effect of clean steps on P . The free nodes partition the graph
into alternating paths (see Fig. 3 for an example). As there is no selectable edge,
there is an augmenting paths of at least 3 edges between a free node and the next
free node. There may be alternating paths of even length of at least 2 between
the first node and the first free node and also between the last free node and the
last node. Hence, a P -clean step cannot flip all edges of P because this would
require flipping a block of three edges in E ′. Consequently, P cannot vanish in
a P -clean step; however, it is possible that new free nodes are created between
u and v. Then we interpret this event as a step shortening P by at least two
edges. It is impossible that a P -clean step lengthens P by more than two edges
i. e., at least 4 edges, since this requires flipping more than 3 edges in E ′. Thus,
P -clean steps lengthen P only by 2 and it is necessary to flip one of the pairs
p1 or p4 indicated in Fig. 2. For a P -clean step decreasing the length of P by at
least 2, it is sufficient to flip one of the pairs p2 or p3. Since at most three edges
of E′ may flip, at most one pair of p1, . . . , p4 can flip in a P -relevant step. Hence,
P -relevant steps either lengthen or shorten P , and the probability of shortening
steps is only larger than the probability of lengthening steps.

As the aim of a phase is to produce an improved matching or some selectable
edge, it is convenient to include these good events into P -clean steps. We now
broaden our definition of P -clean steps and call accepted steps that produce a
selectable edge or improve the matching P -clean, too. Now we upper bound the
probability of P -relevant but not P -clean steps (in situations without selectable
edges). A necessary event to violate the first property is that 4 out of at most
16 edges of E′ flip. The probability of this event is O(1/m4). For the second
property, let k denote the length of a longest block B of flipping edges in E ′. The
probability that a block of length k ≥ 4 flips is upper bounded by the probability
of the event that one out of a most 10 potential blocks of length 4 in E ′ flips.
The probability of this event is O(1/m4). A mutation step where k = 3 produces
a local surplus of either one free edge or one matching edge in B. If the surplus
is not balanced outside B, the step is either not accepted because the fitness
decreases or the step is clean because the matching is improved. To compensate
a surplus of one free edge, one more free edge than matching edges must flip
elsewhere. This may be a free edge next to B but outside E ′ if B is located at a
border of E′. The probability of such a step is only O(1/m4). If B is not located
at a border of E′, another block B′ of at least three edges not neighboring B has
to flip. This results in a probability of at most O((1/m3)·(m·1/m3)) = O(1/m5).
If a local surplus of one matching edge has to be balanced, either only another
matching edge flips and, because a selectable edge is created, the step is clean.
Otherwise, another block of at least three edges must flip. The probability of the
last possibility again is O(1/m5). Altogether, the probability of a P -relevant but
not P -clean step is O(1/m4), and the conditional probability that a P -relevant
step is not P -clean is O(1/m2). Hence, a phase of O(`2) = O(m2) P -relevant
steps is clean with a probability Ω(1).

Replacing shortening steps by shortenings by exactly two edges and using
the lower bound 1/2 for p and r in Lemma 3, an expected number of O(`2) clean
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relevant steps reduces the length of P to at most 1. By Markov’s inequality, this
happens with probability Ω(1) in c`2 clean relevant steps if c is large enough.
Afterwards, at least one selectable edge e exists, and a step is P -relevant with
a probability of Ω(1/m), namely, if it flips only e and, thereby, improves the
matching. In order to destroy e, e or a neighbor of e has to flip. This happens
only with a probability of O(1/m). Hence, the next P -relevant step improves the
matching with probability Ω(1). ut

We discuss the results of Theorem 2 and 3. On the one hand, paths are
difficult since augmenting paths tend to be rather long in the final stages of
optimization. On the other hand, paths are easy since there are not many pos-
sibilities to lengthen an augmenting path. The time bound O(m4) = O(n4) is
huge but can be explained by the characteristics of general (and somehow blind)
search. There are many rejected steps and many irrelevant steps which do not
alter any augmenting path. In the case of O(1) augmenting paths and no se-
lectable edge, a step is relevant only with a probability of Θ(1/m2), and the
expected number of relevant steps is O(m2) = O(n2). Indeed, the search on
the level of second-best matchings is already responsible for this. If the number
of edges is odd, the path graph has a unique maximum matching, namely the
perfect matching choosing the dm/2e edges with odd numbers. Therefore, every
second-best matching of size bm/2c has only one augmenting path P . Our aim
is to show that both heuristics have an expected optimization time of Ω(m4) if
the initial situation is a second-best matching and P is not too short.

First, we investigate a random walk on the set {0, 1, . . . , L}, where L is the
initial state, p(L, L − 1) = 1, p(0, 0) = 1, and, for 1 ≤ i ≤ L − 1, p(i, i − 1) =
p(i, i+1) = 1/2. This random walk can be analyzed with the same method used
for Lemma 3; however, for p = r = 1/2, the Markov chains differ only with
respect to the probability to leave the initial state. It is easy to see that, for
` = L − 1, the expected time to reach 0 in the chain in Lemma 3 lower bounds
the expected time to reach 0 in the above random walk. Hence, starting in L, the
expected time to reach 0 is at least cL2 for some constant c > 0. For 0 < ε < 1,
we claim that the success probability within bεcL2c steps is bounded above by ε.
If the success probability were larger than ε, this would hold for any initial state.
Then, the expected number of phases of length bεcL2c would be less than 1/ε
contradicting the expected time of at least cL2.

Theorem 4. For a path of m edges, m odd, the expected optimization time of
RLS and the (1+1) EA is Θ(m4) if the initial situation is a second-best matching
with an augmenting path of length Ω(m).

Proof. The upper bounds follow from Theorem 2 and Theorem 3. Let the initial
length of the unique augmenting P be at least 6L for some L = Ω(m). First, we
investigate RLS. The left endpoint of P has to walk at least L steps of length 2
to the right, or the right endpoint has to walk at least the same distance to the
left. If we do not allow the endpoints of the augmenting path to come closer to
the endpoints of the graph than in the initial configuration, we can apply the
result on the random walk considered above. The probability that at least one
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of these events occurs within αm2 such steps is bounded by 1/2 if α > 0 is small
enough. The lower bound for RLS follows since the probability of a P -relevant
step is Θ(1/m2).

For the (1+1) EA, the considered 2-bit flips also have probability Θ(1/m2)
but we must take into account 2k-bit flips for k ≥ 2. We pessimistically assume
that the latter only decrease the length of P and show that this additional
decrease is at most L. Then, the length of P is always at least L = Ω(m) and
the probability of a step flipping exactly the edges of P is small enough. If 2k
bits flip in an accepted step, they form one or two blocks where the last or first
edge of a block is adjacent to one of the exposed endpoints of P . Thus, there are
O(k) possibilities for an accepted 2k-bit flip and the expected decrease by means
of 2k-bit flips in a single step is 2k · O(k/m2k) = O(k2/m2k). The sum for all
k ≥ 2 is O(1/m4). Hence, the expected decrease by more than two is O(1/m4)
in each step. Within βm4 steps, this expected decrease is O(1) and the decrease
is less than L with probability 1−o(1) if the constant β > 0 is small enough. ut

6 RLS on Trees

There is a simple direct approach to construct maximum matchings on trees.
Randomized search heuristics should be able to find such matchings in expected
polynomial time. The expected optimization time O(m4) for paths, i. e., unary
trees, holds, since the step from almost perfect matchings to perfect matchings
is essential. Then the unique augmenting path can have length Ω(m) and it
takes an expected number of Θ(m2) P -relevant steps to overcome a distance
of Θ(m). Paths are trees with maximal diameter. The diameter corresponds to
the length of the longest augmenting path. If a free node v has degree deg(v)
and there is no selectable edge, this free node can move with equal probability
along each adjacent edge and the following matching edge. If v is an endpoint
of an augmenting path, there can be deg(v) − 1 directions which lengthen the
augmenting path and there is at least one which shortens it. Increasing deg(v),
the game gets more and more unfair. Many nodes of large degree imply the
existence of many leaves, i. e., nodes of degree 1, since the average degree is less
than 2. Moreover, this decreases the diameter. We conjecture that the expected
optimization time of RLS on trees is bounded by O(m4).

RLS for the maximum matching problem can be considered as random walks
of the free nodes until they almost meet; more precisely, until they produce a
selectable edge. We cannot apply results on random walks of one token on a graph
(see, e.g., Motwani and Raghavan (1995)) and even not results on the expected
time until two randomly walking tokens meet. Coppersmith et al. (1993) prove
an upper bound of O(n3) for this scenario. The number of free nodes can be
much larger than 2. But even in the case of exactly two free nodes we obtain an
exponential lower bound in Section 8. The reason it that the nodes do not walk
to a randomly chosen neighbor. They choose a free edge adjacent to an exposed
node randomly but then they are forced to choose the adjacent matching edge.
Hence, the walk of one free node is influenced by the currently chosen matching
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and, in particular, by the position of the other free nodes. Hence, the free nodes
play a pursuit game on a graph whose connections are influenced by the other
players. To investigate such generalized pursuit games is a further motivation
to analyze RLS for the maximum matching problem. First, we prove that the
essential part is to produce a search point describing a matching with a selectable
edge.

Lemma 4. Given an arbitrary tree and a matching with at least one selectable
edge. In expected time O(m), RLS has improved the matching or there is no
selectable edge but an augmenting path of length 3. The matching is improved
with probability at least 1/2.

Proof. We prove the lemma by proving the following two claims for all search
points describing matchings with a selectable edge: In the next step,

– the probability of improving the matching is at least 1/(2m), and

– the probability of destroying all selectable edges without improving the
matching is at most 1/(2m).

The first claim is obvious, since 1/(2m) is the probability of flipping exactly
a specified selectable edge. Now we prove the second claim. A step flipping only
matching edges is not accepted. A step flipping only free edges is not accepted
or it improves the matching. Hence, we only have to consider 2-bit flips choosing
a free edge e and a matching edge e′. Since e′ must not become selectable,
e has to be adjacent to e′ implying that e is not selectable. To destroy a given
selectable edge e∗, e must also be adjacent to e∗. Summarizing, the free edge e is
adjacent to the selectable edge e∗ at its free endpoint, and at the other endpoint,
e is adjacent to the matching edge e′. This shows that an augmenting path
of length 3 is created if e and e′ flip. By the matching property, the choice
of e determines e′, and, in a tree, e′ determines e between e′ and e∗. Hence,
the possible pairs {e, e′} are pairwise disjoint implying that their number is
bounded above by (m − 1)/2. The probability to flip any of these pairs is at

most ((m − 1)/2) · (1/2) ·
(

m
2

)−1
= 1/(2m). ut

In the next lemma, we prove that it is not too unlikely to shorten an aug-
menting path.

Lemma 5. Let P = (x0, x1, . . . , x`) be an augmenting path with respect to a
tree and a matching without selectable edge. An accepted mutation step of RLS
preserves the current matching size and either

– leaves P unchanged,

– lengthens P by two edges at one end, or

– shortens P by a multiple of two edges at one end.

If P is changed, the probability that P shrinks is at least 2/(deg(x0) + deg(x`)).
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Fig. 4. (a) In an accepted step, a free edge e incident upon an exposed node u and a matching
edge e′ adjacent to e flip. (b) The augmenting path P and its neighborhood. The figure only shows
P and nodes and edges adjacent to P .

Proof. Since no edge is selectable, augmenting paths have at least three edges.
Hence, only steps preserving the matching size are accepted. This implies that
only 2-bit flips choosing a free edge e and a matching edge e′ are accepted. Since
e is free but not selectable, we obtain a new matching only if e′ is adjacent to e,
i. e., e = {u, v} and e′ = {v, w}, and u is exposed (Fig. 4(a)).

We investigate accepted steps changing P . There are four possibilities for the
free edge e = {u, v} (see Fig. 4(b)):

– e is an “outer” edge of P , namely, e = {x0, x1} or e = {x`−1, x`},
– e is an “inner” edge of P ,
– e does not belong to P but its exposed endpoint u does,
– e and its exposed endpoint u do not belong to P .

In the first case, e′ is adjacent to e and lies on P . Flipping e and e′ shortens
P by two edges. The second case is impossible because no endpoint of e would be
exposed. In the third case, either u = x0 or u = x`. Flipping e and e′ lengthens P .
Since w becomes an exposed node, the length increases by exactly 2. In the last
case, P is only changed if the matching edge e′ connects two inner nodes of P .
(To see this, observe that each edge incident upon a node of P is either free or it
is a matching edge belonging to P .) Then, w is an inner node of P and becomes
an exposed node. Either (x0, . . . , w) or (w, . . . , x`) becomes an augmenting path.
Since every augmenting path has odd length, the new path is by an even number
of edges shorter than the old path P .

We have seen that the length of P can only increase if u = x0 or u = x`.
In such a step, the flipping free edge e incident upon x0 or x` determines which
matching edge can flip. Therefore, there are at most deg(x0) + deg(x`)− 2 2-bit
flips increasing the length of P and at least 2 2-bit flips decreasing the length
of P . This proves the claimed probability. ut

Since paths can be considered as complete unary trees, we first investigate com-
plete k-ary trees, i. e., rooted trees where inner nodes have k successors and all
leaves have the same distance from the root. The diameter of these graphs is
Θ(logk m). It is not difficult to prove that each matching M with m∗ edges less
than a maximum matching implies the existence of an augmenting path whose
length is less than 2 logk(2m/m∗).



17

Lemma 6. Given a complete k-ary tree with m edges and k ≥ 2. If M ∗ is a
maximum matching and M a non-maximum matching with m∗ edges less than
M∗, there is an augmenting path with respect to M whose length is strictly less
than L := 2 logk(2m/m∗).

Proof. The nodes of the tree in distance h from the root are called level h. Let
d denote the depth of the tree implying d ≤ logk m. Considering M∗ ⊕ M , we
obtain m∗ node-disjoint augmenting paths. Let us assume that the length of a
shortest augmenting path is `. A simple path in a tree can contain at most two
nodes of each level. This implies that each simple path whose length is at least `
contains at least one node on a level h ≤ d − b(` + 1)/2c = d − d`/2e. Hence, m∗

is bounded above by the number of nodes on the levels 0, . . . , d−d`/2e implying
that

m∗ ≤ kd−d`/2e+1 − 1

k − 1
<

k

k − 1
kd−d`/2e ≤ 2mk−d`/2e.

Solving for odd ` yields the proposed bound ` < L. ut

Now we are prepared to finish the analysis of RLS on totally balanced trees.

Theorem 5. The expected time until RLS finds a maximum matching on a
complete k-ary tree, k ≥ 2, is bounded by O(m7/2) independently from the choice
of the first search point.

Proof. By Lemma 1, the expected time to find a matching is O(m log m). Af-
terwards, we estimate the expected number of P -relevant steps to improve the
matching. A step is called P -relevant for an augmenting path P if it is accepted
and changes P . We will choose an appropriate path P which may change dur-
ing the process. Then, the expected number of all steps is only by a factor of
O(m2) larger since the probability of a P -relevant step is Ω(1/m2). Assume we
can guarantee that there is always an augmenting path of length at most `. Pes-
simistically, we replace shortenings of the considered path P by shortenings by
only two edges. By Lemma 5, this leads to a probability of at least p = 1/(k +1)
of shortening this path in P -relevant steps in situations without selectable edges.
In situations with selectable edges, we apply Lemma 4. In a step changing the
situation, the probability to improve the matching is at least r = 1/2, and the
probability to create a path of length three is at most 1/2. Now we can repre-
sent the current length j of the path by the state dj/2e of the Markov chain
in Lemma 3. If we pessimistically start with a path of length `, the expected
number of P -relevant steps until the matching is improved is at most

k + 1

k − 1

(kd`/2e − 1

k − 1
+ kd`/2e−1 − (d`/2e+ 1)

)

+ 2 = O(k`/2).

Until m∗ ≤ 2m1/2, Lemma 6 guarantees that there is an augmenting path P
of length ` < logk m. This leads to an expected number of O(m1/2) P -relevant
steps for an improvement. Since |M∗| ≤ m, we apply this bound only O(m) times
implying that the expected number of P -relevant steps until m∗ ≤ 2m1/2 is
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O(m3/2). Afterwards, we use the bound ` ≤ 2 logk m which is a trivial bound
on the diameter of the tree. Now we obtain an upper bound of O(m) on the
number of P -relevant steps to improve the matching. Since we apply this bound
only b2m1/2c times, this leads to an additional expected number of O(m3/2)
P -relevant steps. This proves the theorem as argued at the beginning of this
proof. ut

Our upper bound for RLS on arbitrary trees depends also on the diameter
of the tree.

Theorem 6. The expected time until RLS finds a maximum matching in a tree
with diameter D is bounded by O(D2m4) independently from the choice of the
first search point.

Proof. We investigate an arbitrary search point s describing a non-maximum
matching. We are interested in the expected time to obtain a search point de-
scribing a matching of the same size and where there exists a selectable edge.
We choose an arbitrary augmenting path P connecting u and v. We have to
investigate the movement of all free nodes. We focus our interest on the distance
between u and v. If this distance is only 1, the edge {u, v} is selectable. We may
be lucky and produce a selectable edge somewhere else before.

To obtain precise statements we fix some node w as the root of the tree.
The nodes u and v move around and r denotes the initial position of u. In
general, T (z) is the subtree rooted at z and |T (z)| is its number of nodes. A
step is called u-relevant, if u moves. We are interested in the expected number of
u-relevant steps until some progress is made. Progress is defined as the creation
of a selectable edge, the event that u and v are both in T (r), or the event that
u and v are both not in T (r).

Claim 1. If v /∈ T (r) and v does not enter T (r) before u leaves it, the expected
number of u-relevant steps until u leaves T (r) or a selectable edge is created is
bounded above by |T (r)|.

Proof. The proof investigates the random walk of u influenced by steps where an
adjacent edge flips. Other steps moving u are only in favor to us since u moves
closer to r (see Lemma 5). The proof uses the argument that a large degree of u
implies that not many subtrees of T (u) can be large. In the considered situation,
the conditions of Lemma 5 hold and we may pessimistically assume that the path
is never shortened by more than two edges in u-relevant steps. It is important
to observe that u can only visit nodes in T (r) with an even distance to its initial
position, the root r of T (r). The proof is by induction on |T (r)|. If |T (r)| = 1,
then T (r) is a leaf and the expected number of u-relevant steps is at most 1.
Now let |T (r)| > 1 and let s denote the degree of r. Let T1, . . . , Tt denote those
subtrees of T (r) such that there are two edges between r and the root of each Ti

(Fig. 5). Whenever u is at r, r is connected to s − 1 nodes u1, . . . , us−1 in T (r)
and to its parent by free edges. Each node uj may be adjacent to several roots
of the subtrees T1, . . . , Tt, but each uj is connected to at most one of these roots
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Fig. 5. The subtree T (r). Initially, the endpoint u is at the root r.

by a matching edge. Hence, at most s − 1 roots of subtrees Ti are reachable.
When u leaves a subtree Ti, it can only return to r or an ancestor on the path.
W. l.o.g. let T1, . . . , Ts−1 be s−1 largest subtrees in {T1, . . . , Tt}. For T a subtree
of T (r) and u starting at the root of T , let E(T ) denote the expected number of
u-relevant steps until u leaves T (or a selectable edge is created). By the law of
total probability,

E (T (r)) ≤ 1

s
· 1 +

1

s

(

1 + E (T1) + E(T (r))
)

+ · · ·+ 1

s

(

1 + E (Ts−1) + E(T (r))
)

.

Solving for E (T (r)) and using the induction hypothesis yields E (T (r)) ≤ s +
|T1|+ · · ·+ |Ts−1|. Because T (r) contains all subtrees Ti, the nodes u1, . . . , us−1,
and r, the right-hand side of the last inequality is at most |T (r)|. ut

Claim 2. If v ∈ T (r), the expected number of u-relevant steps until one of the
following events occurs is bounded by O(|T (r)|):

– there is a selectable edge,
– u leaves T (r) and v remains in T (r),
– u and v are in the same proper subtree of T (r).

Proof. It is essential that the distance between u and r remains even. (Then the
distance between v and r is odd.) Then one can prove that v does not leave T (r)
in the considered phase. In the following, Tu and Tv denote subtrees of T (r)
rooted by a node on the level below r. If u is in a proper subtree of T (r), Tu

denotes the subtree of T (r) currently containing u; analogously for v (see Fig. 6).
First, we show that v cannot leave T (r) in the time we consider. If u is at r, then
v cannot leave T (r). If u leaves T (r), the second stopping criterion is fulfilled.
If u moves to a node in Tv, the last stopping criterion is fulfilled. The endpoint
v might only leave T (r) if u first moves to a subtree Tu 6= Tv. If this is the case,
the path P between u and v visits r. By Lemma 5, relevant steps can increase
and decrease the length of P only by a multiple of two edges at either end. Since
u initially had an even distance to r, namely 0, u keeps an even distance and v
keeps an odd distance to r. Now, if v leaves its subtree Tv in a shortening step,
then v moves to some node on the path P . Since v cannot visit r (odd distance),
the new location of v could only be in Tu and the last stopping criterion would
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Fig. 6. The subtree T (r). A special situation (a) and the situation when u has moved into a subtree
of T (r) (b).

be fulfilled first. Hence, v cannot leave T (r) before one of the stopping criteria
is fulfilled.

Now it is clear that we can upper bound the expected number of u-relevant
steps until one of the stopping criteria is fulfilled by the expected number of
u-relevant steps for the event that u leaves T (r) or moves into Tv given that
v stays in its subtree Tv. This can be done in the same way as in the proof of
Claim 1. The only difference is that the terms for subtrees contained in Tv can
now be bounded by 0. This can only improve the upper bound O(|T (r)|) on the
expected number of u-relevant steps. Note that the case r = w where u cannot
leave T (r) is included. ut

In the following let r be the root of the smallest subtree containing u and v
and let d(r) be the depth of r, i. e., the distance between r and the root w of the
tree. We consider the random variable d(r) with respect to time. A selectable
edge is created if the distance between u and v equals 1. This is certainly the
case if r is the root of a subtree of depth 1. This happens if d(r) ≥ D − 1. The
idea is that d(r) has the tendency to grow if we do not create a selectable edge.

Claim 3. If u, v ∈ T (r) and v starts at r, it is possible to define disjoint events
E1, . . . , E4 such that

– E1 is the event that a selectable edge is created,
– E2 implies that d(r) is increased by at least 1,
– E3 implies that d(r) is increased by at least 2, and
– E4 implies that d(r) is decreased by at most 2.

After an expected number of O(m) u-relevant steps, one of these events has
happened and Prob(E3 happens first) ≥ Prob(E4 happens first).

Proof. We consider only situations without selectable edges. Otherwise, E1 has
happened and we can stop. A special situation is a situation where one endpoint
of the considered augmenting path P is at the root r of the smallest subtree T (r)



21

E
E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
� E

E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
�

r
r
r
r

r
r

r
�����

v

r

T (r)

u

→

E
E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
� E

E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
�

r
r
r
r

r
r

r

��

v

r

u

(a)

E
E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
� E

E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
�

r
r
r
r

r
r

r

@@

v

r

T (r)

u

→

E
E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
� E

E
E
E
E
E
E
E
E
E
E�
�
�
�
�
�
�
�
�
�
�

r
r
r
r

r
r

r

��

v

r r′

u

(b)

Fig. 7. If d(r) decreases, u moves to the pre-predecessor of r (a) or to a sibling r′ of r (b).

containing both endpoints u and v. W. l.o.g., the endpoint starting at r in a
special situation is named u. Hence, u keeps an even distance to r (until a new
special situation is reached).

By Claim 2, after an expected number of O(m) u-relevant steps, both end-
points are in the same proper subtree of T (r), or u has left T (r). First assume
that v finishes such a phase, i. e., v leaves Tv (see Fig. 6(b) and the proof of
Claim 2 for the definition of Tu and Tv). From the proof of Claim 2, we also
know that v cannot reach r but a node in Tu on the path P . If this happens
(event E2), the depth d(r) increases by at least 1 and the new situation is a spe-
cial situation. Now assume that u finishes the phase and consider the last step.
If T (r) includes only three levels, the length of P is at most 3. Then, if u moves,
it reaches the root r and {u, v} becomes a selectable edge (event E1). Now we
consider the case where T (r) includes more than three levels and pessimistically
assume that the event E1 does not happen. If the length of P decreases by more
than 2 in the last step then u enters Tv and reaches a node on the path P (event
E3a). The depth d(r) increases by at least 2 and a special situation is reached.
Otherwise, u visits r before the last move. Given that u finishes the phase in
the next step, it either moves to Tv with a probability of at least 1/2 (event
E3b) or leaves T (r) with a probability of at most 1/2 (event E4) (Fig. 6(a)).
(If r = w, event E4 is not possible.) In the first case, d(r) increases by 2 and
a special situation is reached. In the second case, d(r) decreases by at most 2:
The endpoint u may move to its pre-predecessor in the tree (Fig. 7(a)). Then a
special situation is reached. Another option is that u moves to some sibling of r,
say r′ (Fig. 7(b)). Then the new situation is not a special situation. By Claim 1,
after an additional waiting time of an expected number of O(|T (r′)|) = O(m)
u-relevant steps, u has left T (r′) and is back at r (or even at a node on the path
inside T (r)) such that a special situation is reached. But within this additional
time, v may also have left T (r). If this has happened, v must have visited the
parent of r (or even a node on the path inside T (r′)) such that a special situation
has been reached anyway. In any case, the depth d(r) decreases by at most 2.
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The events E3b and E4 can only occur in the same situation (where u finishes
the phase and u visits r before the last move), and, given that one of these two
events happens in the next step, Prob(E3a) ≥ 1/2. Hence, the probability that
event E3 := E3a ∪E3b finishes the phase is only larger than the probability that
event E4 finishes the phase. Moreover, we have shown that after an event E2, E3,
or E4 has happened, a special situation is reached within an expected number
of O(m) u-relevant steps where d(r) is not decreased. ut

In the proof of Claim 3 we have not only shown that one of the considered
events happens within an expected number of O(m) u-relevant steps but also
that a situation is obtained where one of u and v is at the (new) root r of the
smallest subtree containing both nodes. Then, w. l.o.g. let the endpoint u be
at r.

Claim 4. In an expected number of O(D2m) u-relevant steps a selectable edge
is created.

Proof. Initially, we choose w := u to be the root of the tree. This implies d(r) = 0
and we start in a special situation. When a situation is reached where T (r)
includes only two levels, the considered path P is a selectable edge since its
length must be odd. In a situation where T (r) includes only three levels, the
augmenting path is a selectable edge or the the next P -relevant step creates a
selectable edge. To see this, observe that the length of P then is 1 or 3. There is
nothing to show if the length is 1. If the length is 3, neither u nor v can be at the
root of T (r) and the path could be lengthened by at most one edge at u and v.
By Lemma 5, the next P -relevant step shortens P . Hence, the expected number
of u-relevant steps for the event E1 is by at most 1 larger than the expected
number of u-relevant steps for the event d(w) ≥ D − 2. By the O(m) bound
in Claim 3, it is sufficient to prove an upper bound of O(D2) on the expected
number of the events E2, E3, and E4 until the event d(w) ≥ D − 2 occurs.

We slow down this stochastic process by assuming that E3 increases d(r)
by exactly 2, E4 decreases d(r) by exactly 2, and Prob(E3 happens first) =
Prob(E4 happens first). We prove that the probability that d(r) ≥ D−2 during a
phase including dD2/2e+2D of our events is at least 1/2. Then the claim follows,
since we may start over and choose a new root w if we were unsuccessful. If the
number of E2-events in the phase is at least D− 2, the result follows since, with
probability 1/2, event E3 happens at least as often as event E4. Otherwise, there
are at least D2/2 + D events E3 and E4, and we ignore the help of E2-events.
Now the events E3 and E4 describe a symmetric random walk as analyzed in
Lemma 3. Starting there in state ` = d(D − 2)/2e (standing for d(r) = 0), the
expected number of steps to reach the state 0 is less than D2/4 + D/2. By
Markov’s inequality, D2/2+D steps are successful with probability at least 1/2.

ut

Now, we can combine our arguments to prove the theorem. By Lemma 1, the
expected time to create a matching is O(m log m). Since the probability that a
step is u-relevant is Ω(1/m2), it is sufficient to prove a bound of O(D2m2) on the
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expected number of u-relevant steps. For this, it is sufficient to prove a bound of
O(D2m) on the expected number of u-relevant steps until a larger matching is
produced. This follows from the proven O(D2m) bound on the expected number
of u-relevant steps to create a selectable edge and Lemma 4 implying that in a
situation with a selectable edge the matching is improved with a probability of at
least 1/2 within the next O(m) steps. (Note that O(m) is less than the expected
waiting time for a u-relevant step in situations without selectable edges.) ut

7 A Class of Difficult Graphs for Heuristics

The graphs Gh,` for odd ` = 2`′ + 1 have been introduced by Sasaki and
Hajek (1988). For an illustrative description the n := h(` + 1) nodes of Gh,`

are positioned on a grid, i. e., V = {(i, j) | 1 ≤ i ≤ h, 0 ≤ j ≤ `}. Between col-
umn j, j even, and column j + 1 there are exactly the horizontal edges between
(i, j), and (i, j + 1). There are complete bipartite graphs between column j,
j odd, and column j + 1. The graph G3,11 is shown in Fig. 8. The unique
perfect matching M∗ consists of all horizontal edges between the columns j
and j + 1 for even j. The set of all other edges is denoted by M

∗
. Obviously,

m = |M∗| + |M∗| = (`′ + 1)h + `′h2 = Θ(`h2). We prove some properties of
these graphs.

Lemma 7. Let M be a matching in Gh,`. Then the following two properties
hold:

– M ⊕ M∗ consists exclusively of |M∗| − |M | node disjoint augmenting paths
called special paths, and

– all paths in M ⊕ M∗ run “from left to right”, more precisely, they contain
at most one node of each column.

Proof. The first property holds for all graphs G with a unique maximum match-
ing M∗. Like in the proof of Lemma 2, let G′ = (V, E′) be the graph whose edge
set is defined by E′ := M ⊕M∗ where M 6= M∗ is a matching and ⊕ denotes the
symmetric difference. The graph G′ consists of node-disjoint cycles and paths
which are the components of G′. No component is an alternating cycle or a path
of even length since each such cycle or path allows two maximum matchings in G.
No alternating path of odd length starts with an M -edge because augmenting

r r r r r r r r r r r r
r r r r r r r r r r r r
r r r r r r r r r r r r1

2
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| {z }

K3,3

Fig. 8. The graph Gh,`, h = 3, ` = 11, and its perfect matching.
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Fig. 9. The graph G2,9 with a matching and the situation after an accepted 2-bit flip. Free nodes
are marked by a circle.

paths for M∗ cannot exist since M∗ is a maximum matching. Hence, each of
the components is an alternating path of odd length starting with an M ∗-edge,
i. e., an alternating path with respect to M . Since these paths are node-disjoint,
there must be exactly |M∗| − |M | of them.

The second property can be proven by contradiction. Assume that an aug-
menting path of M ⊕ M∗ contains two nodes of column j. Then there are two
columns j′ and j′ + 1 such that the path contains two adjacent edges between
these columns, i. e., one belongs to M∗ and the other one does not belong to M ∗.
This is a contradiction since M∗ includes either all edges or no edge between
two neighbored columns. ut

If P is a special path with respect to M whose endpoints are not in the first or
last column and there is no selectable edge, there are 2 2-bit flips which shorten
P by 2 and 2h 2-bit flips that lengthen P by 2. This makes Gh,` difficult for
heuristics working mostly locally. One idea is to focus the analysis on the length
of the longest special path. However, there are accepted 2-bit flips which lengthen
a special path but turn it into a non-special one. As an example, consider the
following augmenting paths in the situation depicted in the upper part of Fig. 9
where |M∗| − |M | = 2. The first two are the special paths:

– (1, 0), . . . , (1, 3), (1, 4), . . . , (1, 9) of length 9,
– (2, 4), . . . , (2, 7) of length 3,
– (2, 4), (1, 3), (1, 4), . . . , (1, 9) of length 7.

After an accepted 2-bit flip we obtain the situation in the lower part, where we
again consider three augmenting paths where the first two ones are special:

– (1, 0), . . . , (1, 3), (2, 4), . . . , (2, 7) of length 7,
– (1, 4), . . . , (1, 9) of length 5,
– (1, 4), (1, 3), (2, 4), . . . , (2, 7) of length 5.

This is a 2-bit flip which lengthens the special path from (2, 4) to (2, 7) in the
upper graph but the lengthening is no longer a special path in the lower graph.
The total length of all special paths is unchanged.
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The main parameter of our analyses is the number g = g(M) of edges chosen

by M which do not belong to the perfect matching. This M
∗
-edges counted by

g can be considered as the “bad” edges of M . It is necessary to decrease the
g-value to zero in order to obtain the perfect matching. The g-value is closely
related to the total length of all special paths excluding selectable edges.

8 Exponential Expected Optimization Time for RLS and
the (1+1) EA

We analyze the situation when the current search point s describes an almost
perfect matching, i. e., a matching of size |M ∗| − 1. First, we estimate the prob-
ability of obtaining an almost perfect matching with an augmenting path of
length `. For almost perfect matchings, by Lemma 7, there is always a unique
augmenting path that is special (see Fig. 10). In a second step, we estimate the
expected time to obtain a perfect matching from an almost perfect matching
with an augmenting path of length `. Finally, we estimate the probability to
obtain an almost perfect matching before the perfect one.

r r r r r r r r r r r r
r r r r r r r r r r r r
r r r r r r r r r r r r

d

d

u

v

�
�

�
�

Fig. 10. An almost perfect matching and its augmenting path. The free nodes are marked by a circle.

In Section 7 we have shown that a special path between u and v allows
2h lenghtenings and 2 shortenings by 2-bit flips if u and v are not in the first
or last column. If both endpoints are in outer columns, it is no problem that
the augmenting path cannot be lengthened. If only one endpoint is in an outer
column there are h lengthenings. The game is still unfair if h ≥ 3. By these
arguments, we need some extra arguments for the case h = 2. The case h = 2 is
of special interest since G2,` are the only planar graphs in the considered class
and the maximal node degree is 3.

The idea behind the analysis of the last phase of the search is the following.
Starting with an almost perfect matching, with overwhelming probability, O(m3)
steps are enough to obtain either the perfect matching or an augmenting path
of maximal length, which is ` by Lemma 7. We estimate the probabilities which
of these two events happens first. If the augmenting path has reached length `,
we prove that it is very likely to need exponentially many steps to obtain the
perfect matching. To obtain this result it is required that ` is a polynomial in m.
We are mainly interested in the case 2 ≤ h ≤ ` implying that ` = Ω(m1/3).
Then, 2` is exponential in m and in a phase of this length, it is likely that the
(1+1) EA performs some steps which change the situation globally. Therefore,
the analysis is always easier for RLS.
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The basis of the analysis of the first part is the gambler’s ruin problem (see,
e.g., Feller (1968)). Alice owns A $ and Bob B $. They play a coin-tossing game
with a probability of p 6= 1/2 that Alice wins a round in this game and receives
a dollar from Bob. Otherwise Alice has to pay a dollar to Bob. The game is
finished when one player is ruined. Alice’s probability of winning the game, i. e.,
Bob being ruined, is (1 − tA)/(1 − tA+B), where t := (1 − p)/p.

The game here is based on the length of the augmenting path. If we have
obtained a selectable edge, it is likely to find the perfect matching in the next
step.

Lemma 8. For RLS and the (1+1) EA starting with an almost perfect matching
with a g-value of 0, the following holds. The probability of reaching an almost
perfect matching with a g-value of at least 1 is Θ(h/m).

Proof. For an almost perfect matching, g = 0 implies that the augmenting path is
a selectable edge. To improve the matching, it is sufficient that only the selectable
edge flips and it is necessary that this edge flips. Therefore, the probability of
creating the perfect matching is Θ(1/m). To increase g, it is sufficient that
one of the h or 2h edge pairs lengthening the augmenting path flips. (If also
the selectable edge flips, the path moves to another position. Then, at least a
matching edge has to flip and additionally one of the h or 2h pairs lengthening
this new augmenting path.) Hence, the probability to reach a situation where
g ≥ 1 equals Θ(h/m2). ut

Now we investigate RLS. If the g-value is at least 1, we consider the coin-
tossing game. Alice wins if the g-value increases. Alice’s probability to win a
round equals 2h/(2h + 2) if none of the endpoints of the augmenting path is in
column 0 or column `. Otherwise, the probability equals h/(h + 2). For h ≥ 3,
this value is larger than 1/2 and we can apply the result on the gambler’s ruin
problem. For h = 2, this value is h/(h+2) = 1/2 and we have to use the fact that
there is a good chance that the endpoint of the augmenting path in column 0 or
column ` leaves this column. If g0 = 1, then g1 = 2 with probability at least 1/2.
Afterwards, we investigate pairs of steps changing the length of the augmenting
path. If one step of a pair is length increasing and the other is length decreasing,
the g-value is the same as before. Otherwise, g is increased or decreased by 2.
A simple case inspection shows that, under the condition that one player wins
two rounds, the probability that Alice wins is at least 6/11. Again we obtain a
game in favor of Alice.

Lemma 9. For RLS starting with an almost perfect matching with a g-value of
g0, the probability of constructing an augmenting path of maximal length before
the perfect matching is

at least 1 − (2/h)g0 if h ≥ 3 and g0 ≥ 1, and

at least 1 − (5/6)bg0/2c if h = 2 and g0 ≥ 2.
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Proof. We analyze the coin-tossing game where A := g0, and B := `′ − g0. We
pessimistically consider the matching improved if the g-value equals 0, i. e., if
Alice loses the game. Let the probability p(h) = h/(h + 2), if h ≥ 3, and p(2) =
6/11. Then t(h) = 2/h, if h ≥ 3, and t(h) = 5/6 if h = 2. The probability that
Alice wins the game if h ≥ 3 equals (1− t(h)g0 )/(1− t(h)`′). Since 0 < t(h) < 1,
this probability is at least 1 − t(h)g0 . If h = 2 and `0 ≥ 2, we obtain the result
by the same arguments but we have to observe that steps change g by 2 instead
of 1. ut

For h = 2 and g0 ≥ 1, with probability at least 1/2, we reach the situation
g = 2 before g = 0 and, then, we can apply Lemma 9. The success probabilities
are close to 1 if g0 is increasing with `, or if h is not a constant.

For the (1+1) EA, we have to estimate the probabilities of steps where many
flipping bits influence the augmenting path. In order to simplify the analysis
we interpret the following event as a loss of Alice of the whole game. At least
the leftmost i ≤ 4 and the rightmost j ≥ 4 − i edges of the augmenting path
flip. The probability of this event is bounded above by O(1/m4). Now, the only
possibility of decreasing the g-value by 1 is to flip exactly the two leftmost or the
two rightmost edges of the augmenting path. The probability of this event equals
2(1/m)2(1 − 1/m)m−2. This leads to the same probabilities as in Lemma 9 but
we have to take into account the probability of Θ(1/m3) to turn a search point
with a short augmenting path of length 3 into the perfect matching. Now we are
able to prove the following result. We remark that these bounds are essentially
the same as in Lemma 9.

Lemma 10. For the (1+1) EA starting with an almost perfect matching with
a g-value of g0, the probability of constructing an augmenting path of maximal
length before the perfect matching is

at least 1 − O(1/m) −
(

(2/h) + O(1/m)
)g0

if h ≥ 3 and g0 ≥ 1, and

at least 1 − O(1/m) −
(

(5/6) + O(1/m)
)bg0/2c

if h = 2 and g0 ≥ 2.

Proof. Since we pessimistically consider the event of a g-value of 0 as the event
that the perfect matching is created, we can include the event that an augmenting
path of length 3 is flipped in the event that Bob wins a round. The probability
that a step changes the augmenting path is Θ(1/m2). The probability of flipping
an augmenting path of length 3 is Θ(1/m3). Therefore, it is sufficient to increase
the values of t(h) in the proof of Lemma 9 by O(1/m).

In addition, there is a probability of O(1/m4) for each step that Bob wins the
whole game because g changes by more than 1. We claim that, with overwhelming
probability, the game is finished within O(m3) steps. The probability of a step
with probability O(1/m4) in such a phase is O(1/m). This is taken into account
by the term “−O(1/m).” The essential argument proving the claim is that p(h)−
(1/2) = Ω(1). By Chernoff bounds, for some constant c and cm coin tosses, the
probability that Alice wins at least `′ more rounds than Bob is overwhelming.
For some constant c′, the probability of cm relevant steps within c′m3 steps is
overwhelming, too. This proves the lemma. ut
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For RLS, it is rather easy to prove that it is very likely to need exponentially
many steps to construct the perfect matching if we start with an augmenting
path of maximal length.

Lemma 11. Starting with an almost perfect matching and an augmenting path
of maximal length, the probability that RLS finds the perfect matching within 2c`

steps, c > 0 an appropriate constant, is bounded above by 2−Ω(`).

Proof. We can essentially apply the arguments of the proof of Lemma 9. For
h ≥ 3, we have g0 = `′. In order to reach a g-value of 0 we have to reach the
value d`′/2e. Starting there, we have an unfair game between Alice and Bob and
Bob’s winning probability is bounded above by 2−c′` for some constant c′ > 0.
The game is repeated until Bob wins for the first time. The probability of winning
at least once in 2c` games is bounded above by 2(c−c′)` = 2−Ω(`) if we choose
c < c′ small enough. Analogously for h = 2. ut

The idea behind the search operator of the (1+1) EA is to allow big changes
(with small probability). In order to prove that the search needs exponentially
many steps we cannot exclude steps with “big changes.” The essential argument
is that the drift to lengthen augmenting paths is strong enough to obtain the
proposed bound. The following drift theory goes back to Hajek (1982). We apply
a result due to He and Yao (2001). Analyzing their proof, it follows immediately
that they have even proved a stronger result than stated, namely a result on
the success probability and not only the expected waiting time for a success. We
state this result in Theorem 7.

Theorem 7. Let X0, X1, X2, . . . be the random variables describing a Markov
process and let g : R → R

+
0 , 0 ≤ a(`) < b(`), λ > 0, D ≥ 1, and r(`) > 0 a

polynomial. Moreover, assume that

g(X0) ≥ b(`) with probability 1,

b(`) − a(`) = Ω(`),

E
(

e−λ(g(Xt+1)−g(Xt))
∣

∣ Xt, a(`) < g(Xt) < b(`)
)

≤ 1− 1/r(`), and

E
(

e−λ(g(Xt+1)−b(`))
∣

∣ Xt, b(`) ≤ g(Xt)
)

≤ D.

Let T be the smallest t where g(Xt) ≤ a(`). The probability that T ≤ B is
bounded above by D · B · eλ(a(`)−b(`)) · r(`).

Since λ(a(`)−b(`)) = −Ω(`) and p(`) is a polynomial, this bound is exponentially
small for B = 2c` if c > 0 is a small enough constant.

Lemma 12. Starting with an almost perfect matching and an augmenting path
of maximal length, the probability that the (1+1) EA finds the perfect matching
within 2c` steps, c > 0 an appropriate constant, is bounded above by 2−Ω(`).
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Proof. First, we assume h ≥ 3 and apply Theorem 7. Our initial Markov process
is the (1+1) EA on the matching problem for Gh,`. We apply Theorem 7 for
b(`) = `′, a(`) = 1, and a time bound B = 2c`. The first two conditions of
Theorem 7 are fulfilled. For the search point st in the tth step let g(st) be
the g-value according to st. Now we only have to check certain drift conditions
which require upper bounds on the expected value of e−λ(g(st+1)−g(st)) for some
λ > 0 given the search point st at time t. This enables us to concentrate on
the probabilities pj(s) that g(st+1) − g(st) takes some value j ∈ Z given st = s.
We only increase the considered expected value if we shift some part of the
probability pj(s) to pj′(s) where j′ < j. Everything of pj(s), j ≥ 2, and a part
of p1(s) is shifted to p0(s), i. e., we replace p1(s) by a lower bound. Moreover, a
part of p0(s) is shifted to p−j(s), j ≥ 1, i. e., we replace p−j(s) by upper bounds.

Claim 1. Let s be a search point describing an almost perfect matching with a
g-value of 1 < g < `′. Let

p1(g) := h · (1/m)2(1 − 1/m)m−2,

p−1(g) := 2 · (1/m2)(1 − 1/m)m−2 + 3 · (1/m)4,

p−j(g) := (j + 1)(1/m)2j , if 1 < j < g, and

p−g(g) := (1/m)2g+1.

Then p1(g) is a lower bound for the probability to increase the g-value by 1, and
p−j(g) is an upper bound on the probability to decrease the g-value by j.

Proof. Since there are always at least h possibilities to lengthen the augmenting
path, we estimate this probability from below by

p1(g) := h · (1/m)2(1 − 1/m)m−2.

There is the special case of decreasing the g-value to 0. Then exactly the 2g + 1
edges of the augmenting path have to flip. This probability can be estimated
from above by

p−g(g) := (1/m)2g+1.

Finally, we need an upper bound p−j(g) on the probability of decreasing the
g-value by j in one step. It is necessary to flip the 2k leftmost edges and the
2(j− k) rightmost edges of the augmenting path for some k ∈ {0, . . . , j}. Hence,

p−j(g) := (j + 1)(1/m)2j

is a correct upper bound. For p−1(g), we need a better bound which also for small
values for h is at least by a constant factor smaller than p1(g). It is sufficient
to argue as follows. There are exactly two possibilities by flipping exactly two
edges, and otherwise we have to flip at least the 2k, 0 ≤ k ≤ 2, leftmost edges
and the 4 − 2k rightmost edges of the augmenting path. Hence,

p−1(g) := 2 · (1/m)2(1 − 1/m)m−2 + 3 · (1/m)4.

is a correct upper bound. ut
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Now we increase the probability of reaching a g-value of at most 0 by not
counting the steps not changing the g-value. The transition probabilities of the
new process are qj(g) := pj(g)/(1 − p0(g)), if j 6= 0, and q0(g) := 0. We have

1 − p0(g) = (h + 2)(1/m2)(1 − 1/m)m−2 + O(1/m3)

since p−g(g) = O(1/m3) in the considered situations where g(st) ≥ 1.
To check the third condition we have to estimate

e−λq1(g) + eλq−1(g) +
∑

j≥2

ejλq−j(g). (∗)

We prove that for some constants λ > 0 and δ > 0 small enough e−λq1(g) +
eλq−1(g) ≤ 1 − δ and

∑

j≥2 ejλq−j(g) = o(1) which implies the third condition.

The second claim is easy to show since q−j(g) = O(jm2−2j), if 1 < j < g, and
q−g(g) = O(m1−2g). Hence,

∑

j≥2

ejλq−j(i) = O
(

egλm1−2g +
∑

j≥2

ejλjm2−2j
)

= o(1).

Using Taylor’s expansion, we obtain for some α > 0 and λ small enough,

e−λ ≤ 1− λ + αλ2 and eλ ≤ 1 + λ + αλ2.

This implies,

e−λq1(g) + eλq−1(g)

≤ (1 − λ + αλ2)q1(g) + (1 + λ + αλ2)q−1(g)

≤ (q1(i) + q−1(g)) − λ(q1(g) − q−1(g)) + αλ2(q1(g) + q−1(g))

≤ 1 − λ(q1(g) − q−1(g)) + αλ2.

Finally, if h ≥ 3,

q1(g) − q−1(g) =
(h − 2)(1/m2)(1 − 1/m)m−2 − 3(1/m4)

(h + 2)(1/m2)(1 − 1/m)m−2 − O(1/m3)
≥ β (∗∗)

for some constant β > 0 and m large enough. Hence, it is sufficient to show that

1 − λβ + αλ2 ≤ 1 − δ.

It is easy to choose λ > 0 and δ > 0 to fulfill this property.
In a situation according to the last condition, the g-value cannot increase.

Hence, pj(g) = 0 is the only correct lower bound for the probability of increasing
g by j ≥ 1. Our upper bounds p−j(g) in Claim 1 for decreasing steps remain
valid. Now, p0(g) equals 1 − 2 · (1/m)2(1 − 1/m)m−2 − O(1/m3) and leads to
new expressions for the probabilities q−j(g). Formally, we obtain the same sum
as (∗) but the first term vanishes since p1(i) = 0 implies q1(i) = 0. The second
term is bounded by the constant eλ. The remaining terms of (∗) can be bounded
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by O(1/m) in the same way as before since 1− p0(g) = Ω(1/m2) remains valid.
Hence, the sum is bounded above by D := eλ + 1 for m large enough.

Now we investigate the case h = 2. The inequality (∗∗) is no longer true. We
use the trick of combining a special 2-bit flip with the following relevant step,
i. e., the next step changing the path. It is possible that the special 2-bit flip
produces an augmenting path of length 1. This is not essential since we may
choose a(`) = b`′/2c and consider the matching improved if a g-value of less
than `′/2 is reached. Then, the probability that the relevant step following a
special 2-bit flip is not a special 2-bit flip is bounded by O(1/m2). In this case,
we rate the special 2-bit flip as a decrease of g by 2. In the other case, we have
a pair of two special 2-bit flips which follow one after the other. This implies
(see the proof of Lemma 9) that the probability of two increasing steps minus
the probability of two decreasing steps is bounded below by a positive constant.
This leads to a counterpart of (∗∗) for q2(g) − q−2(g) and we can complete the
proof in the same way as before. ut

We summarize our results.

Theorem 8. Starting with an almost perfect matching and an augmenting path
of length 2g0 + 1, the probability that the (1+1) EA finds the perfect matching
within 2c` steps, c > 0 an appropriate constant, is bounded above by

O(1/m) + ((2/h) + O(1/m))g0 if 3 ≤ h ≤ ` and g0 ≥ 1, and

O(1/m) + ((5/6) + O(1/m))bg0/2c if h = 2 and g0 ≥ 2.

For RLS, the bounds 2−Ω(`) + (2/h)g0 resp. 2−Ω(`) + (5/6)bg0/2c hold.

We return to the question whether an almost perfect matching will be reached.

Lemma 13. If the (1+1) EA or RLS do not start with the perfect matching,
an almost perfect matching is constructed before the perfect matching with a
probability of Ω(1/h).

Proof. Let M denote the set of edges selected by the current search point, and
let d := |M ⊕ M∗| denote the Hamming distance to M∗. We investigate the
situations when M is neither an almost perfect nor the perfect matching; this
includes the case that M is not even a matching. Then, any step producing an
almost perfect matching will be accepted.

For the (1+1) EA, the probability to produce M ∗ in the next step is Θ(1/md).
We argue that this probability is at most by a factor of O(h) larger than the
probability to produce an almost perfect matching in the next step. If M ⊕ M ∗

contains at least one M∗-edge, this edge is not included in M and the step where
everything works like in the step creating the perfect matching except for the
M∗-edge produces an almost perfect matching. The probability Θ(1/md−1) of
this step is even larger than the probability of the step creating M ∗. If M ⊕ M∗

contains no M∗-edge, all M∗-edges are included in M and there are |M∗| possibil-
ities to produce an almost perfect matching by additionally flipping an M ∗-edge.
Their probability is Θ(|M∗|/md+1) = Θ(1/(hmd)).
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For RLS, a necessary event is a situation where d ≤ 2. We argue that in any
situation where d = 1, the next step produces M ∗ with a probability that is at
most by a factor O(h) larger than the probability that it produces an almost
perfect matching. In situations where d = 2, the first probability is even smaller
than the last probability if we consider the next two steps.

If d = 1, we are only interested in the case where M is a superset of M ∗

because otherwise M was almost perfect. Let M = M ∗ ∪ {e} implying that e

is an M
∗
-edge. The next step produces M∗ with probability Θ(1/m). If e and

some other edge of M flip, an almost perfect matching is obtained. This happens
with probability Θ(|M∗|/m2) = Θ(1/(hm)).

If d = 2, a necessary event to produce M ∗ is that each of the two edges in
M ⊕ M∗ flips at least once in the next two steps. The probability of this event
is Θ(1/m2). If M ⊕ M∗ contains two M∗-edges, both are selectable and the
first step produces an almost perfect matching with a probability Θ(1/m) by

flipping only one of them. If M ⊕ M∗ contains one M∗-edge and one M
∗
-edge,

the first step removes the latter edge from M with probability Θ(1/m) and

produces an almost perfect matching. If M ⊕ M ∗ contains two M
∗
-edges, then

M = M∗ ∪ {e1, e2} is a non-matching where e1 and e2 are M
∗
-edges. Any step

flipping e1 and an arbitrary M∗-edge in the first step will be accepted since the
sum of the penalties decreases by at least r ≥ m + 1. If the second step flips
e2, an almost perfect matching is obtained. The probability of these events is
Θ((|M∗|/m2) · (1/m)) = Θ(1/(hm2)). ut

Sasaki and Hajek (1988) proved that the expected optimization time of sim-
ulated annealing for Gh,` is exponential if the process starts with the empty
matching. Sasaki (1991) proved that there exists a starting point where the ex-
pected optimization time for the Metropolis algorithm is exponential. For RLS
and the (1+1) EA we obtain much stronger results. Even for the smallest values
of h and g0 allowed in Theorem 8, the probability to need more than 2c` steps
is Ω(1). If our heuristics produce an almost perfect matching where g0 = 0,
the next relevant step increases the path length with a probability of Ω(1/m)
(Lemma 8). The second relevant step is increasing with probability at least 1/2.
By this observation and Lemma 13, we obtain that the 2Ω(`)-bound of Theorem 8
holds with a probability Ω(1/(hm)) if we start with any search point which is
not the optimum. If h ≤ ` then ` = Ω(m1/3), and if h is a constant then ` is
even linear in m. Hence, for 2 ≤ h ≤ `, we obtain an exponential lower bound of

2Ω(`) = 2Ω(m1/3) for the expected optimization time if the search does not start
with the optimum. This leads to the following theorem summarizing the result
of this section.

Theorem 9. For Gh,`, 2 ≤ h ≤ `, the expected optimization time of RLS and
the (1+1) EA is 2Ω(`) if the initial search point is not the perfect matching.

As the graph is unknown, the probability not to start with the perfect match-
ing is large, and, for typical choices of the initial distribution, it is overwhelming.
In particular, this probability is 1 if we start with the empty set of edges and
1 − 2−m if the initial search point is chosen uniformly at random.
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9 Exponential Optimization Time with Overwhelming
Probability for RLS and the (1+1) EA

These improved results can be proved only if h = ω(log m) and h ≤ ` − 2. Our
investigations assume that the initial search point is a matching with a g-value
of at least h/2. At the end we prove that it is quite likely to obtain such a
search point. The result for RLS is much easier to obtain than the result for the
(1+1) EA and it clarifies many ideas.

Theorem 10. Let h = ω(log m) and h ≤ ` − 2. If the initial search point de-
scribes a matching with a g-value of at least h/2, there is a constant c > 0
such that the probability that RLS finds the perfect matching within 2ch steps is
2−Ω(h).

Proof. First, we classify the relevant steps, i. e., accepted steps changing the
search point.

Claim 1. All relevant steps of RLS can be assigned to one of the following types.

Type-1 steps flip only selectable edges.
Type-2 steps flip a selectable edge and a matching edge (implying that these

edges are not adjacent).
Type-3 steps flip a matching edge and an adjacent free edge, touching three

adjacent columns.
Type-4 steps flip a matching edge and an adjacent free edge between the same

columns.

Proof. It is easy to see that 1-bit flips are only accepted if they concern a se-
lectable edge (Type-1). Steps flipping two bits are accepted if two non-adjacent
selectable edges are chosen (Type-1), if a selectable edge and a matching edge
are chosen (Type-2), or if a matching edge and an adjacent free edge are cho-
sen. In the last case, the involved free edge has to be incident upon a free node
(Type-3 or Type-4). Since there are no edges with both endpoints in the same
column, each accepted step belongs to one and only one of these four types. ut

An important observation is that Type-4 steps do not change the g-value.
Type-2 steps can change the g-value by at most 1 and there can be many more
g-decreasing steps than increasing ones. To control the effect of Type-2 steps we
consider them as harmful only if g ≤ h/2.

Claim 2. The probability of more than h/8 Type-2 steps decreasing the g-value
in situations where g ≤ h/2 is bounded by 2−Ω(h).

Proof. Our goal is to show that the negative effect of Type-2 steps is small if
g ≤ h/2. The idea is to compare them to Type-1 steps. Note that Type-1 steps
always increase the matching and never decrease g. Type-2 steps and Type-1
steps can only occur in situations with selectable edges, which obviously cannot
occur after |M∗| = (`′ + 1)h Type-1 steps. The probability of a Type-1 step
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Fig. 11. A situation with only one possibility to increase g at u in a Type-3 step.

selecting only a specific selectable edge equals 1/(2m). The probability of a

Type-2 step selecting the same selectable edge and one of the g selected M
∗
-edges

equals g/(m(m−1)). Hence, if one of the two possibilities occurs, the conditional
probability of the first possibility is Ω(1) and the conditional probability of the
second possibility equals Θ(g/m). Hence, some Θ(`h) steps flipping a selectable
edge contain |M∗| Type-1 steps with a probability 1−2−Ω(`h). This implies that
there are at most O(`h) Type-1 or Type-2 steps. For Type-2 steps decreasing g,
we are only interested in situations where g ≤ h/2. Their expected number is
O(gh`/m) = O(1), and, by Chernoff bounds, this random number is less than
h/8 with a probability of 1 − 2−Ω(h). ut

Hence, it is enough to prove that, with overwhelming probability, Type-3 steps
in situations where g ≤ h/2 never decrease the g-value by h/4 in the considered
time interval. Type-3 steps shorten or lengthen special paths with a much larger
probability of lengthenings. It is easy to apply results on the gambler’s ruin prob-
lem to complete the proof. A Type-3 step touching the free node u decreases g if
the special path starting at u is shortened, and it increases g if the special path is
lengthened. If the considered endpoint u is not in the first or last column, there
is at least one possibility of increasing g. W. l.o.g. let u be a node in column j,
and j is odd (see Fig. 11). Since u is free, there can be at most min{h − 1, g}
matching edges between column j and column j + 1. Hence, u has a neighbor v
in column j+1 which is not incident upon a matching edge between the columns
j and j + 1. Flipping {u, v} and {v, w} increases g (see Fig. 11). If v is also free,
then {u, v} is selectable and flipping only {u, v} increases g and the matching
size. Such a 1-bit flip is more likely than the special 2-bit flip considered before,
and we may pessimistically assume that v is not free. In a situation where u
is not in the last or first column and g ≤ h/2, there are at least h − g ≥ h/2
possibilities to increase g at u. Since h < ` − 2, at most one endpoint of each
special path is in the first or last column if g ≤ h/2. Then, we have at least h/2
possibilities to increase g and only 2 possibilities to decrease g per special path
by Type-3 steps or Type-1 steps flipping only selectable M

∗
-edges.

Now we can analyze the stochastic process of the g-value. After g has reached
a value of at least h/2, we do not care for situations where g is large and wait for
a point of time where g is at most h/2. In order to reach 0, a value of 3h/8 must
be reached first. Starting there, we first consider only Type-3 steps and Type-1
steps flipping only selectable M

∗
-edges. The conditional probability of a step

increasing g is 1 − O(1/h). This unfair game can be described by the gambler’s
ruin problem, see Section 8.
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Starting with a g-value of 3h/8 and p = 1−O(1/h), the probability to reach
h/4 (“Alice is ruined.”) before h/2 (“Alice wins.”) is 2−Ω(h) and the probability
of this event occurring once within 2ch repetitions is 2−Ω(h) if the constant c is
small enough. By taking into account decreasing Type-2 steps (see Claim 2), the
true g-value may be only by h/8 smaller than assumed, regardless of the number
of repetitions. ut

We have to work harder to obtain the same results for the (1+1) EA.

Theorem 11. Let h = ω(log m) and h ≤ ` − 2. If the initial search point de-
scribes a matching with a g-value of at least h/2, there is a constant c > 0 such
that the probability that the (1+1) EA finds the perfect matching within 2ch steps
is 2−Ω(h).

Proof. In the analysis of RLS we have bounded the bad effects of Type-2 steps by
the good effects of Type-1 steps. Here we combine these two types to so-called
risky steps flipping at least one selectable M ∗-edge. We consider a situation
with a selectable M∗-edge. On the one hand, there is a probability of Ω(g/m2)
to decrease the g-value by flipping the selectable M ∗-edge and some selected
M

∗
-edge. On the other hand, with a probability of Θ(1/m) only the selectable

edge flips and the matching increases. The number of the last kind of risky steps
is bounded by |M∗|.
Claim 1. With a probability of 1 − 2−Ω(h), the total decrease of the g-value by
risky steps where g ≤ h/2 is at most h/8, and there is no step among the first
2ch steps decreasing the g-value by at least h/8.

Proof. For the first part of the claim, we work under the conditions that the
considered steps are risky and g ≤ h/2. Then, the matching increases by at
least 1 if no further edges flip. This happens with a probability of at least
(1 − 1/m)m−1 ≥ 1/e. By Chernoff bounds, 2e`′h risky steps increase the match-
ing at least |M∗| = (`′+1)h times with a probability of 1−2−Ω(`h). This bounds
the number of risky steps. If the g-value decreases by some number, the same
number of selected M

∗
-edges has to flip. In any of the considered risky steps, at

most h/2 selected M
∗
-edges can flip and the probability that a specific M

∗
-edge

flips is 1/m. Hence, the expected number of flipping M
∗
-edges in 2e`′h risky

steps where g ≤ h/2 is at most 2e`′h · h/2 · 1/m = O(1). By Chernoff bounds,

the random number of flipping M
∗
-edges is at most h/8 with a probability of

1 − 2−Ω(h) (for h large enough).
The probability that a phase of length 2ch includes a step decreasing the

g-value by at least h/8 can be estimated in the following way. A necessary event

is that at least h/8 selected M
∗
-edges out of at most |M∗| selected edges flip.

The probability of the last event is upper bounded by

(

(`′ + 1)h

h/8

)

1

mh/8
≤
(

(`′ + 1)h

m

)h/8

= 2−Ω(h log h).

Within the phase of 2ch steps, such an event occurs only with a probability of
2−Ω(h log h). ut
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This claim implies the following conclusions. If g underruns h/2, there is a point
of time where g is between h/2 and 3h/8, and we can ignore all steps where
g > h/2. Altogether, we end up again with the following problem. Starting with
a g-value between h/2 and 3h/8, we only have to investigate non-risky steps,
i. e., steps not flipping selectable M∗-edges. We have to show that these steps
decrease g by at most h/8. Then, taking into account the risky steps, the g-value
will always be at least h/8.

We have to be careful since we are investigating phases of exponential length.
The probability that certain steps lead to “quite global” changes is not small.
We investigate the stochastic process of the (1+1) EA whose state space is the
set of search points describing matchings. The transition probabilities of this
process depend on many aspects of the current search point. To prove that it
is quite unlikely to reach a state with a g-value of at most h/4 from a state
with a g-value of at least 3h/8 within the considered time interval and ignoring
the risky steps we again apply the drift theorem, namely Theorem 7. Now we
proceed in the same way as in the proof of Lemma 12.

Claim 2. Let s be a search point describing a matching such that k := k(s) is
the number of special paths of length at least 3 and g := g(s) ≤ h/2. Let

p1(k) := (kh)/(2em2),

p−1(k) := (2k + 2)/m2,

p−2(k) := 1/(m2`h), and

p−j(k) := 1/mj , for j ≥ 3.

For steps not flipping a selectable M∗-edge, p1(k) is a lower bound on the prob-
ability to increase the g-value by 1, and p−j(k), j ≥ 1, is an upper bound on the
probability to decrease the g-value by j.

Proof. In the following, special paths of length at least 3 are called long special
paths. With the arguments as in the proof of Theorem 10, there are at least
h/2 possibilities per long special path to increase g by 1 by either flipping two

non-selectable edges or a single selectable M
∗
-edge. Hence, we obtain a lower

bound of (kh/2) · (1/m2)(1−1/m)m−2 on the probability to increase the g-value
by 1 and p1(k) is a correct lower bound for this event.

A necessary event to decrease the g-value by 1 is that a selected M
∗
-edge e

and a free M∗-edge e′ flip. We distinguish three cases. If e and e′ are neighbors,
they might be the last or first two edges of a long special path. There are only
2k such pairs. The event of flipping such a pair has a probability of at most
2k/m2. The second case is that the neighbors e and e′ are not the first two or
last two edges of a long special path. Then, the free M ∗-edge e′ has another
selected M

∗
-neighbor e′′ which must flip, too. Otherwise, the node u was an

exposed node and e and e′ were the first edges of the long special path starting
at u (see Fig. 12). How many possibilities for a free M ∗-edge e′ between two

selected M
∗
-edges e and e′′ are there? The g selected M

∗
-edges touch g disjoint

endpoints in even columns and g disjoint endpoints in odd columns. At most g



37

r r r r
r r r r
r r r r

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

�
� @

@

e e′ u

Fig. 12. If u was exposed, e and e′ were the first two edges of a long special path.

selectable M∗-edges connect two such nodes. Hence, there are at most g choices
for e, e′, and e′′. This leads to a probability of at most g/m3 for the second

case. The third case is that the selected M
∗
-edge e and the free M∗-edge e′

are not neighbors. As we work under the condition that no selectable M ∗-edge
flips, we only consider the case that e′ is not selectable implying that e′ has (at
least) one neighbor in the current matching. There are at most g choices for
e and at most (`′ + 1)h choices for e′. The probability that e flips is 1/m and
the probability that e′ and its neighbors in the matching flip is at most 1/m2.
Hence, the probability for the last possibility is at most g(`′ + 1)h/m3 ≤ 1/m2.
In summary, the probability that g decreases by 1 is at most

2k

m2
+

g

m3
+

1

m2
≤ 2k + 2

m2
=: p−1(k).

To decrease the g-value by 2 it is necessary that two selected M
∗
-edges e1 and

e2 flip. There are at most
(

g
2

)

≤ g2/2 choices for e1 and e2. Another necessary
event is that two free M∗-edges e′1 and e′2 flip; otherwise the step is not accepted.
Due to our condition, we only consider the case that e′1 and e′2 are not selectable,

implying that they are neighbors of selected M
∗
-edges. Since each M

∗
-edge has

2 neighbors in M∗, there are at most
(

2g
2

)

≤ 2g2 choices for e′1 and e′2. As the

mutation operator flips M∗-edges and M
∗

independently, both necessary events
happen with a probability of at most

g2

2m2
· 2g2

m2
≤ 1

16m2`′2
≤ 1

m2`h
=: p−2(k).

The g-value decreases by j ≥ 3 only if j selected M
∗
-edges flip and j free

M∗-edges flip. There are
(

g
j

)

choices for the first j edges and at most
(

(`′+1)h
j

)

choices for the last j edges. Hence, the probability is at most

(

g
j

)(

(`′+1)h
j

)

m2j
≤ (g(`′ + 1)h)j

mj · mj
≤ 1

mj
=: p−j(k), for j ≥ 3. ut

Let p0(k) be the remaining probability. These bounds are independent of the
g-value of the current search point but the risky steps occurring between the
non-risky steps may also change k. However, as each search point s has a fixed
parameter k, we are able to show that the drift conditions hold for all search
points with a g-value between 1 and h/2. The essential reason is that, for all
k, p1(k) is by a factor of Θ(h) larger than p−1(k) and the other probabilities
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p−j(k) are small enough. We check the conditions of the drift theorem (where ` is
replaced by h). The first two conditions hold since we are interested in a decrease
of the g-value by h/8, and the transition probabilities pj(k) of the random walk
do not depend on g. Hence, we can assume bh/8c as the starting point and look
for the first point of time where the g-value is at most 0. To check the other
conditions we increase the probability of reaching a g-value of at most 0 by not
counting the steps not changing the g-value. The transition probabilities of the
new process are qj(k) := pj(k)/(1 − p0(k)), if j 6= 0, and q0(k) := 0. We have

1 − p0(k) = p1(k) +
∑

j≥1

p−j(k) =
1

m2

(kh

2e
+ 2k + 2 + O(1/(`h))

)

.

Hence, for j = 1 and j ≤ −1,

qj(k) =
m2 · pj(k)

kh/(2e) + 2k + 2 + O(1/(`h))
≤ m2 · pj(k).

To check the third condition we have to estimate

e−λq1(k) + eλq−1(k) +
∑

j≥2

ejλq−j(k).

We prove that for some constants λ > 0 and δ > 0 small enough

e−λq1(k) + eλq−1(k) ≤ 1 − δ and
∑

j≥2

ejλq−j(k) = o(1)

which implies the third condition. The second claim is easy to show since q−j(k) ≤
m2p−j(k) implies that q−2(k) ≤ 1/(`h) and q−j(k) ≤ 1/mj−2 for j ≥ 3. Hence,

∑

j≥2

ejλq−j(k) ≤ e2λ

`h
+ e2λ

∑

j≥3

(

eλ

m

)j−2

= o(1).

From the proof of Lemma 8 we know that it is sufficient to prove a constant
lower bound β > 0 for q1(k) − q−1(k) to verify the other condition. For h large
enough,

q1(k) − q−1(k) =
kh/(2e)− (2k + 2)

kh/(2e) + 2k + 2 + O(1/(`h))

≥ h/(2e) − 4

h/(2e) + 4 + O(1/(`h))
≥ 1/2.

The fourth condition of the drift theorem is easy to verify. We get the largest
value for g(st) = b(h). Then we obtain the same sum as before which is bounded
by D = 1. To finish the proof we have to take into account that our estimates of
the probabilities hold only if the g-value is at most h/2. Reaching a value larger
than h/2, the next g-value of at most h/2 is at least 3h/8 since we have estimated
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the probability of larger decreases of g in one step. This may be considered as
a new trial. The number of trials is bounded by 2ch. Choosing c small enough,
the probability that at least one trial is successful is still 2−Ω(h). Altogether, the
probability that the risky or the non-risky steps decrease the g-value by at least
h/8 is 2−Ω(h). This implies the theorem. ut

Theorem 10 and 11 assume that g ≥ h/2 for the initial search point. Some lower
bound on g is necessary for exponential lower bounds that hold with overwhelm-
ing probability. The following results show that we can expect to reach a search
point with a large g-value.

Theorem 12. Let h = ω(log m) and h ≤ `− 2. Starting with the empty match-
ing, RLS and the (1+1) EA produce a matching with a g-value of Ω(h2) with a
probability of 1 − 2−Ω(`).

Proof. We consider the first `′h/4 steps of a run and show that it is unlikely
to produce M∗. Within this phase, there are |M∗|`′h/4 possibilities to flip an
M∗-edge for the (1+1) EA, and the expected number of such flips is bounded by
|M∗|`′h/(4m) ≤ (`′+1)/4. If RLS selects the first edge to be flipped in a step, the
probability to choose an M∗-edge is |M∗|/m, and if RLS decides to flip another
edge in the same step, then the probability to choose an M ∗-edge is at most
|M∗|/(m − 1). Hence, there are at most `′h/2 possibilities to flip an M∗-edge
and the expected number of such flips is at most |M ∗|`′h/(2(m−1)) ≤ (`′+1)/2.
By Chernoff bounds, both algorithms touch at most `′ < |M∗| of the M∗-edges
with a probability of 1− 2−Ω(`). In the following, we work under this condition.

As long as less than `′h/4 M
∗
-edges are chosen, by our condition, at most

k := `′h/4 + `′ edges are chosen. Each of these k edges has at most 2h neigh-
bors. Hence, if at most k edges are chosen, there are at least `′h2 − `′h/4 − 2hk

selectable M
∗
-edges. The last sum is bounded below by

`′h2 − `′h/4− 2h(`′h/4 + `′) = `′h2(1/2− 9/(4h)) ≥ `′h2/4

if h is large enough. Our condition does not decrease the probability of a step
flipping solely a selectable M

∗
-edge. The probability of such a step is at least

(`′h2/4) · (1/m) · (1− 1/m)m−1 = Ω(1) for both algorithms. Hence, by Chernoff
bounds, the g-value increases Ω(`h) times with a probability of 1−2−Ω(`h). Under
our condition, the g-value may decrease by a total of at most `′ in steps replacing
M

∗
-edges with M∗-edges. In summary, g obtains a value of Ω(`h) = Ω(h2) with

a probability of 1 − 2−Ω(`). ut

Theorem 13. Let h = ω(1). Choosing a matching uniformly at random, the
g-value is at least h with a probability of 1 − 2−Ω(`h log h).

Proof. We prove an upper bound U = 2O(`h) on the number of matchings with
a small g-value of at most h and a lower bound L = 2Ω(`h log h) on the number of
matchings. Then U/L = 2−Ω(`h log h) is an upper bound on the ratio of matchings
with a small g-value and all matchings.
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For the upper bound and h ≥ 3, there are at most

∑

0≤k≤h

(

`′h2

k

)

≤ (h + 1)
(`′h2)h

h!
≤ (`′h2)h

choices of at most h M
∗
-edges. Each choice can be combined with at most each

of the 2(`′+1)h subsets of M∗. Hence, we obtain

U := (`′h2)h · 2(`′+1)h = 2O(`h).

For the lower bound, we consider only the nodes in Columns 1, 5, 9, and
so on (see Fig. 8). In a matching, there are h + 2 options for a node. A node
may either be free, covered by the incident M ∗-edge, or covered by one of the h
incident M

∗
-edges. Now we take these decisions for dh/2e nodes in each of the

selected columns. As these columns have a distance of three edges our choices
in one column do not influence our choices in the next column. But if we choose
an M

∗
-edge, the number of options for the other nodes in the same column

decreases by 1. Hence, for each of the Ω(`h) decisions to take, we can choose
between at least h + 2 − dh/2e ≥ h/2 options. This leads to at least

L := (h/2)Ω(`h) = 2Ω(`h log h)

different matchings. ut

10 Generalizations

We have seen that RLS and the (1+1) EA find maximum matchings in ex-
pected polynomial time only for a subclass of all graphs. We are far from a
complete characterization of the class of graphs where our heuristics are effi-
cient. Nevertheless, there are some preliminary ideas. A semi-augmenting path
is an alternating path that starts at a free node and that cannot be lengthened
to an augmenting path. RLS and the (1+1) EA work more or less locally and
cannot distinguish between augmenting and semi-augmenting paths. Our con-
jecture is that the presence of exponentially many semi-augmenting paths and
only polynomially many augmenting paths at many points of time prevent the
heuristics from being efficient. Trees have only polynomially many paths whereas,
for Gh,`, we have many situations with one augmenting path and exponentially
many semi-augmenting paths.

It would also be interesting to investigate other search heuristics. All match-
ings contain at most n/2 edges and, therefore, at least m − n/2 non-edges. If
m � n, the typical search operators which treat ones and zeroes in the same
way are no longer appropriate. Alternatives look like this:

– If RLS decides to flip two bits, it flips a randomly chosen 0-bit and a ran-
domly chosen 1-bit,

– for the (1+1) EA, each 1-bit is flipped with probability 1/n and each 0-bit
with probability 1/m.
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The expected waiting time for a 2-bit flip flipping a special 0-bit and a spe-
cial 1-bit decreases from Θ(m2) to Θ(nm) and we conjecture that the expected
optimization time decreases by a factor of Θ(n/m) for many graphs.

Evolutionary algorithms work in generations where many offspring are gen-
erated in parallel. One does not expect to decrease the expected number of
fitness evaluations but to decrease the expected parallel time, i. e., the number
of generations. Generating λ offspring in parallel one may hope to decrease the
expected number of generations by a factor of Θ(λ) if λ is not too large. For
maximum matchings, the last phase is the most difficult one and the probability
of producing an accepted offspring can be as small as Θ(1/m2) (for the usual
search operator) or Θ(1/(nm)) (for the new search operator discussed above).
Choosing λ = Θ(m2) or λ = Θ(nm), resp., we can hope for a saving of a factor
Θ(λ) for the expected number of generations.

One may believe that λ should be smaller in the first phase of the search.
Jansen et al. (2004) have presented a scheme to choose λ adaptively. For time
periods of some length T , the fraction α of offspring different from the parent
and at least as good as the parent is computed and then λ := d1/αe is chosen
for the next period. This seems to be quite adequate for the maximum matching
problem.

Finally, one can compare variants with larger populations of size s to s inde-
pendent runs with populations of size 1. We conjecture that it is better to have
independent runs.

Conclusions

Randomized search heuristics without problem-specific modules are analyzed for
the maximum matching problem. The results show how heuristics can “use” al-
gorithmic ideas not known to the designer of the algorithm. For simple graphs
they find maximum matchings in expected polynomial time but they can be
fooled with overwhelming probability by carefully constructed graphs. The re-
sults contribute to the understanding how simple heuristics work. Moreover,
this is one of the first results where an evolutionary algorithm is analyzed on a
well-known combinatorial problem.
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