
Two-Layer Planarization:

Improving on Parameterized Algorithmics

Henning Fernau12

1 Universität Tübingen, WSI für Informatik, Sand 13,
72076 Tübingen, Germany

fernau@informatik.uni-tuebingen.de
2 The University of Newcastle, School of Electr. Eng. and Computer Science,

University Drive, Callaghan, NSW 2308, Australia

Abstract. A bipartite graph is biplanar if the vertices can be placed
on two parallel lines in the plane such that there are no edge crossings
when edges are drawn as straight-line segments. We study two variants:

– 2-Layer Planarization: can k edges be deleted from a given graph
G so that the remaining graph is biplanar?

– 1-Layer Planarization: fix the order of the vertices on one layer.

Improving on earlier works of Dujmović et al. [3], we solve the 2-Layer
Planarization problem in O(k2 · 5.1926k + |G|) time and the 1-Layer
Planarization problem in O(k3 · 2.5616k + |G|2) time. Moreover, we
derive a small problem kernel for 1-Layer Planarization.

1 Introduction

In a 2-layer drawing of a bipartite graph G = (A, B; E), the vertices in A are
positioned on a line in the plane, which is parallel to another line containing the
vertices in B, and the edges are drawn as straight line-segments. Such drawings
have various applications, see [3]. A biplanar graph is a bipartite graph that
admits a 2-layer drawing with no edge crossings; we call such a drawing a bipla-
nar drawing. Experimental evidence suggests: 2-layer drawings in which all the
crossings occur in a few edges are more readable than drawings with fewer total
crossings [6]—which gives the crossing minimization problem(s).

This naturally leads to the definition of the 2-Layer Planarization prob-
lem (2-LP): given a graph G (not necessarily bipartite), and an integer k called
parameter, can G be made biplanar by deleting at most k edges? Two-layer
drawings are of fundamental importance in the “Sugiyama” approach to multi-
layer graph drawing [8]. This method involves (repeatedly) solving the 1-Layer
Planarization problem (1-LP): given a bipartite graph G = (A, B; E), a per-
mutation π of A, and an integer k, can at most k edges be deleted to permit G
to be drawn without crossings with π as the ordering of vertices in A?

Fixed parameter tractability. We develop improved algorithms for 2-LP and
for 1-LP that are exponential in the parameter k. This has the following jus-
tification: when the maximum number k of allowed edge deletions is small, an

Electronic Colloquium on Computational Complexity, Report No. 78 (2004)

ISSN 1433-8092

algorithm for 1- or 2-LP whose running time is exponential in k but polynomial
in the size of the graph may be useful. We expect the parameter k to be small in
practice. Instances of the 1- and 2-LP for dense graphs are of little interest from
a practical point of view, as the resulting drawing will be unreadable anyway.

This analysis hence fits into the framework of parameterized algorithmics. A
parameterized problem with input size n and parameter size k is fixed parameter
tractable, or in the class FPT , if there is an algorithm to solve the problem in
f(k) · nα time, for some function f and constant α (independent of k).

Our results. In this paper we apply so-called kernelization and search tree
methods to obtain algorithms for the 1- and 2-LP problems, this way improving
earlier results [2, 3]. This leads to an O(k2 ·5.1926k+|G|) time algorithm for 2-LP
in a graph G. We present a similar second algorithm to solve the 1-LP problem
in O(k3 ·2.5616k + |G|2) time. To this end, we draw connections to Hitting Set
problems. The top-down analysis technique presented in [5] is applied to obtain
the claimed running times in the analysis of the search tree algorithms.

2 Preliminaries

In this section we introduce notation, recall a characterization of biplanar graphs
and formalize the problem statements. The mentioned results are from [3].

In this paper each graph G = (V, E) is simple and undirected. The subgraph
of G induced by a subset E ′ of edges is denoted by G[E ′]. A vertex with degree
one is a leaf. If vw is the edge incident to a leaf w, then we say w is a leaf at v
and vw is a leaf-edge at v. The non-leaf degree of a vertex v in graph G is the
number of non-leaf edges at v in G, and is denoted by deg′

G(v).
A graph is a caterpillar if deleting all the leaves produces a (possibly empty)

path. This path is the spine of the caterpillar. A 2-claw is a graph consisting
of one degree-3 vertex, the center, which is adjacent to three degree-2 vertices,
each of which is adjacent to the center and one leaf. A graph consisting of a
cycle and possibly some leaf-edges attached to the cycle is a wreath. Notice that
a connected graph that does not have a vertex v with deg′(v) ≥ 3 is either a
caterpillar or a wreath.

To prove their kernelization result for 2-LP, Dujmović et al. introduced the
following potential function. For a graph G = (V, E), define

∀v ∈ V, ΦG(v) = max{deg′G(v) − 2, 0}, and Φ(G) =
∑

v∈V

Φ(v) .

Lemma 1. Φ(G) = 0 if and only if G is a collection of caterpillars and wreaths.

Biplanar graphs are easily characterized, and there is a simple linear-time
algorithm to recognize biplanar graphs, as the next lemma makes clear.

Lemma 2. Let G be a graph. The following assertions are equivalent: (a) G is
biplanar. (b) G is a forest of caterpillars. (c) G is acyclic and contains no 2-claw
as a subgraph. (d) G is acyclic and Φ(G) = 0 (with Lemma 1).

2

Lemma 2 implies that any biplanarization algorithm must destroy all cycles
and 2-claws. The next lemma gives a condition for this situation.

Lemma 3. If there exists a vertex v in a graph G such that deg′
G(v) ≥ 3, then

G contains a 2-claw or a 3- or 4-cycle containing v.

A set T of edges of a graph G is called a biplanarizing set if G\T is biplanar.
The bipartite planarization number of a graph G, denoted by bpr(G), is the size
of a minimum biplanarizing set for G. The 2-LP problem is: given a graph G
and an integer k, is bpr(G) ≤ k? For a given bipartite graph G = (A, B; E) and
permutation π of A, the 1-layer biplanarization number of G and π, denoted
bpr(G, π), is the minimum number of edges in G whose deletion produces a
graph that admits a biplanar drawing with π as the ordering of the vertices
in A. The 1-LP problem asks if bpr(G, π) ≤ k.

Lemma 4. For graphs G with Φ(G) = 0, a minimum biplanarizing set of G
consists of one cycle edge from each component wreath.

Lemma 5. For every graph G, bpr(G) ≥ 1
2Φ(G).

3 2-Layer Planarization: Bounded search tree

The basic approaches for producing FPT algorithms are kernelization and
bounded search trees [1]. Based on the preceding lemmas, Dujmović et al. showed:

Theorem 1. Given a graph G and integer k, there is an algorithm that deter-
mines if bpr(G) ≤ k in O(k · 6k + |G|) time.

That algorithm consists of two parts: a kernelization algorithm and a subse-
quent search tree algorithm 2-Layer Bounded Search Tree. The latter algorithm
basically looks for a vertex v with deg′(v) ≥ 3: if found at most 6 recursive
branches are triggered to destroy the situations forbidden according to Lemma 3.
After this branching, a graph G with Φ(G) = 0 remains that can be solved with
Lemma 4.

Can we further improve on the running time of the search tree algorithm?
Firstly, observe that whenever deg′

G′

0

(v) ≥ ` for any G′
0 obtained from G0 by edge

deletion, then already deg′
G0

(v) ≥ `. This means that we can modify the sketched
algorithm by collecting all vertices of non-leaf degree at least three and, based
on this, all forbidden structures, i.e., 2-claws, 3-cycles, or 4-cycles, according
to Lemma 3 (which then might interact). For reasons of improved algorithm
analysis, we also regard 5-cycles as forbidden structures. By re-interpreting the
edges of G0 as the vertices of a hypergraph G = (V, E), where the hyperedges
correspond to the forbidden structures, a 2-LP instance (G0, k) is translated
into an instance (G, k) of 6-Hitting Set (6HS).

If we delete all those edges in G0 that correspond to vertices in a hitting set
as delivered by the 6HS algorithm, we will arrive at a graph G′

0 which satisfies
deg′G′

0

(v) < 3 for all vertices v. Hence, Φ(G′
0) = 0, and Lemma 4 applies.

3

Unfortunately, we cannot simply take the currently best 6HS algorithm,
see [5, 7]. Why? The problem is that there may be minimal solutions of the
6HS instance which are “skipped” due to clever branching, since there exists
another minimal solution which is “equivalent.” This equivalence might not hold
any longer if we translate back to the original 2-LP instance, where we still
have to resolve the wreath components, and it might be that we “skipped” the
only solution that already upon solving the 6HS instance was incidentally also
destroying enough wreaths. If we insist on enumerating all minimal hitting sets
no larger than the given k, this problem can be circumvented, since we can do
the wreath component analysis in the leaves of the search tree, but it would gain
nothing in terms of time complexity, since examples of hypergraphs having 6k

minimal hitting sets of size at most k can be easily found: just consider k disjoint
hyperedges each of degree six. Notice that in this example, all vertices have a
very small degree, namely one.

In the following, we often translate back and forth between the 2-LP in-
stance and the corresponding 6HS instance, always using the terminology which
appears to be the most appropriate.

We go a bit more in details into how to solve the 6HS instance. In [5], a
recursive search tree algorithm for 6HS is proposed that uses three reduction
rules which are always exhaustively applied at the beginning of each recursive
call:

1. (hyper)edge domination: A hyperedge e is dominated by another hyperedge
f if f ⊂ e. Then, delete e, since covering f will automatically also cover e.

2. small edges: Delete all hyperedges of size one and place the corresponding
vertices into the hitting set.

3. vertex domination: A vertex x is dominated by a vertex y if, whenever x
belongs to some hyperedge e, then y belongs to e, as well. Then, delete all
occurrences of x.

The first two rules are fine when it comes our problem, as well. Only the
third rule causes trouble, since the soundness is based on the observation that
taking y into the hitting set (instead of x) is never worse; and this may be wrong
due to the subsequent “wreath analysis,” as previously indicated.

The main purpose of the vertex domination rule is that it guarantees the
existent of vertices of “sufficiently” high degree. Our aim is now to provide a
more problem-specific analysis which maintains exactly that property. Firstly,
observe that one special case of the vertex domination rule is still valid:

3a isolates: If v is a vertex of degree zero, then delete v.

Namely, vertices of degree zero in the 6HS instance correspond to edges in the
2-LP instance that don’t participate in any forbidden structure. Surely, we can
safely delete them. Can we also rule out vertices of degree one (to a certain
extent)? We will discuss this point later on.

In order to be able to do the subsequent wreath analysis, vertices of the 6HS
instance will never be deleted but just marked as virtual. Hence, we are only
dealing with two sorts of hyperedges:

4

– hyperedges of size six that correspond to 2-claws and
– hyperedges of size five or four that correspond to injured 2-claws.

Here, an injured 2-claw describes a hyperedge which originally stemmed from a
2-claw, but one or two edges of the 2-claw got “amputated,” i.e., marked virtual.

Let C = {c, w1, w2, w3, x1, x2, x3} be a 2-claw centered at c, such that wi is
neighbored (at least) to c and xi for i = 1, 2, 3. We will call {cwi, wixi} also a
finger of C, so that the hyperedge corresponding to C is partitioned into three
disjoint fingers. Clearly, in an injured 2-claw with five edges, only one of the
fingers actually got injured and two fingers are still pretty. In an injured 2-claw
with four edges, we still have at least one pretty finger left over.

The second ingredient in the approach to hitting set problems described in [5]
are so-called heuristic priorities. More specifically, we will use the following rules
to select hyperedges and vertices to branch at in case of multiple possibilities:

1. Select a hyperedge e of smallest size that if possible corresponds to a short
cycle in the 2-LP instance.

2. If |e| ≤ 5 and e ∩ f 6= ∅ for another hyperedge f of size five or less, modify
e := e ∩ f .

3. Branch at a highest-degree vertex x of e, if possible incident to the center of
the 2-claw e, such that x belongs to a pretty finger.

The 6HS algorithm will then basically perform the following two steps on a
given instance (G, k) and a preliminary partial solution S:

1. Exhaustively apply all reduction rules, leading to a possibly modified in-
stance (G′, k′) and partial solution S′.

2. Select a vertex x according to the heuristic priorities and branch:

(a) Assume: x is in the hitting set. The new partial solution is S ′ ∪ {x} and
the instance (G′−E(x), k′−1); E(x) denotes all hyperedges containing x.

(b) The case that x is not part of the hitting set can be dealt with by
recursing on the new instance (G′ − x, k′) with partial solution S′.

The main point here is that we can actually analyze this algorithm from a
parametric view. In the following analysis, assume that we have already branched
on all cycles up to length five (see the first priority). Then, the sketched 6HS
algorithm is applied to the collection of 2-claws. To further improve on our search
tree algorithm, we propose the following reduction rule for (injured) 2-claws:

3b (injured) 2-claws: If y is a vertex of degree one in a hyperedge of size four,
five or six corresponding to an (injured) 2-claw, and if y (as an edge in the
2-LP instance) is incident to the center of the corresponding 2-claw, then
mark y as virtual.

To prove the soundness of this rule, we have to show that we will never miss
out cycles this way. We therefore show the following assertions:

5

Proposition 1. During the course of the Hitting Set algorithm, there will
never occur 2-claws which merely consists of virtual edges due to rule 3b. More
precisely, at most one edge per finger will turn virtual.

Proof. 3b. obviously only affects one 2-claw at a time, since only edges of size
one are turned virtual. Per 2-claw, the rule triggers at most once per finger.

Proposition 2. After having successfully run the Hitting Set algorithm, we
did not create a cycle of length at least five that only consists of virtual edges.

For the soundness of rule 3b. (Proposition 2), the following observation is crucial.

Property 1. Let F = {xy, yz} be one pretty finger of an (injured) 2-claw C with
center x such that xy (in the corresponding 6HS instance) has degree one. Then,
y has degree two.

Proof. If the conclusion were false, there must be an edge yv in the given 2-LP
instance. Hence, there is an (injured) 2-claw C ′ with center x which is like C,
only having z replaced by v. This contradicts that xy has degree one, since xy
participates both in C and in C ′.

The proposed algorithm is stated in Fig. 1. The subroutine 6HS-all-minimal
is working as described above, the interface being described in 2-Layer BST /
6HS-based. It is clear that by choosing an appropriate implementation, we can
prevent the overall algorithm from using exponential space: the solutions to the
6HS instance would have to be created one by one.

Now, let us turn to the time analysis of the procedure. Of course, the most
important part is the analysis of 6HS-all-minimal. We will follow the ideas ex-
plained in [5] for d-Hitting Set. Let T (k) denote the number of leaves in a
worst-case search tree for 6HS-all-minimal, which incidentally also is the worst-
case for the number of solutions returned by the routine. More distinctly, let
T `(k) denote the situation of a search tree assuming that at least ` hyperedges
in the given instance (with parameter k) have size five. Of course, T (k) ≤ T 0(k).
We analyze the recurrences for T 0, T 1 and T 2.

Lemma 6. T 0(k) ≤ T 0(k − 1) + T 2(k).

Proof. Due to the reduction rule 3b., the 6HS instance G contains a vertex x
of degree 2. One branch is that x is put into the hitting set. If x is not put into
the hitting set, then at least two new hyperedges of size five are created.

Some more involved analysis of the T 1- and T 2-branches as well as some
algebra for solving the recursions, shows:

Lemma 7. T 1(k) ≤ 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1).

Lemma 8. T 2(k) ≤ max{2T 1(k−1)+3T 2(k−1), T 0(k−1)+16T 0(k−2), 2T 0(k−
1) + 9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}.

Theorem 2. Given a graph G and integer k, the algorithm 2-Layer BST / 6HS-
based determines if bpr(G) ≤ k in O(k2 · 5.1926k + |G|) time, when applied to
the problem kernel as derived in [3].

6

Algorithm 2-Layer BST / 6HS-based
input : graph G0 = (V0, E0);
parameter : a non-negative integer k0

output : NO if bpr(G0) > k0; otherwise, YES.

1. if Φ(G0) > 2k0 then return NO.
2. else if Φ(G0) = 0

if k0 ≥ # component wreaths of G0 then return YES. (Lemma 4)
else return NO.

3. else // (∃ v ∈ V0 such that deg′
G0

(v) ≥ 3)
Let V ′ ⊆ V0 be all v ∈ V0 such that deg′

G0
(v) ≥ 3.

Find all 2-claws, 3-, 4-cycles or 5-cycles C in G0 containing some v ∈ V ′

as described in Lemma 3, giving a set C of edge sets.
Form the hypergraph G = (E, C).
Call 6HS-all-minimal on instance ((G, k), ∅, ∅) to find solution set S.

//S contains all solutions to the 6HSinstance that are
//(1) reduced, (2) minimal, and (3) contain at most k elements.

//Each S ∈ S is a triple S = (Sσ, k′, Sν):
// Sσ is the returned solution set
// k′ is the returned remaining parameter
// Sν is the set of virtual edges

For each solution S = (Sσ, k′, Sν) do

Modify the instance (G0, k0) accordingly, yielding (G′
0, k

′).
if k′ ≥ # component wreaths of G′

0 then return YES. (Lemma 4)
return NO. // All 6HS-all-minimal solutions finally fail.

Fig. 1. The algorithm 2-Layer BST / 6HS-based

4 1-Layer Planarization: Kernelization algorithm

The following results from [3] give important properties for π-biplanar graphs.

Lemma 9. A bipartite graph G = (A, B; E) with a fixed permutation π of A is
π-biplanar if and only if G is acyclic and the following condition holds.

For every path (x, v, y) of G with x, y ∈ A, and for every vertex u ∈ A
between x and y in π, the only edge incident to u (if any) is uv.

(?)

Let G = (A, B; E) be a bipartite graph with a fixed permutation of A that
satisfies condition (?). Let H = K2,p be a complete bipartite subgraph of G
with H ∩ A = {x, y}, and H ∩ B = {v ∈ B : vx ∈ E, vy ∈ E, degG(v) = 2},
and |H ∩ B| = p. Then H is called a p-diamond. Every cycle of G is in some
p-diamond with p ≥ 2.

Lemma 10. If G = (A, B; E) is a bipartite graph and π is a permutation of A
satisfying condition (?) then bpr(G, π) =

∑
maximal p-diamonds of G(p − 1) .

7

We are now going to derive a kernelization algorithm for 1-LP. Let us say
that an edge e of a bipartite graph G potentially violates condition (?) if, using
the notation of condition (?), e = ei for i = 1, 2, 3, where e1 = xv or e2 = vy or
e3 = uz for some u strictly between x and y in π such that z 6= v. We will also
say that e1, e2, e3 (together) violate condition (?).

According to Lemma 9 (as well as the proof of Lemma 10 for the last
two rules), the following reduction rules are sound, given an instance (G =
(A, B; E), π, k) of 1-LP. Analogues to the first three rules are well-known from
Hitting Set problems, see [5, 7].

1L-RR-edge: If e ∈ E does not participate in any cycle and does not poten-
tially violate condition (?), then remove e from the instance (keeping the same
parameter k).
1L-RR-isolate: If v ∈ A ∪ B has degree zero, then remove v from the instance
and modify π appropriately (keeping the same parameter k).
1L-RR-large: If e ∈ E participates in more than k2 situations that potentially
violate condition (?), then put e into the biplanarization set and modify the
instance appropriately (also decreasing the parameter).

Let E? ⊆ E be all edges that potentially violate condition (?). Let E◦ ⊆ E be
all edges that participate in cycles. Let G4c be generated from those edges from
E0\E? that participate in 4-cycles. By construction, G4c satisfies (?). Lemma 10
shows that the next reduction rule can be applied in polynomial time:

1L-RR-4C: If bpr(G4c, π) > k, then NO.

Lemma 11. Let G = (A, B; E) be a bipartite graph and let π be a permutation
of A. Let v ∈ B. Then, there is at most one edge e incident to v that does not
potentially violate condition (?) and participates in cycles of length > 4.

Theorem 3. Let G = (A, B; E) be a bipartite graph, π be a permutation of A
and k ≥ 0. Assume that none of the reduction rules applies to the 1-LP instance
(G, π, k). Then, |E| ≤ k3. The kernel can be found in time O(|G|2).

Proof. Now consider E? as vertex set V ′ of a hypergraph G′ = (V ′, E′) and put
{e1, e2, e3} into E′ iff e1, e2, e3 together violate condition (?). A subset of edges
from E whose removal converts (A, B; E) into a bipartite graph which satisfies
condition (?) is in obvious one-to-one correspondence with a hitting set of the
hypergraph G′. Niedermeier and Rossmanith have shown [7, Proposition 1] a
cubic kernel for 3-Hitting Set, so that at most k3 edges are in E? (else NO).
Their reduction rules correspond to our rules 1L-RR-edge and 1L-RR-large.

If e = xy ∈ E◦ \E? with y ∈ B does not belong to a 4-cycle, then Lemma 11
shows that there is no other edge zy ∈ E◦ \ E?. But since xy ∈ E◦, there must
be some “continuing edge” zy on the long circle xy belongs to, so that zy ∈ E?

follows. We can take zy as a witness for xy. By Lemma 11, zy can witness for
at most one edge from E◦ \ E? incident to y and not participating in a 4-cycle.

This allows us to partition E◦ into three disjoint subsets: (a) E◦ ∩ E?, (b)
E4c = {e ∈ E◦ \ E? | e participates in a 4-cycle }: there can be at most 4k such
edges according to 1L-RR-4C and Lemma 10, and (c) E◦ \E4c: according to our
preceding reasoning, there are at most |E?| many of these edges.

8

5 1-Layer Planarization: Bounded search tree

Theorem 4. (Dujmović et al. [3]) Given a bipartite graph G = (A, B; E), a
fixed permutation π of A, and integer k, there is an algorithm that determines
if bpr(G, π) ≤ k in O(3k · |G|) time.

Can we further improve on this algorithm? Firstly, it is clear that we can com-
bine the search tree algorithm with the kernelization algorithm described above.
But furthermore, observe that the search tree algorithm basically branches on
all members of E?, trying to destroy the corresponding triples of edges violating
condition (?). This means that we again take ideas stemming from solutions of
the naturally corresponding instance of 3-Hitting Set. Unfortunately again,
we cannot simply “copy” the currently best search tree algorithm for 3-Hitting
Set [5, 7], running in time O(k ·2.179k + |G|), since destroying triples of edges vi-
olating condition (?) might incidentally also destroy more or less of the 4-cycles.
As explained in the 2-LP case, the problem is again the “vertex domination
rule.” In order to gain anything against the previously sketched algorithm 1-Layer
Bounded Search Tree, we must somehow at least avoid branching on vertices of
degree one contained in hyperedges of size three.

Firstly, we can prove a lemma that shows that, whenever we have branched
on all hyperedges of size three in the 3-Hitting Set instance (that correspond
to situations violating condition (?) in the original 1-LP instance) that contain
vertices of degree at least two, then we have already destroyed all “large” cycles.

Then, we investigate the possible interaction between a cycle of length four
and a structure violating (?), after having “destroyed” all “mutually interacting”
structures violating (?).

Lemma 12. Let G = (A, B; E) be a bipartite graph and π be a fixed permutation
of A. Assume that if h = {e1, e2, e3} and h′ = {e′1, e

′
2, e

′
3} are two situations

violating (?), then h ∩ h′ = ∅. Let C = {ab, bc, cd, da} be a sequence of edges
forming a 4-cycle.

Then, there is at most one hyperedge h—among the hyperedges modeling
situations violating (?)—such that C ∩ h 6= ∅.

Hence, after the indicated branching, for each 4-cycle, at most one hyperedge
of size three remains such that the corresponding edge sets have non-empty inter-
section. Since we have to destroy every 4-cycle, the best we then can obviously do
is to take out an edge that takes part in the “accompanying” situation violating
(?). This can be done completely deterministically due to the preceding lemma,
where possible nondeterministic situations can be arbitrarily resolved. Finally,
the only remaining situations correspond to possibly interacting 4-cycles. These
can be solved with Lemma 10.

Theorem 5. Given a bipartite graph G = (A, B; E), a fixed permutation π of
A, and integer k, there is an algorithm that determines if bpr(G, π) ≤ k in
O(k3 · 2.5616k + |G|2) time.

9

6 Conclusion

In this paper we have presented two methods for producing FPT algorithms in
the context of 2-layer and 1-layer planarization. In particular, for fixed k, we have
polynomial time algorithms to determine if bpr(G) ≤ k and bpr(G, π) ≤ k. The
smaller exponential bases (in comparison with [3]) are due to the tight relations
with Hitting Set, as we exhibited. For small values of k, our algorithms provide
a feasible method for the solution of these NP-complete problems.

With the results in [3, 4], we have now good kernelization and search tree
algorithms for three types of “layered planarization” problems:

1. For 2-LP, we got an O(k2·5.1926k+|G|) algorithm and a kernel size O(k).? ? ?

2. For 1-LP, we found an O(k3·2.5616k+|G|2) algorithm and a kernel size O(k6).
3. For 1-Layer Crossing Minimization, we obtained an O(1.4656k +k|G|2)

algorithm and a kernel size O(k2), where k is now the number of crossings.

For 2-Layer Crossing Minimization, the (more general) results of [2]

only give an O(232(2+2k)3 |G|) algorithm. Further research should considerably
improve this algorithm.

Acknowledgments We are grateful for discussion of this topic with V. Dujmović.

References

1. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 1999.
2. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In F. Meyer
auf der Heide, editor, 9th Annual European Symposium on Algorithms ESA, volume
2161 of LNCS, pages 488–499. Springer, 2001.

3. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.
Wood. A fixed-parameter approach to two-layer planarization. In P. Mutzel,
M. Jünger, and S. Leipert, editors, 9th International Symp. on Graph Drawing

GD’01, volume 2265 of LNCS, pages 1–15. Springer, 2002.
4. V. Dujmović, H. Fernau, and M. Kaufmann. Fixed parameter algorithms for one-

sided crossing minimization revisited. In G. Liotta, editor, Graph Drawing, 11th

International Symposium GD 2003, volume 2912 of LNCS, pages 332–344. Springer,
2004.

5. H. Fernau. A top-down approach to search-trees, 2004. In preparation.
6. P. Mutzel. An alternative method to crossing minimization on hierarchical graphs.

SIAM J. Optimization, 11(4):1065–1080, 2001.
7. R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for 3-

hitting set. Journal of Discrete Algorithms, 1:89–102, 2003.
8. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hi-

erarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109–125,
1981.

? ? ? By changing the heuristic priorities in one case and using a generalization of rule
3b., we can improve the base to 5.1844.

10

Appendix

Definition of Hitting Set

For the reader’s convenience, we include the following definitions.
Some terminology on hypergraphs: A hypergraph G = (V, E) is given by its finite
set of vertices V and its set of (hyper)-edges E, where a hyperedge is a subset
of V . The cardinality of a hyperedge e is also called its size. The cardinality of
the set of edges which contain a specific vertex v is called the degree of v.
Problem definition: d-Hitting Set can be viewed as a “vertex cover problem”
on hypergraphs More formally, this problem can be stated as follows:
Problem name: d-Hitting Set
Given: A hypergraph G = (V, E) with edge size bounded by d
Parameter: k
Output: Is there a hitting set (or cover) of size at most k:

∃C ⊆ V ∀e ∈ E(C ∩ e 6= ∅) ?

Regarding Proposition 2

Proof of Proposition 2. Let C be a 2-claw (or an injured 2-claw) that contains
an edge e that is incident with the center of C, belongs to a pretty finger F and
has (in the 6HS instance) degree one, so that 3b. triggers.

Sub-Claim: A cycle c that contains e will also contain the other edge e′ of F .
This sub-claim is true because of Property 1.

Hence, if we remove e from the Hitting Set instance by marking it as vir-
tual, we still keep the edge e′ as non-virtual which we might choose to take into
the biplanarization set to destroy any cycle in which e participated. Hence, in
each cycle, there will never occur the situation that the “last” edge of a finger
is turned into a virtual edge. This shows the claim.

The subroutine 6HS-all-minimal

The algorithm in Fig. 2 outlines how to find all minimal 6-Hitting Sets with the
restriction that we don’t have to branch on small-degree vertices as explained in
the main text.

Remark 1. The related problem of enumerating all minimum solutions say of
vertex cover problems has been also studied in our COCOON 2002 contribution
entitled On Parameterized Enumeration. A specific application of this enumer-
ation approach has been detailed by P. Damaschke in his IWPEC 2004 paper.

A couple of remarks are in order here to comment on the working of the
algorithm 6HS-all-minimal.

11

Algorithm 6HS-all-minimal
inputs: hypergraph G = (V,E);

a partial solution Sσ and
a list of virtual edges Sν

parameter : a non-negative integer k

output : all minimal solutions, annotated as described in Fig. 1

Exhaustively apply the reduction rules 1., 2., and 3a.
if E = ∅ then return {(Sσ, k, Sν)}
else if k ≤ 0 AND E 6= ∅ then return ∅ // No solution
else

Find a hyperedge h of minimal size.
if |h| > 4 then

// only (injured) 2-claws are left over
Exhaustively apply the reduction rules 1., 2., 3a., 3b.

//The obtained hypergraph is also called G = (V,E) and the parameter k.
//Likewise, we keep the notations Sσ and Sν .
Find a hyperedge h of minimal size.
//Notice that h could have “changed” by the reduction rules.

if |h| ≤ 5 and there is another hyperedge h′ with h ∩ h′ 6= ∅ and |h′| ≤ 5
then h := h ∩ h′.

Choose an e of maximal degree in h.
return the union of

6HS-all-minimal called with G − E(e) and parameter k − 1 and
6HS-all-minimal called with G − e and parameter k

//Likewise, Sσ and Sν are transferred.

Fig. 2. The algorithm 6HS-all-minimal

– The correctness of the procedure can be easily proved by induction. Note that
the heuristic priorities are not influencing the correctness of the algorithm
itself, but only the order in which branches occur. This has been detailed for
d-Hitting Set in [5].

– The algorithm ideally runs in two phases:
1. All cycles of length up to five are dealt with.
2. All 2-claws are branched on.

Of course, as stated, there could be 2-claws handled before all small cycles
have been examined, since 2-claws may get injured by branching on cycles.
This does not, however, influence the correctness of the running time of
the algorithm, since we can, more generally, formulate these two phases as
follows:
1. Branch on all hyperedges of size up to five.
2. Branch on all remaining 2-claws.

Now, it is clear that the size of the search tree belonging to phase one is
bounded by O(5k). This will be a sort of lower bound on our approach.

12

Conversely, a naive bound on the size of the search tree belonging to second
phase is O(6k). In the following, we work on getting this upperbound closer
to the one of the first phase.

Proof of the analysis of the branches—trivial branching

Let us first do a simplified analysis to see that our venue is worth pursuing at
all; here, we basically ignore reduction rules in the derivation of the following
simple branching lemmas.

Lemma 13. T 1(k) ≤ 5T 0(k − 1).

Proof. This is a consequence of trivial branching at the five vertices collected in
a hyperedge of size five.

Lemma 14. T 2(k) ≤ max{25T 0(k − 2), T 0(k − 1) + 16T 0(k − 2), 2T 0(k − 1) +
9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}.

Proof. Let e1 and e2 be the two hyperedges of size five. We have to consider
some sub-cases:

1. If e1 ∩ e2 = ∅, then we get by the analysis of Lemma 13, keeping in mind
that by branching on say e1 we still keep the low-size hyperedge e2:

T 2(k) ≤ 25T 0(k − 2).

2. If |e1 ∩ e2| = 1, our heuristic priorities let us branch at x ∈ e1 ∩ e2. If we
take x into the hitting set, we get a T 0(k − 1)-branch. If we don’t take x
into the hitting set, we are left with two hyperedges of size four, namely
e′1 = e1 \ {x} and e′2 = e2 \ {x}. Trivial branching on those edges (which will
be done according to the heuristic priorities) gives sixteen T 0(k−2)-branches.
Hence,

T 2(k) ≤ T 0(k − 1) + 16T 0(k − 2).

3. If |e1 ∩ e2| = 2, our heuristic priorities let us branch at x ∈ e1 ∩ e2 and then
at y ∈ e1 ∩ e2. This gives two T 0(k − 1)-branches. If we don’t take neither
x nor y into the hitting set, we are left with two hyperedges of size three,
namely e′1 = e1 \ {x, y} and e′2 = e2 \ {x, y}. Trivial branching on those
edges (which will be done according to the heuristic priorities) gives nine
T 0(k − 2)-branches. Hence,

T 2(k) ≤ 2T 0(k − 1) + 9T 0(k − 2).

4. If |e1 ∩ e2| = 3, our heuristic priorities let us branch at x ∈ e1 ∩ e2 and then
at y ∈ e1 ∩ e2 and at z ∈ e1 ∩ e2. Further trivial branching on the remaining
edges e′1 = e1 \ {x, y, z} and e′2 = e2 \ {x, y, z} gives four T 0(k− 2)-branches.
Hence,

T 2(k) ≤ 3T 0(k − 1) + 4T 0(k − 2).

5. If |e1 ∩ e2| = 4, our heuristic priorities let us branch at all four elements in
the intersection of e1 and e2. A trivial analysis then gives:

T 2(k) ≤ 4T 0(k − 1) + T 0(k − 2).

13

Some algebra for 2-LP

We now look for an estimate T 0(k) ≤ ck. Since we can assume that the worst
case is attained when all inequalities derived for T ` are met by the corresponding
equalities, we have to solve the following recurrences:

Assuming T 2(k) ≤ 25T 0(k − 2)

T 0(k) = T 0(k − 1) + T 2(k) = T 0(k − 1) + 25T 0(k − 2)

The ansatz T 0(k) = ck then shows that we have to find the largest real zeros
of the following polynomial:

c2 − c − 25.

Hence, c ≤ 5.5250 .

Assuming T 2(k) ≤ T 0(k − 1) + 16T 0(k − 2)

T 0(k) = T 0(k − 1) + T 2(k)

T 2(k) = T 0(k − 1) + 16T 0(k − 2)

Hence, we have to solve 0 = T 0(k)− 2T 0(k− 1)− 16T 0(k− 2) for T 0(k) = ck

which yields c ≤ 5.1232.

Assuming T 2(k) ≤ 2T 0(k − 1) + 9T 0(k − 2)

T 0(k) = T 0(k − 1) + T 2(k)

T 2(k) = 2T 0(k − 1) + 9T 0(k − 2)

Hence, we have to solve 0 = T 0(k)− 3T 0(k − 1)− 9T 0(k − 2) for T 0(k) = ck

which yields c ≤ 4.8542.

Assuming T 2(k) ≤ 3T 0(k − 1) + 4T 0(k − 2)

T 0(k) = T 0(k − 1) + T 2(k)

T 2(k) = 3T 0(k − 1) + 4T 0(k − 2)

Hence, we have to solve 0 = T 0(k)− 4T 0(k − 1)− 4T 0(k − 2) for T 0(k) = ck

which yields c ≤ 4.8285.

Assuming T 2(k) ≤ 4T 0(k − 1) + T 0(k − 2)

T 0(k) = T 0(k − 1) + T 2(k)

T 2(k) = 4T 0(k − 1) + T 0(k − 2)

Hence, we have to solve 0 = T 0(k) − 5T 0(k − 1) − T 0(k − 2) for T 0(k) = ck

which yields c ≤ 5.1926.
After this preliminary analysis, we can draw the following conclusions:

14

– The approach we used looks promising, since we can rather easily improve
on the earlier claimed search tree size of O(6k).

– By far the worst case is encountered in the only situation when we actually
use the (trivial) estimate for T 1(k) as derived in Lemma 13. More specifically,
that case (marked by a box in the previous derivations) yields a search tree
estimate worse than O(5.5k), while in all other cases, the estimates are better
than O(5.2k).
This gives us an excellent hint on how to further improve on the estimates
of the search tree sizes: we “only” have to analyze the T 1-branchings more
thoroughly.

Proof of the analysis of the branches—more details

In one of the proofs, we need the following result on 2-claws:

Lemma 15. Let G = (V, E) be a graph without 3- or 4- or 5-cycles. If C ⊆ V
is a set of seven vertices, then there is only at most one way in which C can
define a 2-claw (besides renaming the fingers).

b3

w1
w2 w3

x1

x2 x3

c

3t1

b1

t2

b2

t

Fig. 3. A typical 2-claw.

Proof. Assume that C = {c, w1, w2, w3, x1, x2, x3} is a 2-claw centered at c with
fingers fi = {bi, ti}: the edges forming the fingers are called bases bi = cwi and
tips ti = wixi, see Fig. 3.

Now, assume that alternatively w1 were the center of a 2-claw with vertex
set C. This means that there must be an edge in G that connects w1 with wi

or xi for some i 6= 1 in order to form another finger. But this would introduce
short cycles in G.

15

If x1 were the center of a 2-claw, then again there must be edges connecting
x1 with c, wi or xi for some i 6= 1 in order to form another finger. But this would
again introduce short cycles in G.

Similar reasonings rule out w2, w3, x2 and x3.

Therefore, c must be also the center of the assumed alternative 2-claw with
vertex set C. Now, if one of the xi would be a finger articulation in this alter-
native 2-claw interpretation, this means that there is an edge connecting xi and
c, so that (c, xi, wi) would form a 3-cycle. Hence, only the wi could be finger
articulations. Therefore, only the xi could be finger tips.

Hence, any vertex set C with seven vertices uniquely defines a 2-claw (if any).

In these proofs, we need the following easy corollary from reduction rule 3b.:

Proposition 3. In a reduced instance, injured 2-claws corresponding to hyper-
edges of size five in the 6HS instance always still have two pretty fingers, and
the edges incident to the center that belong to these fingers have degree of at least
two in the 6HS instance.

Proof. The fact that there are still two pretty fingers is trivial, since we have
still five edges left over in the injured 2-claw, so only one finger got amputated.
If the proposition were false, reduction rule 3b. would trigger, contradicting our
assumption that the instance is reduced.

Proof of Lemma 7. Let us first analyze the situation that we actually only have
one injured 2-claw with five edges within our reduced problem instance. Let
G = (V, E) be a reduced instance such that G contains no 3-, 4-, or 5-cycles
(they have been already branched at).

Let C = {c, w1, w2, w3, x1, x2, x3} be a 2-claw centered at c, such that wi is
neighbored (at least) to c and xi for i = 1, 2, 3, with fingers fi = {bi, ti}, see
Fig. 3.

Assume that the 2-claw is injured, i.e., either b1 or t1 are marked virtual.
Now, observe that we can show a couple of claims for this situation:

1. The degree of w2 (and of w3) in G is two.
If this were false, we would face a T≥2 situation, since there would be another

injured 2-claw C ′ centered at c; in fact, C ′ and C would have four non-virtual

edges in common.

2. c is not the center of another 2-claw.
Avoiding the previous case, this means that the assumed other 2-claw Ĉ with

center c has at least one finger F = {b, t} disjoint from the ones of C. But then,

F together with the injured finger of C and one non-injured finger of C would

produce another injured 2-claw C ′ centered at c, different from C. Here, C ′ and

C would have three non-virtual edges in common. Again, we would face a T ≥2

situation.

16

3. Both b2 and b3 (in the corresponding 6HS instance) have degree at least
two. Hence, b2 must be the tip of another 2-claw C2 with center x2 and b3

must be the tip of another 2-claw C3 with center x3, where C2 6= C3.
b2 and b3 have degree at least two, since our instance is assumed to be reduced.
If b2 were not the tip of another 2-claw, it would be the base of another 2-claw.
Hence, either w2 is the center of that 2-claw, which contradicts Claim 1, or c is the
center of that 2-claw, contradicting Claim 2. If the base of that 2-claw would be
another edge adjacent to c but not contained in C, then a reasoning along the lines
of Claim 1 leads to a contradiction. If finally t2 is the base, then x2 is the center
(as claimed), due to Claim 1. A similar reasoning is valid for the third finger of C.

Since C is a 2-claw, x2 6= x3 by definition. Therefore, C2 6= C3: due to Lemma 15,

C2 and C3 actually define different 2-claws.

4. w1 /∈ C2 ∪ C3.
Assume w1 ∈ C2. Then, there must be a path P of length at most two between w1

and x2, which together with the path (w1, c, w2, x2) forms a 5-cycle.

5. Similarly: w3 /∈ C2 and w2 /∈ C3.

Now we are ready to analyze the branching for T 1(k). C is the injured 2-cycle
we are going to branch on. Since we now switch to hitting set terminology, we
consider C as a set of edges; this is sound according to Lemma 15.

Due to the last heuristic priority, we would select either b2 or b3 for branching,
whatever has larger degree. If b2 goes into the hitting set, we create a T 0(k− 1)-
branch. In the case that we do not take b2 ∈ C into the hitting set, b2 will
get marked. Hence, at least one new hyperedge of size five is created, namely
(following the terminology introduced in the claims) C ′

2 = C2 \ {b2}.

Nonetheless, C ′ = C \ {b2} is now the smallest hyperedge. Due to the last
heuristic priority, we would select b3 for branching. According to Claim 5, b3 is
not part of C2. Hence, if we take b3 into the hitting set, we won’t destroy C2, so
that this is a T 1(k − 1)-branch.

If we don’t put b3 into the hitting set, then we will create a new small
hyperedge, namely C ′

3 = C3 \ {b3}. In that case, we can proceed branching at
the injured finger {b1, t1}.

† So, let z denote the still unmarked part of that finger.
According to Claim 4, if we put z into the hitting set, neither C ′

2 nor C ′
3 get

destroyed. Hence, this is a T 2(k − 1)-branch. Finally, branching at say t2 would
only destroy C ′

2 but not C ′
3, so this is a T 1(k − 1)-branch, and then branching

at t3 gives a T 0(k − 1)-branch.

Altogether, this shows the claimed relation if we actually had encountered a
T 1-situation and not a T≥2-situation in disguise.

Hence, T 1(k) ≤ 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1).

If the assumption that only one hyperedge of size five is present was wrong,
our branching analysis could only get better. More precisely, our earlier reasoning
shows that we only encountered the two cases that two hyperedges e1 and e2 of
size five intersect, such that 3 ≤ |e1 ∩ e2| ≤ 4. To cover these cases, we may wish

† Strictly speaking, this branching has to be included as a special case into the heuristic
priorities.

17

to include the estimates

T 1(k) ≤ max{3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}

that have been derived when proving Lemma 14.

We will include the two inequalities in the algebraic analysis that follows but
refrain from putting it into the (set of) inequalities listed in the formulation of
Lemma 7, since it is not really dealing with a T 1-situation.

Proof of Lemma 8. Let e1 and e2 be the two hyperedges of size five. We have to
consider only one further sub-case, the other ones we already dealt with in the
proof of Lemma 14.

If e1 ∩ e2 = ∅, then we get by the analysis of Lemma 7, keeping in mind that
by branching on say e1 we still keep the low-size hyperedge e2:

T 2(k) ≤ 2T 1(k − 1) + 2T 2(k − 1) + T 3(k − 1) ≤ 2T 1(k − 1) + 3T 2(k − 1).

More algebra for 2-LP

We have to analyze the following sets of recurrences:

1. The resulting T 1-case is “pure:”

T 0(k) = T 0(k − 1) + T 2(k)

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

T 2(k) = 2T 1(k − 1) + 3T 2(k − 1)

The first equation allows to replace all occurrences of T 2 by according oc-
currences of T 1, leading to two equations (derived from the last two):

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 0(k − 1) − T 0(k − 2)

= 3T 0(k − 1) + 2T 1(k − 1) − T 0(k − 2)

T 0(k) − T 0(k − 1) = 2T 1(k − 1) + 3T 0(k − 1) − 3T 0(k − 2)

 2T 1(k − 1) = T 0(k) − 4T 0(k − 1) + 3T 0(k − 2) (1)

The last equation can be now plugged into the first one, leading to:

T 1(k) = T 0(k) − T 0(k − 1) + 2T 0(k − 2)

This implies—by applying an argument shift to Eq. (1) to get the second
line:

2T 1(k) = 2T 0(k) − 2T 0(k − 1) + 4T 0(k − 2)

= T 0(k + 1) − 4T 0(k) + 3T 0(k − 1)

18

which yields:

0 = T 0(k + 1) − 6T 0(k) + 5T 0(k − 1) − 4T 0(k − 2)

Hence, T 0(k) ≤ 5.1844k.
2. The involved T 1-case is actually a T 2-case, with two small hyperedges whose

intersection contains three elements:

T 0(k) = T 0(k − 1) + T 2(k)

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

T 2(k) = 3T 1(k − 1) + 4T 1(k − 2)

The first equation allows to replace all occurrences of T 2 by according oc-
currences of T 1, leading to two equations (derived from the last two):

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 0(k − 1) − T 0(k − 2)

= 3T 0(k − 1) + 2T 1(k − 1) − T 0(k − 2)

T 0(k) − T 0(k − 1) = 3T 1(k − 1) + 4T 1(k − 2) (2)

An argument shift in the first of these equations plus multiplying with two
yields:

6T 0(k − 2) − 2T 0(k − 3) = 2T 1(k − 1) − 4T 1(k − 2).

Adding with the previously derived equation gives:

T 0(k) − T 0(k − 1) + 6T 0(k − 2) − 2T 0(k − 3) = 5T 1(k − 1).

We can use this equation to derive from Eq. (2):

5T 0(k) − 5T 0(k − 1) = 3(T 0(k) − T 0(k − 1) + 6T 0(k − 2) − 2T 0(k − 3))

+4(T 0(k − 1) − T 0(k − 2) + 6T 0(k − 3) − 2T 0(k − 4))

Hence, 0 = 2T 0(k) − 6T 0(k − 1) − 14T 0(k − 2) − 18T 0(k − 3) + 8T 0(k − 4).
This gives T 0(k) ≤ 4.8089k.

3. The involved T 1-case is actually a T 2-case, with two small hyperedges whose
intersection contains four elements:

T 0(k) = T 0(k − 1) + T 2(k)

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

T 2(k) = 4T 1(k − 1) + T 1(k − 2)

The first equation allows to replace all occurrences of T 2 by according oc-
currences of T 1, leading to two equations (derived from the last two):

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 0(k − 1) − T 0(k − 2)

= 3T 0(k − 1) + 2T 1(k − 1) − T 0(k − 2)

T 0(k) − T 0(k − 1) = 4T 1(k − 1) + T 1(k − 2)

19

An argument shift in the first of these equations and multiplying the second
one with two yields:

3T 0(k − 2) − T 0(k − 3) = T 1(k − 1) − 2T 1(k − 2),

2T 0(k) − 2T 0(k − 1) = 8T 1(k − 1) + 2T 1(k − 2).

Adding these equations gives:

2T 0(k) − 2T 0(k − 1) + 3T 0(k − 2) − T 0(k − 3) = 9T 1(k − 1).

We can use this equation to derive:

9T 0(k) − 9T 0(k − 1) = 4(2T 0(k) − 2T 0(k − 1) + 3T 0(k − 2) − T 0(k − 3))

+(2T 0(k − 1) − 2T 0(k − 2) + 3T 0(k − 3) − T 0(k − 4))

Hence, 0 = T 0(k)− 3T 0(k − 1)− 10T 0(k − 2) + T 0(k − 3) + T 0(k − 4). This
gives T 0(k) ≤ 4.9653k.

So, as predicted, only the “proper” T 1-branch gives a branching behavior
which is now actually the second-worst one, only “surpassed” by the scenario
when two hyperedges intersect with four elements in their intersection. This is
now the natural point of attack for further improvements.

Further improvements for 2-Layer Planarization

With the same reasoning, we can strengthen reduction rule 3b. to a more general,
vertex domination like rule.

3b general general (injured) 2-claws: If y is a vertex of degree one in a hyperedge of size
four, five or six corresponding to an (injured) 2-claw, and if y (as an edge
in the 2-LP instance) is incident to the center of the corresponding 2-claw
and participates in a pretty finger {y, z} such that (in the 6HS instance)
any hyperedge in which y takes part also contains z, then mark y as virtual.

For the soundness of rule 3b general, the following observation is crucial.

Property 2. Let F = {cw, wx} be one finger of an (injured) 2-claw C with cen-
ter c such that cw (in the corresponding 6HS instance) is only contained in
hyperedges in which also wx in contained. Then, w has degree two.

The proof of Property 1 nearly literally transfers to this case.
Now, with a somewhat modified “special case” heuristic priority (which will

become clear in the following argument), we can further improve the analysis in
one case:

If |e1∩e2| = 4, then by pigeon-hole principle, (at least) one of the x ∈ e1∩e2

will be situated incident to the center of the claw C1 corresponding to e1. Since
the general rule 3b. did not fire, x participates in another hyperedge (2-claw)
besides e1 and e2. Hence, not taking x into the hitting set produces a new small
hyperedge e′ in which neither all vertices from e1 nor all from e2 participate (by
edge domination). Hence, there are two sub-cases:

20

– There is an element y ∈ e1 ∩ e2 \ {x} which does not belong to e′. Then,
branching at y we get a T 1(k − 1)-branch. Then, trivial branching at the
elements in e1 ∩ e2 \ {x, y} give altogether:

T 2(k) ≤ 3T 0(k − 1) + T 1(k − 1) + T 0(k − 2).

– Otherwise, (e1∩e2)\{x} ⊆ e′. Then, the elements {y1, y2} from the symmet-
ric difference of e1 and e2 do not belong to e′, since else the edge domination
rule would have destroyed e′.
The heuristic priorities would then first branch at all elements in e1∩e2\{x}
and finally the case that both y1 and y2 go into the hitting set remains. In
that case, we would continue with a trivial branch at the two elements from
(e′ \ ((e1 ∩ e2) \ {x})). Hence:

T 2(k) ≤ 4T 0(k − 1) + 2T 0(k − 3).

Observe that the underlined branch would not be done according to the
present list of heuristic priorities, which would have to be accordingly modified
to cover this special situation.

How does this analysis improve the constants?

Assuming T 2(k) ≤ 3T 0(k − 1) + T 1(k − 1) + T 0(k − 2)

T 0(k) = T 0(k − 1) + T 2(k)

T 1(k) = 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

T 2(k) = 3T 0(k − 1) + T 1(k − 1) + T 0(k − 2)

The last equation can be reordered to give an expression for T 1(k) (after an
argument shift) that can be plugged into the second equation for T 1(k) (together
with the first equation that gives an expression for T 2). This yields:

T 1(k) = T 2(k + 1) − 3T 0(k) − T 0(k − 1)

= T 0(k + 1) − 4T 0(k) − T 0(k − 1)

= 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

= 2T 0(k − 1) + 2(T 2(k) − 3T 0(k − 1) − T 0(k − 2)) + T 2(k − 1)

= 2T 0(k − 1) + 2(T 0(k) − 4T 0(k − 1) − T 0(k − 2)) + T 0(k − 1) − T 0(k − 2)

= 2T 0(k) − 5T 0(k − 1) − 3T 0(k − 2)

Subtracting the underlined expressions yields:

0 = T 0(k + 1) − 6T 0(k) + 4T 0(k − 1) + 3T 0(k − 2),

so that we infer T 0(k) ≤ 5.1005k.
We stop our hunt for improvements here, since further improvements (along

the direction given by the top-down approach to search trees) would involve
either a deeper analysis of T 1-branches or a first analysis of T 3-branches. Both
alternatives appear to be very tedious.

21

Assuming T 2(k) ≤ 4T 0(k − 1) + 2T 0(k − 3) This can be directly plugged into

T 0(k) = T 0(k − 1) + T 2(k)

= 5T 0(k − 1) + 2T 0(k − 3),

so that we infer T 0(k) ≤ 5.0776k.

Proof of lemmas for kernelization algorithm 1-LP

Basically, we are going to further analyze the following lemma due to Dujmović
et al.:

Lemma 16. If G = (A, B; E) is a bipartite graph and π is a permutation of
A that satisfies condition (?), then all the cycles of G are 4-cycles and any two
non-edge-disjoint cycles share exactly two edges. Moreover, the degree of any
vertex in B that appears in a cycle is exactly two.

More precisely, we are going to prove:

Lemma 17. Let G = (A, B; E) be a bipartite graph and let π be a permutation
of A. If e is an edge in some cycle of length 2` > 4, then e potentially violates
condition (?) or both its neighboring edges (on the cycle) do so. Moreover, every
cycle of length 2` > 4 has at most two edges not violating condition (?).

Proof of Lemma 17. Consider the cycle v1, v2, . . . , v2`, 2` > 4, where the vertices
with odd indices belong to A. Without loss of generality, we discuss the edge
e = v2v3. Furthermore, by symmetry, we can assume that v1 < v3 according
to the ordering induced by π on A. Now, assume that v2v3 and v1v2 do not
potentially violate condition (?). As in the proof of Lemma 16 (in the long version
of [3]), we can conclude that then v5 cannot be to the left of v3; otherwise, either
v2v3 or (v1v2 and v3v4) potentially violate(s) condition (?). Since 2` > 4, v5 is
to the right of v3.

Let i > 2 be maximal such that, for all 2 < j ≤ i, v2j−1 is to the right of v3.
Hence, v = v2i mod (2`)+1 is to the left of v3. We discuss three sub-cases:

– If v1 < v < v3, then (v1, v2, v3) and the edge vv2i violate condition (?).
– If v = v1, then (v1, v2i, v2i−1) and the edge e together don’t satisfy condition

(?), since i > 2.
– If v < v1 < v3, which is only possible if i > 3, then (v, v2i, v2i−1) and the

edge e together don’t satisfy condition (?).

Hence, the only situation when e = v2v3 does not potentially violate con-
dition (?) arises when v5 comes to the left of v1. Pictorially, this means that
the embedding of the cycle v1v2 . . . v2` (as indicated by π) “makes a turn” at
e. A similar turn might happen at the other end (the “left-hand side” of the

22

embedding). This then gives the possibly two edges on the circle which do not
potentially violate (?). If there are more of these turns, then only the “outer-
most” turns can yield edges which do not potentially violate condition (?).

Proof of Lemma 11. Let C = (v1, v2, . . . , v2`) and C ′ = (v′1, v
′
2, . . . , v

′
2`′) be “long

cycles,” such that (w.l.o.g.) e = v2v3 and e′ = v′2v
′
3, with e 6= e′, and v = v2 = v′2.

Assume that e and e′ both do not potentially violate condition (?). W.l.o.g., we
can further assume that v1 < v3.

– If v1 < v′1 < v3, then (v1, v2, v3) together with v′
1v

′
2`′ do not satisfy condi-

tion (?), so that e potentially violates (?), contradicting our assumptions.
Similarly, v′1 < v1 < v3 can be ruled out.

– If v′1 ≤ v1 < v3, then both cases v3 < v′3 and v′3 < v3 lead to contradictions
(symmetric to the previous situation). But if v3 = v′3, then e = e′.

– v′1 = v3 is ruled out by Lemma 17, since then e and e′ would be two subse-
quent edges on C ′ which do not potentially violate (?).

– Hence, v1 < v3 < v′1 remains as the only possibility. Interchanging the roles
of C and C ′ in the argument, v′

1 < v′3 is ruled out. Hence, v1 < v3, v
′
3 < v′3.

We discuss (w.l.o.g.) v1 < v3 < v′3 < v′3. Then, (v3, v, v′1) together with v′
3v

′
4

violate (?), contradicting our assumption on e.

Remark 2. (following Theorem 3) Rule 1L-RR-isolate enables us to also conclude
that a reduced instance G = (A, B; E) does not contain more than k3/2 vertices
in A ∪ B, since |E| ≤ k3.

Proofs for the bounded search tree of 1-LP

Lemma 18. Let G = (A, B; E) be a bipartite graph and π be a fixed permutation
of A. If C is a cycle of length six or more, then C contains three different vertices
x, y, z with x, z ∈ A such that the path (x, y, z) is a part of C, and C contains
vertices a, b, c with b, c, y being pairwisely different elements of B such that the
edges ab and ac are parts of C and x < a < z according to π.

Proof of Lemma 18. Let C have length 2`. We first show the following claim:

There is a sub-path (x, y, z), x, z ∈ A, of C such that there is some vertex a ∈ A
on C with x < a < z according to π.

The claim is obviously true for ` = 3 by inspection. Assume it is true up to
length-2`′-cycles. Consider a cycle C ′ of length 2`′ + 2. If the claim were false
on C ′, for sure we can find a sub-path (x, y, z), x, z ∈ A, of C ′ such that there
is no vertex a ∈ A on C ′ with x < a < z according to π′. Cutting out y and

23

identifying x and z (and appropriately updating the permutation π′ to π′′) gives
a cycle C ′′ of length 2`′ which would also violate the claim, contradicting our
induction hypothesis.

Now, take the sub-path (x, y, z) and the vertex a ∈ A as given by the claim.
a has two neighbors b and c on C. Since the two neighbors x and z of y are
different from a, neither b nor c equals y. This shows the lemma.

Proof of Lemma 12. So, let C = {ab, bc, cd, da} be a 4-cycle with a ∈ A and
a < c.

We first investigate how a single additional edge can create one (but not two)
situation(s) violating (?).

1. If, w.l.o.g., (a, b, c) together with some edge e violates (?), then either also
(a, d, c) together with e violates (?) or d is incident with e = xd. In the first
case, there is a hyperedge (namely {ad, dc, e}) that has non-empty intersec-
tion with the hyperedge {ab, bc, e}. This cannot happen after the assumed
exhaustive branching.

2. Consider now the case that some path (x, y, z) together with ab violates (?).
Firstly assume that y 6= d. Then, (x, y, z) does not satisfy (?) both together
with ab and with ad, which is impossible after exhaustive branching. Con-
sider now y = d. A simple case analysis yields that the only non-prohibited
situation is y = d and c ∈ {x, z}.

We can summarize our observations as follows: if C = {ab, bc, cd, da} is a
4-cycle with a ∈ A and a < c and if e is an edge that—together with two edges
from C—forms a hyperedge reflecting a situation violating (?), then

– either e = xbb (in that case, xb > a and xb 6= c)
– or e = xdd (then, xd < c and xd 6= a).

More specifically, the situation e = xdd and a < xd < c showed up in the
first part of our case analysis, while the situation e = xdd and xd < a appeared
in the second part of the case analysis. The other situations reflect symmetries.
Claim: If there are two edges e = xdd and e′ = x′

dd, then the edge ab appears in
more than one hyperedge reflecting situations violating (?).

Proof. The following case distinctions cover all possibilities, assuming, w.l.o.g.,
xd < x′

d:

– xd < x′
d < a: Then, (xd, d, c) together with ab violates (?), and (x′

d, d, c)
together with ab violates (?).

– xd < a < x′
d: Then, (xd, d, c) together with ab violates (?), and (a, b, c)

together with x′
dd violates (?).

– a < xd < x′
d: Then, (a, b, c) together with xdd as well as with x′

dd violate
(?).

24

Analogously, one can show:
Claim: If there are two edges e = xbb and e′ = x′

bb, then the edge cd appears in
more than one hyperedge reflecting situations violating (?).

So, the only possibility that C could interfere with more than one hyperedge
reflecting situations violating (?) is when both eb = xbb and ed = xdd exist. This
is rejected with the following case analysis.

– xd < a < c < xb: Then, (xd, d, c) together with ab violates (?), and (a, b, xb)
together with cd violates (?). Hence, ab shows up in both violating hyper-
edges.

– a < xd < c < xb: Then, (xd, d, c) together with ab violates (?), and (a, b, xb)
together with xdd violates (?). Hence, xdd shows up in both violating hy-
peredges.

– xd < a < xb < c: Symmetrical to the previous case.
– a < xd < xb < c: Then, (xd, d, c) together with xbb violates (?), and (a, d, c)

together with xdd violates (?). Hence, xdd shows up in both violating hy-
peredges.

– a < xb < xd < c: Symmetrical to the previous case.

The pseudo-code of the bounded search tree algorithm for 1-LP

In that algorithm, we again use a set of virtual edges to mark edges which
(according to our previous branching) we shall not put into the bipartization
set. This part of the input is therefore initialized with ∅ at the very beginning.
The notation bpr(G0, π0, E) is accordingly understood.

Proof of Theorem 5

Proof. We only have to analyze the running time in the following. As said be-
fore, branching only actually takes place when we “solve” the corresponding
3-Hitting Set instance. During these recursions, we always assume that, when-
ever we branch at hyperedges of size three, there is some vertex contained in that
hyperedge which has size at least two.

More distinctly, let T `(k) denote the situation of a search tree assuming that
at least ` hyperedges in the given instance (with parameter k) have a size of (at
most) 2. Of course, T (k) ≤ T 0(k). We again analyze the recurrences for T 0, T 1

and T 2.
Lemma 6 literally transfers, yielding

T 0(k) ≤ T 0(k − 1) + T 2(k).

For T 1, we cannot claim to “gain” any new hyperedges of size two. Therefore, a
trivial branching gives:

T 1(k) ≤ 2T 0(k − 1).

25

For T 2, we distinguish two sub-cases, considering two hyperedges e1, e2 of size
two:

1. e1 ∩ e2 = ∅. Then, trivial branching gives:

T 2(k) ≤ 2T 1(k − 1) ≤ 4T 0(k − 2).

2. ∃x ∈ e1 ∩ e2. Branching at x (which our algorithm will do) then yields:

T 2(k) ≤ T 0(k − 1) + T 0(k − 2).

The first sub-case leads to:

T 0(k) ≤ T 0(k − 1) + 4T 0(k − 2) ≤ 2.5616k.

The second sub-case gives:

T 0(k) ≤ T 0(k − 1) + (T 0(k − 1) + T 0(k − 2)) ≤ 2.4143k.

So, the first sub-case yields the worst case.

Remarks on approximability

In the long version of [3], also approximation algorithms for 2-LP and 1-LP
have been discussed. Note that the approximation algorithm for 1-LP found by
Dujmović et al. could be also read as a translation of the well-known factor-3-
approximation algorithm for 3-Hitting Set, see [7] for further hints.

Further conclusions

Observe that recently D. Juedes and P. Shaw (personal communication) have
derived an O(k2) kernel for 3-Hitting Set, which would entail an O(k2) kernel
for 1-LP. In their IWPEC 2004 contribution, Nishimura, Ragde and Thilikos
obtained a similar result for 3-Hitting Set.

26

Algorithm 1-Layer BST / 3HS-based
input : graph G0 = (A0, B0, E0); permutation π0 of A0; virtual edge set E

parameter : non-negative integer k0

output : NO if bpr(G0, π0, E) > k; otherwise, YES.

1. Exhaustively apply the reduction rules.
The reduced instance is also denoted (G0, π0, k0, E).

2. if (?) fails for some path (x, v, y) and edge ab with x < a < y

(a) then if k0 = 0 then return NO.
(b) if possible choose (x, v, y) and ab such that {xv, vy, ab} ∩ E 6= ∅

i. then if possible choose (x′, v′, y′) and a′b′ such that
{x′v′, v′y′, a′b′} ∩ E 6= ∅ and
{e} = {xv, vy, ab} ∩ {x′v′, v′y′, a′b′} ∩ (E0 \ E)
// This is a T 2-branch
– if 1-Layer BST / 3HS-based (G0 \ {e},π0, k0 − 1, E)=’YES’
– then return YES.
– else

• Let {e, f} = {xv, vy, ab} ∩ (E0 \ E).
• Let {e, f ′} = {x′v′, v′y′, a′b′} ∩ (E0 \ E).
• return 1-Layer BST / 3HS-based (G0 \ {f, f ′},π0, k0 − 2, E ∪ {e})

ii. else // only “isolated” hyperedges of size two (also T 1)
– Let {e, f} = {xv, vy, ab} ∩ (E0 \ E).
– if 1-Layer BST / 3HS-based (G0 \ {e},π0, k0 − 1, E)=’YES’
– then return YES.
– else return 1-Layer BST / 3HS-based (G0 \ {f},π0, k0 − 1, E)

(c) else // T 0-branch
(d) if possible choose (x, v, y) and ab such that

there are (x′, v′, y′) and a′b′ such that
e ∈ {xv, vy, ab} ∩ {x′v′, v′y′, a′b′}
– if 1-Layer BST / 3HS-based (G0 \ {e},π0, k0 − 1, E) = ’YES’
– then return YES.
– else return 1-Layer BST / 3HS-based (G0,π0, k0, E ∪ {e}).

(e) else // only “isolated conflicts”

– if h = {xv, vy, ab} intersects with some 4-cycle C.
– then Let e be a common edge of h and C.
– else Choose some e ∈ h.

(f) return 1-Layer BST / 3HS-based (G0 \ {e},π0, k0 − 1, E).

3. else return k0 ≥
X

maximal p-diamonds of G0

(p − 1)

Fig. 4. The algorithm 1-Layer BST / 3HS-based

27

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

