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Abstract. A reduction converts a solver for one task into a solver for another task. We
introduce a notion of reduction and analyze reductions between different classification tasks.

1 Introduction

There are many natural supervised learning tasks; even classification comes in a va-
riety of different forms (binary, multiclass, cost-sensitive, importance weighted, etc.)
There are two approaches that one can take: The first is to analyze all tasks inde-
pendently and devise algorithms for each. The other approach is to use reductions
to convert new, unexplored tasks to tasks that have been thoroughly analyzed, auto-
matically transferring existing theory and algorithms from well-understood domains
into new domains. We investigate the latter approach for classification problems.
Reductions can be a powerful tool with a number of desirable properties:

1. They show how similar different tasks are. If two tasks are reducible to one
another, it is reasonable to say that they are similar, modulo the efficiency of the
reduction. The more efficient the reduction, the stronger the statement.

2. If task A can be reduced to task B, then techniques for solving B can be used
to solve A, transferring results from one learning domain to another.

3. Reductions help to extend existing theories to new domains.

In addition to the above theoretical motivations, there appears to be significant
empirical evidence (see [16], [6], [4]) that this style of analysis often produces learning
algorithms that perform well in practice.

We give the basic definitions of our theoretical model, and discuss several known
reductions from this standpoint. We then present two new reductions along with
experimental evidence suggesting that analysis in this model is predictive of perfor-
mance on real-world problems.

2 Basic Definitions

Definition 1. A supervised learning task is a tuple (K,Y,{), where K is some
information available at training time, Y 1is the space of predictions, and £ : KXY —
[0, 00) is a loss function.

As illustrative examples, we now specify (K,Y,{) for several classification tasks.
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‘ Classification Task ‘ K ‘ Y ‘ V4 ‘

Binary {0,1} {0,1} Ik #y)
Multiclass {1,...,r} {1,....r}| I(k#y)
Importance Weighted [{1,...,7} x [0,00) |{1,...,7} | koI (k1 # vy)
Subset it} {1,...,r}| I(y&k)
Cost-Sensitive [0, 00)" {1,...,7} k,

Note that the space K of information provided at training time, need not equal the
prediction space Y. We sometimes need this additional flexibility (also used in [10])
to provide some information to the learning algorithm about the loss of different
choices. In importance weighted classification, for example, we want to specify that
predicting some classes correctly is more important than predicting others, while in
cost-sensitive classification, K is used to associate a cost to each prediction y € Y.
In subset classification, K is the subset of correct predictions.

A task is (implicitly) a set of learning problems, each of which requires more
information to be fully specified.

Definition 2. A supervised learning problem is a tuple (D, X, K,Y, ¢), where (K, Y, )
s a supervised learning task, X is an arbitrary feature space, and D is a distribution
over X X K.

The goal in solving a supervised learning problem is to find a hypothesis h: X — Y
minimizing the expected loss E, x)~pf(k, h(x)). For any particular hypothesis A, the
loss rate hp = E(g x)~pl(k, h(z)) is a fundamental quantity of interest. Finding h is
difficult because we do not assume that D is known at training time.

Definition 3. A supervised learning algorithm for task (K, Y, £) is a procedure map-
ping any finite set of examples (X x K)™ to a hypothesish: X — Y. 4

Standard supervised learning algorithms such as support vector machines, neural
networks, decision trees, and logistic regression fit this definition.’

2.1 Reductions

A reduction solves problems in one learning task using blackbox access to a solver
for another task. We are interested in reductions that perform well whenever the
solver performs well, so a reduction must map problems in one task to problems in
another. To define a reduction, we must define this mapping from a measure D over
original examples in X x K to a measure D' over generated examples in X’ x K.

The reduction gets as input a set of examples S drawn from D. This set S induces
a measure Dg over X' x K' defined by:

! !
DS(JU', k') = ES”NS%a

4 Note that we do not require the learned hypothesis to belong to some predetermined class of hypotheses
H; this is unnecessary. Of course, such an H exists implicitly as the set of all possible outputs of A.

5 Note, however, that these algorithms do not actually produce a classifier for all learning problems in
their task since they do not work for all input spaces. We assume that our idealized supervised learning
algorithm does.



where the expectation is over all possible sets of examples S’ generated by the
reduction® on input S, and #(z', k") is the number of times (z', k') appears in S'.
The induced measure D' = Es.pDgs is then defined by taking an expectation over
sets S generated by D.

This defines D' for a single invocation of the oracle. If the reduction makes
several sequential calls, we need to define D’ for each invocation. Suppose that the
first (unresolved) invocation produces h. We replace this invocation with the oracle
that always returns h, and use the above definition to find D’ for the next invocation.

We can now state the formal definition.

Definition 4. A supervised learning reduction from task (K, Y, ¢) to task (K', Y’  ¢')
is a learning algorithm A for (K,Y,{) that has oracle access to a learning algorithm
A for (K',Y', 0"). The algorithm A must satisfy the following property for all X and
for all distributions D over X x K:

Given a set of examples S drawn from D, let h be the hypothesis output by A on
S, and let b, be the mazimum loss rate over all hypotheses output by A’ on inputs
generated by the reduction (where D' is the corresponding induced measure on X' X
K'). Then

hD S g(th’)7

for a continuous monotone nondecreasing function g : [0, 00) — [0, co) with g(0) = 0.
We call g the error limitation function for the reduction.

Note that none of the above definitions require that examples be drawn IID. Analysis
in this model is therefore directly applicable to many real-world problems.

This definition is analogous to a “Turing reduction” in complexity theory. In both
cases a reduction from problem A to problem B is a procedure that solves A using
a solver for B as a black box. One critical difference is that in complexity theory
reductions are typically viewed as tools for classifying relative hardness of problems.
If A reduces to B, it is interpreted as “B is at least as hard as A”. In machine
learning, reductions are viewed as constructive tools for reusing algorithms for one
problem to solve another (showing that “A is no harder than B”). Also, learning
reductions defined here are informational rather than computational, i.e., the hard-
ness of solving a learning problem is due to the lack of information (in particular
D, which defines the optimal solution, is unknown) rather than the computational
power available to the algorithm. Notice that this definition does not necessarily
force the reduction to use A’ in a nontrivial way. Some learning tasks may be (near)
optimally solvable, so the reduction may never need to invoke the oracle.

2.2 Composition of Reductions

Since our motivation for studying reductions is to reduce the number of distinct
problems which must be considered, it is natural to want to compose two or more
reductions to obtain new ones.

5 Note that the reduction can be randomized and the expectation occurs over that randomization.



Proposition 1. (Reduction Composition) If Ris is a reduction from task D; to
Dy with error limitation g1o and Ros is a reduction from task Do to D3 with error
limitation go3, then the composition Ris o Ro3 is a reduction from Dy to D3 with
error limitation gio © go3.

Proof. Given oracle access to any learning algorithm A for Dj, reduction Ry3 yields
a learning algorithm for D, such that for any X, and Ds, it produces a hypothesis
with loss rate A7), < go3(h7),), where A7, is the maximum loss rate of a hypothesis
h" output by A (over all invocations). We also know that Ris yields a learning
algorithm for D, such that for all X; and D; we have:

hp, < gia(hp,) < g12(gas(hp,),

where h,, is the maximum loss rate of a hypothesis A’ output by Ry3(A). Finally,
notice that gi2 0 go3 is continuous, monotone nondecreasing, and g12(g23(0)) = 0. |}

2.3 Notions of Efficiency

If two tasks are each reducible to the other, it is reasonable to say that they are
equivalent, modulo the complexity of the reduction. We consider several types of
efficiency.

Error Efficiency of a reduction for a given example is defined as the maximum ratio
of the loss of the hypothesis output by the reduction on this example and the total
loss of the oracle hypotheses on the examples generated by the reduction.

Time Efficiency We want the transformation to be computationally efficient as-
suming that all oracle calls take unit time.

Call efficiency We quantify how extensively a reduction uses its oracle based on
(1) the number of oracle calls it makes; (2) whether the calls are adaptive (i.e.,
depend on the answers to previous queries) or parallel (i.e., all queries can be asked
before any of them is answered).

Note that parallel calls can be turned into a single call. Suppose that we make several
parallel queries to the oracle. Let {S;} be the corresponding inputs (i.e., representing
sample sets over the same feature space X), and let the corresponding hypotheses
be {h;}. We could instead create a new sample set S = {({z,3), k) : (z,k) € S;},
then call the oracle on S to get a hypothesis h, and define h;(x) = h((z,1)).

Independence Preservation Many common learning algorithms are built under the
assumption that examples are drawn independently from some distribution D).
Reductions which take an independently drawn dataset, and construct dependent
datasets for the oracle learning algorithm are often undesirable for this reason.

We would also like reductions to be learning preserving:

Definition 5. A reduction R from (K,Y,¢) to (K',Y' ') is learning preserving
if there exists a reduction R' from (K',Y', 0') back to (K,Y,{) such that for every
distribution D' over X' x K' and every oracle A" for (K',Y' 0'), if A" has loss rate
e with respect to D', then R'(R(A")) also has loss rate € with respect to D'.



Intuitively, a learning preserving reduction does not reduce easy problems to hard
queries for the oracle, and it must use the oracle in a nontrivial manner. Appendix
Theorem 5 shows that the tree reduction [7] is learning preserving.

Definition 4 and reduction composition do not generally imply that a reduction
is learning preserving. For all distributions D' and all oracles A’, the loss rate of the
double reduction R'(R(A’)) on D' is bounded in terms of the loss rate of the oracle
R(A") on the induced (by R’ on D') distribution D", which is in turn bounded by
the loss rate of the oracle A’ on the induced (now by R on D") distribution D"'. A
reduction is learning preserving if the loss rate of the double reduction R'(R(A’)) on
D' is the same as the loss rate of A’ on the same distribution D' (not the induced
D). In general, good performance on D" says nothing about performance on D’.

3 Prior Work

Many people have worked on reductions in learning. One of our goals is to give a
unifying framework, allowing distillation of best practices.

Boosting algorithms [6,11] are reductions from binary (sometimes multiclass)
classification with a small error rate to importance weighted classification with a
loss rate of nearly %, a rather surprising capability.

Bagging [3] can be seen as a self-reduction of classification to classification. Bag-
ging turns learning algorithms with high “variance” (i.e., dependence on the exact
examples seen) into voting classifiers with lower “variance”. Bagging performance
sometimes suffers because the examples that fed into the classifier learning algorithm
are not necessarily independently distributed according to the original distribution.

Error Correcting Output Codes (ECOC) [4] generalize the tree reduction [7] and
the one-against-all reduction [13] used for solving multiclass classification given a
solver for binary classification.

The “Costing” algorithm [16] is a reduction of importance weighted classification
to classification.

Pitt and Warmuth [12] also introduced a form of a reduction between classifi-
cation problems called prediction-preserving reducibility. The reductions presented
here differ in several respects: (1) they are between arbitrary learning tasks rather
than between restricted sets of classification problems; (2) they are representation
independent; (3) prediction-preserving reducibility is a computational notion, while
the reductions here are informational; (4) prediction-preserving reductions make
only one call to the oracle (i.e., problem they reduce to) and output the oracle’s an-
swer as its own answer. We enforce no restriction on how the oracle is used, making
the setting directly applicable to ECOC, Boosting, and other common transfor-
mations’; (5) prediction-preserving reductions are typically used to show negative,
non-predictability results, while we show positive results transferring learning algo-
rithms between tasks.

We include a table of results and refer to the Appendix for details.

" Abe and Watanabe [1] defined a Turing analogue of the prediction preserving reducibility, and showed
that new reductions are feasible in this setting.



Name | g(e) | Time #Calls  |Indep. Preserve
Costing| € |O(Tm)| T parallel Yes
1-vs-all|{(r — 1)e|O(|S|r)| r parallel Yes

Tree |elog,r |O(|S|r)| r — 1 parallel Yes
ECOC| 4e |O(|S|r)| 2r parallel Yes

4 Reducing To Importance Weighted Binary Classification

In this section we define two new reductions to importance-weighted binary clas-
sification. Both can be composed with the “Costing” reduction from importance
weighted classification to classification to yield new (or alternative) reductions to
binary classification. We first present a weighted one-against-all reduction from sub-
set classification to importance weighted classification. Our second reduction is a
weighted all-pairs reduction from cost-sensitive classification to importance weighted
classification. In the next sections, we prove the following efficiency guarantees:

Name g(€)| Time |#Calls|\Indep. Preserve
weighted 1-vs-all |-25€|O(|S|r)| 1 No
weighted all-pairs| 2¢ | O(r?) | 1 No

We also present some experimental results for these reductions.

4.1 From Subset Classification: Weighted One-against-all

We present a weighted one-against-all reduction from subset classification to impor-
tance weighted binary classification. It appears to be new.

Recall that a training example in subset classification is labeled by some subset
@ of r possible labels. The reduction maps each example (z,Q), |Q| =n <7, tor
examples of the form:

(<£E, y), I(y € Q)ail(yEQ)) for Yy e {1’ s ’T}a
where 35 = nL—I—l’ and i; = nL—I—l if r < n?4n, otherwise i; = . The oracle uses these
examples to construct a binary classifier h. To construct a subset classifier from h,
we do the following: If there exists a label y € {1,...,7} such that A({z,y)) = 1,
then predict y, breaking ties randomly; predict randomly otherwise.

The following theorem gives an error limitation bound for this reduction.

Theorem 1. (Error Limitation of Weighted One-against-all) Let ¢(r,n) = 2= if

n+1
r < n?+n, otherwise c(r,n) = % — 2. For any input space X and distribution D

over X x 2{1r} if the binary classifier has a normalized loss rate € (on the induced
distribution), then the weighted one-against-all reduction has loss rate at most:

€Eg o)wnc(r,n).



Comparing reduction accuracies
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Fig. 4.1. A figure showing comparative performance of the weighted-one-against-all reduction (+ costing)
and the one-against-all reduction on several multiclass datasets with Boosted Naive Bayes (BNB) and
Support Vector Machine (SVM) classifiers. Note that for these experiments we used r classifiers rather
than 1 as in the theorem.

The proof of this theorem is deferred to Appendix C. The theorem should be com-
pared directly with the one-against-all reduction to binary classification which has
error efficiency of 7 — 1. Here, with n = 1, we get ¢(r,n) = =% — % = % im-
plying error efficiency of about 7, or about half the loss rate of the earlier reduction.

We tested the reduction on several UCI multiclass datasets using Boosted Naive
Bayes and linear SVM as the oracle learning algorithms and obtained the average
test set error rates shown in Figure 4.1. From these results, we see that there is a

consistent benefit to using this reduction over the simple one-against-all reduction.

4.2 From Cost-Sensitive Classification: Weighted All-pairs

We reduce (multiclass) cost-sensitive classification to importance weighted (binary)
classification using maps of the form:

(iL',kl, .. .,k‘r) — ((.I,Z,j),[(]{?Z < k‘j),?)j — ?)i),

for all pairs (i, 7) with ¢ < j. The values vy, ..., v, are functions of k1, ...k, defined
below. The values are order-preserving (for all 7, j, k; < k; iff v; < vj).

Given m samples of training data for a cost-sensitive problem, we generate m(;)
training inputs for an importance weighted problem, by iterating through all (;)
possibilities for 7 and j. Now we use our oracle and this training data to generate a
classifier, h. Given an input z for the cost-sensitive problem, we evaluate h(z, i, j),
for all the (}) pairs 4,5 € [r], with i < j. Say label i “beats” label j for input z if
either 4 < j and h(z,i,j) =1, or i > j and h(z, j,i) = 0. Note that, if our classifier
makes no errors and k; # k;, then label ¢ beats label j exactly when k; < k; (we are
not concerned with the case k; = k;). Our algorithm outputs a label ¢ which beats



the maximum number of labels 7 # 7. The mechanism for breaking ties does not
affect our main result.

For ¢t € [0,00), let L(t) = #{j | k; < t}. By shifting, we may assume that the
minimum cost ki, = 0, so that ¢ > 0 implies L(t) > 1. Values v; are defined by:

v = /Oki 1/L(t)dt

This method of assigning importances is provably near-optimal for our algorithm.

Theorem 2. (Error Limitation of Weighted All-pairs)

upper bound: If the importance weighted binary classifier has loss rate at most €,
then the weighted all-pairs reduction has expected cost at most 2e.

lower bound: For any other assignments of importances w; ; to the sample points
(z,4,7) in the above algorithm, there exists a distribution with expected cost €/2.

The following observation is helpful in the proof:

Lemma 1. Suppose label i is the winner. Then, for every j € {1,...,i — 1}, there
must be at least [j/2] pairs (a,b), where a < j < b, and b beats a.

Proof (of Lemma 1). Let a be the winner of the tournament on {1,...,5}.

Case 1: Suppose some a beats at least [j/2] of the others. If no label b > j beat
any label ¢ < j, then a would beat at least [j/2] + 1 more labels than any b > j.
Thus, in order to have label b > j beat as many labels as a, at least [j/2] edges of
the form (a,c) or (d,b) must be reversed.

Case 2: There is no label a € {1,...,7} beating [j/2] of the rest of {1,...,j}.
There must be a j-way tie with (j — 1)/2 losses per label in {1,...,j}. In this case,
although every label beats (j + 1)/2 more labels than any b > j, it is still necessary
to reverse at least (4 1)/2 > [j/2] edges, in order to ensure that some b > j beats
as many labels as each of {1,...,j}. |

Proof (of Theorem 2). For a particular input (z, k1, ..., k), suppose our algorithm
chooses the wrong label. We show that this requires the classifier to incur a compa-
rable loss. For notational simplicity, assume k; < --- < k, and that our algorithm
chooses label 7 > 1.

Lemma 1 and the definition of v;, imply the penalty incurred to make label 7 win

is at least: N N
/ L0214, / Lok

On the other hand, the total importance assigned to queries for this instance equals:
b L(t)R(t e — [h -

Sy Z/ Tt HO W a= [ Rwar=3" [Tar=3"k,

i<j L(t) 0 i=1 70 i=1

where R(t) = r — L(t) is the number of labels whose value is greater than t and
the second equality follows from switching the order of summation and counting the



number of time a pair (4, j) satisfies i < t < j. The second-last equality follows by
writing R(t) as a sum of the r indicator functions for the events {k; > ¢}, and then
switching the order of summation.

Consequently, for every example (z, ky, ..., k), the total importance assigned to
queries for  equals ) . k;, and the cost incurred by our algorithm on instance z is
at most twice the importance of errors made by the binary classifier on instance z.
Averaging over the choice of  shows that the cost of the reduction is at most 2.

For the lower bound, consider examples (x, 0, rlj, ey r%l) Suppose we run our
algorithm, using some w; ; as the importance for the query (z,%,7). Any classifier
which errs on (z,1,4) and (z,1,j), where i # j, causes our algorithm to choose
label 2 as the winner, thereby giving a cost of 1/(r — 1), out of a total cost of
1. The importance of these two errors is wi; + w4, out of a total importance of
Zi’j w;,j. Choosing i, j so that wy; + wy; is minimal, the adversary’s penalty is at
most 2 _,ws;/(r — 1), and hence less than 2/(r — 1) times the total importance
for z. This shows that the cost of the reduction cannot be reduced below 1/2 merely
by improving the choice of weights. |

We did experiments comparing the weighted all-pairs reduction to the original all-
pairs reduction [9] (which ignores the costs) and to a state-of-the-art multi-class cost-
sensitive learning algorithm called MetaCost [5]. We used boosted Naive Bayes as
the oracle classifier learner and applied the methods to five UCI multiclass datasets.
Since these datasets do not have costs associated with them, we generated artificial
costs in the same manner that was done in the MetaCost paper (except that we
fixed the cost of classifying correctly at zero). We repeated the experiments for 20
different settings of the costs. The average and standard error of the test set costs
obtained with each method are shown in the table below.

Dataset | All-Pairs MetaCost [Weighted All-Pairs v.1{Weighted All-Pairs v.2
splice | 59.8 £24 [49.8 &+ 3.05 197 + 23 46.5 + 3.5
solar |3989 + 1415 | 5317 £ 390 247+ 2.0 36.8 £ 11
anneal | 310 £ 205 | 207 £ 43 29.9 £ 3.0 164 + 43
kdd-99 234 + 62 494 + 9.3 0.956 £ 0.12 1.76 £+ 0.66
satellite | 137 £+ 33 104 £ 6.4 428 + 21 148 £+ 8.5

We present results for two versions of this reduction. One is the exact version used
in the proof above. In the other version, we learn one classifier per pair as is done
in the original all-pairs reduction. More specifically, for each i and j (with i < j) we
learn a classifier using the following mapping to generate training examples:

(kala - '7k7‘) = (x7l(kz < kj)v |Uz' - vj|)'

In the results, we see that the first version appears to work well for some problems
and badly for others, while the second version is more stable. This is probably caused
by the fact that we make some problems more difficult for the classifier learner by
bundling examples from different pairs together, while making other problems easier.
Also, the training examples given to the learner in the first version are not drawn
IID from a fixed distribution as learning algorithms often expect.



5 Concluding Remarks

Our experiments often worked with a variant of the above reductions where we
used a separate classifier for each pair (in the weighted all pairs) or label (in the
weighted one-against-all). The theoretical impact of this design choice is that we
gain independence preservation, but the error transformation g(e) only holds when
each classifier has the same (normalized) weight.

The definition of a reduction we outline here covers a variety of existing su-
pervised learning algorithms. The analysis of error limitation for these reductions
suggests improved reductions, which appear to have superior empirical performance.

There are many open problems remaining. We do not yet have the most efficient
reductions between the tasks analyzed in this paper. There are new natural tasks
not discussed here which need to be formalized and connected via reductions.

Our definition of a reduction is limited to the supervised learning task. It nonethe-
less appears that a natural generalization capturing even broader tasks is possible.
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A Easy Directions

The learning tasks we consider have an “easy” direction for reduction related to
whether a particular task is definable as a subset of another task. For example,
solving binary classification with importance weighted binary classification is easy,
because importance weighted binary classification with k; = 1 is identical to binary
classification. Figure A.1 shows the easy direction for these reductions.

Multiclass Subset

Binary Cost-Sensitive

Importance Weighted Binary

Fig. A.1. The “easy” direction for reductions between the learning problems discussed here.

B Reduction from Multiclass Classification to Binary
Classification

In this section we analyze several well known reductions for efficiency. Before we
start, it is important to note that there are (see [15],[14]) boosting algorithms for
solving multiclass classification given weak binary importance weighted classifica-
tion. Some of these methods require extra-powerful classification algorithms, but
others are genuine reductions, as defined here. A reductionist approach for creat-
ing a multiclass boosting algorithm is to simply compose any one of the following
reductions with binary boosting.

The one-against-all reduction In the one-against-all reduction, we learn r clas-
sifiers h;, using the mapping (z,y) — (z, I(y = 7)). In order to construct a multiclass
classifier from the binary classifiers, we use the following procedure: If there exists
a label 4 such that h;(x) = 1, then predict ¢, breaking ties randomly; predict ran-
domly otherwise. Note that the trick of combining many calls into one described in
Section 2.3 applies here.

Theorem 3. (One-against-all error efficiency) If the binary classifiers have error
rate €, the one-against-all reduction has error rate at most

(r—1)e.

Proof. We analyze how false negatives (predicting 0 when the correct label is 1)
and false positives (predicting 1 when the correct label is 0) produced by the binary
classifiers lead to errors in the multiclass classifier. A false negative produces an
error in the multiclass classifier a % fraction of the time (assuming all the other
classifiers are correctly outputting 0), because we are choosing randomly between [



labels and only one is correct. The other error modes to consider involve (possibly
multiple) false positives. If there are n false positives, the error probability is either
-7 or 1 if there was also a false negative. The efficiency of these modes in creating
errors (i.e., the ratio of the probability of a multiclass error to the number of binary

r—1 _n_
errors) is == %, = n%l’ and #1, respectively. Taking the maximum, we get
Tr;l. Multiplying by 7 (since we have r opportunities to err, one for each classifier),
we get the bound. ]

The one-against-all reduction above is not learning preserving, but two simple mod-
ifications would make it learning preserving without affecting the error limitation
bound. First, we learn binary classifiers only for those labels that actually appear
in the training set; i.e., if there was no example with label 7, we do not learn h;.
Similarly for prediction; if no learned h; predicts 1, we predict randomly among the
labels seen during training. Second, if we train a pair of binary classifiers on sets of
examples with complementary labels, we ignore one of the classifiers. A moment’s
thought shows that the error limitation bound still holds.

The modified reduction is learning preserving. For every r > 1, there exists a
reduction R from binary classification to r-class classification such that for every
input space X, distribution D over X x {0,1}, and every binary learning algorithm
A, if A has loss rate € on D, then R(one-against-all(A)) has loss rate € on D.

The back reduction R takes a set of examples with binary labels and simply feeds
it to the oracle for r-class classification. If the oracle’s prediction is not in {0, 1},
predict randomly; otherwise answer with the oracle’s prediction.

Let S ~ D be a binary training set input to R. Under the reduction, R feeds S
to the oracle one-against-all(A), which in turn feeds S to its oracle A, making the
loss rates of A and R(one-against-all(4)) equal. On the other hand, an adversarial
A can easily make the unmodified one-against-all reduction not learning preserving.

The Tree Reduction In the tree reduction (which is well known, see chapter 15 of
[7]), we construct r — 1 binary classifiers, which distinguish between the labels using
a binary tree. The tree has depth log, r, and each internal node is associated with a
set, of labels that can reach the node, assuming that each classifier above it predicts
correctly. The set of labels at that node is split in half, and a classifier is trained
to distinguish between the two sets of labels. In particular, we start with the set of
all labels {1,...,r} at the top most node, and split the labels into ordered intervals
{1,...,7/2—=1},{r/2,r} at each node. Predictions are made by following a chain of
classifications down to the leaves, each of which is associated with a unique label.
Note that the trick of combining many calls into one described in Section 2.3
applies here as well. Also, instead of  — 1 parallel, one could use log, r queries.

Theorem 4. (Tree error efficiency) If the binary classifiers have loss rate €, the
tree reduction has loss rate at most

elog, r.



Proof. A multiclass error occurs only if some binary classifier on the path from the
root to the leaf errs. ]

We show that the tree reduction is learning preserving.

Theorem 5. The tree reduction TREFE is learning preserving. For every r > 1,
there exists a reduction R from binary classification to r-class classification such
that for every binary learning problem L and every binary learning algorithm A, if
A has error rate € on L, then R(TREFE(A)) has error € on L.

Proof. The converse reduction R takes a set of examples S with binary labels, and
feeds the set {(z, (r —1)y+1)|(z,y) € S} to the oracle for r-class classification. The
binary classifier A is constructed from the resulting r-class classifier h, as h(z) =
I(hy(z) >r/2-1).

Let S, be the set of examples induced by R on the inputs to the oracle TREE(A).
Under the tree reduction, these examples are converted according to {(z,I(y, >
r/2—1): (z,y,) € S, }. Consequently, we have S = S, and so the loss rate of A on
S is exactly the loss rate of the root classifier in TREE(A). Since the loss rates of
all other classifiers are irrelevant under the mapping h(x) = I(h.(z) > r/2 — 1), we
know that the loss rate of the classifier given by R(TREE(A)) equals the loss rate
of A. i

The error correcting output code (ECOC) reduction. Let C' C {0,1}" be
an error-correcting code with [ codewords a minimum distance of d apart. Let C; ;
denote the 7’th bit of the j’th codeword of C. The ECOC reduction corresponding
to C learns n classifiers: the ¢'th classifier predicts C;, where y is the correct label
given input z. The loss rate for this reduction is at most 2ne/d, as we shall prove in
Theorem 6 below.

We mention three codes of particular interest. The first is when the codewords
are a subset of the rows of a Hadamard matrix (an n x n {0, 1}-matrix for which any
two rows differ in exactly n/2 places). Such matrices exist and are easy to construct
when n is a power of 2. (The famous Hadamard conjecture states that they exist
whenever n is a multiple of 4.) Thus, for Hadamard codes, the number of classifiers
needed is less than 2r, and the loss rate is at most 4e.

A second code of interest is when the codewords are the binary representations
of 0,1,...,r—1. In this case, the ECOC reduction is the same as the tree reduction
above.

A third code of interest is the r» X r identity matrix, for which the ECOC reduction
is the same as the one-against-all reduction.

Also note that the “many calls to one call” trick in section 2.3 (call efficiency)
can be applied here.

Theorem 6. (ECOC loss efficiency) If the binary classifiers have loss rate e, the
ECOC reduction has loss rate less than:

2n
—¢€.

d



This theorem is identical to Lemma 2 of [8] (which was generalized in [2]), except for
one small difference. Here, we are concerned with the loss rate on the distribution
D generating examples rather than the loss rate on a training set.

Sometimes ECOC is analyzed assuming the errors are independent. This gives
much better results, but seems less justifiable in practice. For example, in any setting
with label noise, errors are highly dependent.

Proof. When the loss rate is zero, the correct label is consistent with all n classifiers,
and wrong labels are consistent with at most n — d classifiers, since C' has minimum
distance d. In order to wrongly predict the multiclass label, at least d/2 binary
classifiers must err simultaneously. Since every multiclass error implies at least a
fraction d/2n of the binary classifiers erred, a binary loss rate of € can yield at most
a multiclass loss rate of 2ne/d. |

C Proof of The Weighted One-Against-All Reduction

Proof. (of Theorem 1) There are two forms of errors, false positives (predicting 1
when the correct label is 0) and false negatives (predicting 0 when the correct label is
1). First, we show that an adversarial binary classifier trying to induce subset errors
with maximal efficiency has three possible strategies, then analyze these strategies.

First, notice that it is never more efficient to have multiple false positives because
the expected probability of a subset error grows sublinearly. For any number p of

true positives, the probability of a subset error with two false positives is zﬁ’ which
2

is less than PERE the probability of erring on two subset examples when investing one
false positive in each. For p = 0, only one false positive is required to always err.
Now let f be the number of false negatives. If f < n (note that f can be at
most n), there must be one false positive; otherwise the error rate would be 0.
For f false negatives and one false positive, we have a loss rate of n_} —7 with the
adversary paying importance fi; + 4. To improve error efficiency, it is beneficial for

the adversary to increase f if

1 1
n—(f+1)+1 n—f+1

(f+ )iy +1i0 = fix+1o

or equivalently if ig > i;(n — 2f). Otherwise, it is more efficient to decrease f. Thus
an optimal adversary must choose either f =0 or f = n.
1

For the f = 0 case we have error efficiency
For the f = n case, the adversary can have 0 or 1 false positives. These cases have

loss rates of =" and 1 with importance consumption of ni; or ni; + 4o, respectively.
Thus the adversary’s most efficient strategy is given by

rT—n 1 1 1
max —, — —, — = —.
rniy * niy+1i (n+ 1)ig r
Since the maximal error efficiency is % and there are r classifications, a binary

importance weighted loss of € implies a subset loss rate of e. However, the importance

+1
i .




: : : : n; r—-m; __ _T 2 r+1 _ mn
weighted loss is unnormalized since 74, + =i = ;15 for r <n”+nor (nJrl )

for r > n% + n. Taking an expectation over n according to D, we get the result. i
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