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Abstract

Constructive dimension and constructive strong dimension are effectivizations of the Hausdorff
and packing dimensions, respectively. Each infinite binary sequence A is assigned a dimension
dim(A) ∈ [0, 1] and a strong dimension Dim(A) ∈ [0, 1].

Let DIMα and DIMα

str
be the classes of all sequences of dimension α and of strong dimension

α, respectively. We show that DIM0 is properly Π0

2
, and that for all ∆0

2
-computable α ∈ (0, 1],

DIMα is properly Π0

3
.

To classify the strong dimension classes, we use a more powerful effective Borel hierarchy
where a co-enumerable predicate is used rather than a enumerable predicate in the definition of
the Σ0

1
level. For all ∆0

2
-computable α ∈ [0, 1), we show that DIMα

str
is properly in the Π0

3
level

of this hierarchy. We show that DIM1

str
is properly in the Π0

2
level of this hierarchy.

We also prove that the class of Schnorr random sequences and the class of computably
random sequences are properly Π0

3
.

Keywords: arithmetical hierarchy, Wadge reductions, constructive dimension, Schnorr ran-
domness, computable randomness

1 Introduction

Hausdorff dimension – the most extensively studied fractal dimension – has recently been ef-
fectivized at several levels of complexity, yielding applications to a variety of topics in theo-
retical computer science, including data compression, polynomial-time degrees, approximate op-
timization, feasible prediction, circuit-size complexity, Kolmogorov complexity, and randomness
[14, 15, 3, 1, 7, 5, 8, 17]. The most fundamental of these effectivizations is constructive dimen-
sion, which is closely related to Kolmogorov complexity and algorithmic randomness. Every subset
X of C, the Cantor space of all infinite binary sequences, is assigned a constructive dimension
cdim(X ) ∈ [0, 1]. Informally, this dimension is determined by the maximum rate of growth that a
lower semicomputable martingale can achieve on all sequences in X .

Just as Martin-Löf [16] used constructive measure to define the randomness of individual se-
quences, Lutz [15] used constructive dimension to define the dimensions of individual sequences.
Each sequence A ∈ C is assigned a dimension dim(A) ∈ [0, 1] by dim(A) = cdim({A}). Every
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Martin-Löf random sequence has dimension 1, but there are nonrandom sequences with dimension
1. For every real number α ∈ [0, 1], there is a sequence with dimension α.

It is useful to understand the arithmetical complexity of a class of sequences. For example,
knowing that RAND, the class of Martin-Löf random sequences, is a Σ0

2-class allows the application
of Kreisel’s Basis Lemma [12, 18] to give a short proof [26] that

RAND ∩ ∆0
2 6= ∅. (1.1)

For any α ∈ [0, 1], let
DIMα = {A ∈ C | dim(A) = α}.

Lutz [15] showed that
DIMα ∩ ∆0

2 6= ∅ (1.2)

for any ∆0
2-computable α ∈ [0, 1]. As these dimension classes do not appear to be Σ0

2, Lutz was
unable to apply the Basis Lemma to them, so he used different techniques to prove (1.2).

We investigate the complexities of these dimension classes in terms of the arithmetical hierarchy
of subsets of C. We show that DIM0 is properly Π0

2, and for all ∆0
2-computable α ∈ (0, 1] we show

that DIMα is properly Π0
3. Therefore, the proof for (1.1) using Kreisel’s Basis Lemma cannot be

used directly to establish (1.2). (See however the comments made after Corollary 4.11.)
More recently, packing dimension, another important fractal dimension, has also been effec-

tivized by Athreya, Hitchcock, Lutz, and Mayordomo [2]. At the constructive level, this is used in
an analogous way to define the strong dimension Dim(A) ∈ [0, 1] for every sequence A. For any
α ∈ [0, 1], let

DIMα
str = {A ∈ C | Dim(A) = α}.

To classify these strong dimension classes, we use a more powerful effective Borel hierarchy where a
co-enumerable predicate is used rather than a enumerable predicate in the definition of the Σ0

1 level.
We show that DIM1

str is properly in the Π0
2 level of this stronger hierarchy. For all ∆0

2-computable
α ∈ [0, 1), we show that DIMα

str is properly in the Π0
3 level of this hierarchy.

Our techniques for classifying the dimension and strong dimension classes include Baire category,
Wadge reductions, and Kolmogorov complexity. In Section 4.3 we point out that ad hoc methods
are sometimes necessary.

Section 2 gives an overview of the randomness and dimension notions used in this paper. In
Section 3 we introduce the stronger effective Borel hierarchy that we use for the strong dimension
classes. Section 4 presents the classification of DIMα and DIMα

str.
We conclude the paper with Section 5 on effective randomness classes. We restate a result of

Schnorr [20] concerning computable null sets of exponential order in terms of computable dimension
and point out a relationship with Church randomness. We prove that the class of Schnorr random
sequences and that the class of computably random sequences are properly Π0

3.

2 Background on Randomness and Dimension

This section provides an overview of the notions of randomness and dimension used in this paper.
We write {0, 1}∗ for the set of all finite binary strings and C for the Cantor space of all infinite
binary sequences. In the standard way, a sequence A ∈ C can be identified with the subset of
{0, 1}∗ or N for which it is the characteristic sequence, or with a real number in the unit interval.
The length of a string w ∈ {0, 1}∗ is |w|. The string consisting of the first n bits of x ∈ {0, 1}∗ ∪C

is denoted by x � n. We write w v x if w is a prefix of A.
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2.1 Martin-Löf Randomness

Martin-Löf [16] introduced the notion of a constructive null set . A set is constructively null if it
can be covered by a uniform sequence of c.e. open sets that are shrinking in size. That is, A ⊆ C is
constructive null if A ⊆

⋂

i Ui, where {Ui}i∈
� is uniformly c.e. such that µ(Ui) ≤ 2−i. The sequence

{Ui}i∈
� is called a Martin-Löf test. An individual sequence A ∈ C is Martin-Löf random if {A} is

not constructively null. The Martin-Löf random sequences play an important role in algorithmic
information theory, see e.g. Li and Vitányi [13].

Schnorr [20], following Ville [27], characterized constructive null sets in terms of martingales.
A function d : {0, 1}∗ → [0,∞) is a martingale if for every w ∈ {0, 1}∗, d satisfies the averaging
condition

2d(w) = d(w0) + d(w1),

and d is a supermartingale if it satisfies

2d(w) ≥ d(w0) + d(w1).

The success set of d is

S∞[d] =

{

A ∈ C

∣

∣

∣

∣

lim sup
n→∞

d(A � n) = ∞

}

,

i.e., it is the set of all sequences on which d has unbounded value. We say that d succeeds on a
class A ⊆ C if A ⊆ S∞[d].

Ville [27] proved that a set A ⊆ C has Lebesgue measure 0 if and only if there is a martingale
d that succeeds on A. Schnorr [20] showed that A is constructively null if and only if d can be
chosen to be lower semicomputable, that is, if d can be computably approximated from below. We
call such a d constructive.

Martin-Löf [16] proved that there is a universal constructive null set. That is, he proved that
there is a Martin-Löf test {Ui}i such that for every other test {Vi} it holds that

⋂

i Vi ⊆
⋂

i Ui.
By Schnorr’s analysis this implies that there is also a universal constructive supermartingale d.
That is, for any constructive supermartingale d′ there is a c > 0 such that d(w) ≥ cd′(w) for all
w ∈ {0, 1}∗. We will use this universal supermartingale in section 4. We denote the complement of
S∞[d] by RAND, so that RAND consists of all the Martin-Löf random sequences.

2.2 Schnorr Randomness

Schnorr [20] criticized the notion of constructive null for an actual lack of constructiveness, and
introduced the more constructive notion of a Schnorr null set, which is defined by requiring that
the measure of the levels Ui in a Martin-Löf test be computably approximable to within any given
precision. It is easy to see that this is equivalent to the following: A is Schnorr null if A ⊆

⋂

i Ui,
where {Ui}i∈

� is uniformly c.e. such that µ(Ui) = 2−i. The sequence {Ui}i∈
� is called a Schnorr

test.
Following Schnorr [20], we call an unbounded nondecreasing function h : {0, 1}∗ → {0, 1}∗ an

order. (N.B. An “Ordnungsfunktion” in Schnorr’s terminology is always computable, whereas we
prefer to leave the complexity of orders unspecified in general.) For any order h and martingale d,
we define the order h success set of d as

Sh[d] =

{

A ∈ C

∣

∣

∣

∣

lim sup
n→∞

d(A � n)

h(n)
≥ 1

}

.
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Schnorr pointed out that the rate of success of a constructive martingale d can be so slow that it
cannot be computably detected. Thus rather than working with constructive null sets of the form
S∞[d] with d constructive, he worked with null sets of the form Sh[d], where both d and h are
computable. He proved that a set A is Schnorr null if and only if it is included in a null set of the
form Sh[d], with d and h computable.

A sequence A ∈ C is Schnorr random if {A} is not Schnorr null. This is related the notion of
computable randomness. A sequence A is computably random if for every computable martingale
d, A 6∈ S∞[d].

We write RANDSchnorr for the class of all Schnorr random sequences and RANDcomp for the
class of all computably random sequences. By definition we have that

RAND ⊆ RANDcomp ⊆ RANDSchnorr.

The first inclusion was proved strict by Schnorr [20] and the second inclusion was proved strict by
Wang [28].

2.3 Constructive Dimension

Hausdorff [6] introduced the concept of null covers that “succeed exponentially fast” to define what
is now commonly called Hausdorff dimension, the most widely used dimension in fractal geometry.
Basically, this notion allows one to discern structure in classes of measure zero, and to calibrate
them. As for constructive measure, already Schnorr (see Theorem 5.1) drew special attention to
null sets of “exponential order”, although he did not make an explicit connection to Hausdorff
dimension.

Lutz [14, 15] gave a characterization of Hausdorff dimension in terms of gales, which are a
generalization of martingales. Let s ∈ [0,∞). An s-gale is a function d : {0, 1}∗ → [0,∞) that
satisfies the averaging condition

2sd(w) = d(w0) + d(w1) (2.1)

for every w ∈ {0, 1}∗. Similarly, d is an s-supergale if (2.1) holds with ≥ instead of equality. The
success set S∞[d] is defined exactly as was done for martingales above. Lutz showed that for any
class A ⊆ C, the Hausdorff dimension of A is

dimH(A) = inf

{

s

∣

∣

∣

∣

there exists an s-gale
d for which A ⊆ S∞[d]

}

. (2.2)

Lutz [15] effectivized this characterization to define the constructive dimensions of sets and se-
quences. An s-(super)gale is called constructive if it is lower semicomputable. The constructive
dimension of a class A ⊆ C is

cdim(A) = inf

{

s

∣

∣

∣

∣

there exists a constructive s-gale
d for which A ⊆ S∞[d]

}

(2.3)

and the constructive dimension of an individual sequence A ∈ C is

dim(A) = cdim({A}).

(Supergales can be equivalently used in place of gales in both (2.2) and (2.3) [14, 9, 4].)
Constructive dimension has some remarkable properties. For example, Lutz [15] showed that

for any class A,
cdim(A) = sup

A∈A
dim(A). (2.4)
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Also, Mayordomo [17] established a strong connection with Kolmogorov complexity: for any A ∈ C,

dim(A) = lim inf
n→∞

K(A � n)

n
, (2.5)

where K(A � n) is the size of the smallest program that causes a fixed universal self-delimiting
Turing machine to output the first n bits of A. (For comments on the relation of this result to
earlier results, see the report [24] by Staiger and section 6 of [15]. For more details on Kolmogorov
complexity, we refer to [13].)

One can also characterize constructive dimension using the Schnorr null sets (see Section 2.2)
of exponential order. The following proposition was observed by several authors, including those
of [1, 25].

Proposition 2.1. Let d be the universal constructive supermartingale. For any A ⊆ C,

cdim(A) = inf{s ∈ Q : A ⊆ S2(1−s)n [d] )}.

2.4 Constructive Strong Dimension

More recently, Athreya, Hitchcock, Lutz, and Mayordomo [2] also characterized packing dimension,
another important fractal dimension, in terms of gales. For this, the notion of strong success of an
s-gale d was introduced. The strong success set of d is

S∞
str[d] =

{

A ∈ C

∣

∣

∣
lim inf
n→∞

d(A � n) = ∞
}

.

Analogously to what was done for Hausdorff dimension, packing dimension can be characterized
using strong success sets of gales. Effectivizing this in the same way leads to the definition of the
constructive strong dimension of a class A ⊆ C as

cDim(A) = inf

{

s

∣

∣

∣

∣

there exists a constructive s-gale
d for which A ⊆ S∞

str[d]

}

.

The constructive strong dimension of a sequence A ∈ C is

Dim(A) = cDim({A}).

A pointwise stability property analogous to (2.4) also holds for strong dimension, as well as a
Kolmogorov complexity characterization [2]:

Dim(A) = lim sup
n→∞

K(A � n)

n
(2.6)

for any A ∈ C.

3 Borel Hierarchies

Σ0
n and Π0

n denote the levels of the Borel hierarchy for subsets of Cantor space. The levels of the
arithmetical hierarchy (the corresponding effective hierarchy for sets of reals) are denoted by Σ0

n

and Π0
n.

We will also make use of the following more general hierarchy definition.
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Definition. Let P be a class of predicates, let n ≥ 1, and let X ⊆ C.

• X ∈ Σ0
n[P] if for some predicate P ∈ P,

A ∈ X ⇐⇒ (∃kn)(∀kn−1) · · · (Qk1)P (kn, . . . , k2, A � k1),

where Q = ∃ if n is odd and Q = ∀ if n is even.

• X ∈ Π0
n[P] if for some predicate P ∈ P,

A ∈ X ⇐⇒ (∀kn)(∃kn−1) · · · (Qk1)P (kn, . . . , k2, A � k1),

where Q = ∀ if n is odd and Q = ∃ if n is even.

If we take P to be ∆0
1 (decidable), then the above definition is equivalent to the standard

arithmetical hierarchy of reals, that is
Σ0

n = Σ0
n[∆0

1]

and
Π0

n = Π0
n[∆0

1]

hold for all n. Also, if ALL is the class of all predicates, then we obtain the classical Borel hierarchy:

Σ0
n = Σ0

n[ALL]

and
Π0

n = Π0
n[ALL].

In this paper, we will also be interested in the cases where P is Σ0
1 (computably enumerable) or

Π0
1 (co-c.e.). In some cases, the classes in the generalized hierarchy using these sets of predicates are

no different than the standard arithmetical hierarchy classes. If n is odd, then Σ0
n = Σ0

n[Σ0
1] as the

existential quantifier in the Σ0
1 predicate can be absorbed into the last quantifier in the definition

of Σ0
n[∆0

1] = Σ0
n. Analogously, Π0

n = Π0
n[Π0

1] for odd n, and for even n we have Σ0
n = Σ0

n[Π0
1] and

Π0
n = Π0

n[Σ0
1]. On the other hand, using the complementary set of predicates defines an effective

hierarchy that is distinct from and interleaved with the arithmetical hierarchy.

Proposition 3.1. 1. If n is odd, then

Σ0
n ( Σ0

n[Π0
1] ( Σ0

n+1

and
Π0

n ( Π0
n[Σ0

1] ( Π0
n+1.

2. If n is even, then
Σ0

n ( Σ0
n[Σ0

1] ( Σ0
n+1

and
Π0

n ( Π0
n[Π0

1] ( Π0
n+1.

6



Proof. We only show Σ0
n ( Σ0

n[Π0
1] ( Σ0

n+1 for odd n; the arguments for the other statements are
analogous.

The inclusion Σ0
n ⊆ Σ0

n[Π0
1] is obvious. To show that it is proper, let P be a predicate that is

complete for the class of Π0
n predicates. Then there is a decidable predicate R such that

P (n) ⇐⇒ (∀kn)(∃kn−1) · · · (∀k1)R(n, kn, · · · , k1).

Define X ⊆ C as
X =

⋃

n∈P

0n1C.

Then X ∈ Σ0
n[Π0

1] as we have

S ∈ X ⇐⇒ (∃n)P (n) and 0n1 v S

⇐⇒ (∃n)(∀kn)(∃kn−1) · · · (∀k1)R(n, kn, · · · , k1) and 0n1 v S

⇐⇒ (∃n)(∀kn)(∃kn−1) · · · (∃k2)T (n, kn, · · · , k3, S � k2),

where T is the Π0
1 predicate defined by

T (n, kn, · · · , k3, w) ⇐⇒ (∀k1)R(n, kn, · · · , k3, |w|, k1) and 0n1 v w.

Now suppose that X ∈ Σ0
n. Then for some decidable predicate U ,

S ∈ X ⇐⇒ (∃kn)(∀kn−1) · · · (∃k1)U(kn, · · · , k2, S � k1).

We then have

n ∈ P ⇐⇒ 0n1C ⊆ X

⇐⇒ 0n10∞ ∈ X

⇐⇒ (∃kn)(∀kn−1) · · · (∃k1)U(kn, · · · , k2, 0
n10∞ � k1),

so P is a Σ0
n predicate, which contradicts its Π0

n-completeness. Therefore X 6∈ Σ0
n and we have

established Σ0
n ( Σ0

n[Π0
1].

The inclusion Σ0
n[Π0

1] ⊆ Σ0
n+1 is immediate from the definitions using Σ0

n+1 = Σ0
n+1[∆

0
1]. That

it is proper follows from the facts Σ0
n+1 −Σ0

n 6= ∅ and Σ0
n[Π0

1] ⊆ Σ0
n.

The next proposition shows that there are no unexpected inclusions:

Proposition 3.2. 1. If n is odd, then

Σ0
n 6⊆ Π0

n[Σ0
1] 6⊆ Σ0

n+1

and
Π0

n 6⊆ Σ0
n[Π0

1] 6⊆ Π0
n+1.

2. If n is even, then
Σ0

n 6⊆ Π0
n[Π0

1] 6⊆ Σ0
n+1

and
Π0

n 6⊆ Σ0
n[Σ0

1] 6⊆ Π0
n+1.
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Proof. The noninclusions on the left side all follow from Borel considerations. E.g. for the nonin-
clusion Π0

n 6⊆ Σ0
n[Π0

1] take any Π0
n-class that is not in Σ0

n.
The noninclusions on the right side can all be proved by direct diagonalization. As an example

we prove that Σ0
1[Π

0
1] 6⊆ Π0

2. The proof easily generalizes to the higher levels. The proof is a fairly
straightforward diagonalization against all possible Π0

2-definitions, although the details are a bit
cumbersome. Let Ri, i ∈ ω, be a computable list of all partial computable predicates. We define a
class X ∈ Σ0

1[Π
0
1] such that for all i there is X A 0i1 such that

X ∈ (X \ Y) ∪ (Y \ X ), (3.1)

where Y =
{

X : ∀n∃m Ri(n,X � m)
}

. So the definition of X in the interval above the string 0i1
will make sure that X is not Π0

2-defined by Ri.
For the definition of X we will need a uniform sequence of Π0

1-sets of strings P i
n. We start by

defining dom(P i
n) for each i and n such that

• dom(P i
n) is a computable subset of

{

σ1 : σ w 0i1
}

,

• dom(P i
n) is dense above the string 0i1, i.e. for all τ w 0i1 there is σ w τ with σ ∈ dom(P i

n),

• dom(P i
n) ∩ dom(P i

m) = ∅ if n 6= m.

Then we define P i
n by

• for every σ1 ∈ dom(P i
n),

σ1 6∈ P i
n ⇐⇒ (∃τ w σ1)(∃m) [ τ is of the form σ10k ∧ Ri(n, τ � m) ]. (3.2)

It is easy to see that such a uniform sequence of P i
n’s exists. Now X is defined as

X =
{

X : (∃i)(∃n)(∃σ ∈ P i
n) [σ @ X ]

}

.

The idea is that to show that Ri does not give a Π0
2-definition of X , we challenge it by choosing a

string σ1 ∈ P i
n and extend it by 0’s. Now if Ri responds by providing us with an extension τ as in

(3.2), we take this τ as an initial segment of our set X, which means that there is an m such that
Ri(n,X � m), so that the condition ∀n∃m Ri(n,X � m) is verified for n. But by definition of P i

n, as
soon as the witness m is found, the string σ1 falls out of the set P i

n, so we have mananged to keep
X outside of X while at the same time obtaining a piece of evidence that ∀n∃m Ri(n,X � m). If on
the other hand Ri does not respond this means that σ1 ∈ P i

n, so X will be in X , but no extension
Y of σ1 will satisfy ∀n∃m Ri(n, Y � m). So in both cases X is a counterexample showing that Ri

does not define X .
We now give the formal construction. Fix i. We construct X as in (3.1) by a finite extension

construction. Let X0 = 0i1. At stage s of the construction we are given Xs, no initial segment of
which is in any P i

n, and such that (∀n ≤ s)(∃m ≤ |Xs|) [ Ri(n,Xs � m) ]. Choose σ1 ∈ dom(P i
s+1)

such that σ1 A Xs.
Case I. There exists a τ as in (3.2), with n = s + 1. Define Xs+1 = τ and go to the next stage

of the construction.
Case II. There does not exist such a τ . Then define X = Xs 0̂ω and end the construction.
To verify that X =

⋃

s Xs thus constructed satisfies (3.1), note that if there is a stage where
Case II obtains, then the string σ1 chosen at that stage is in P i

s and proves that X ∈ X , whereas
no extension Y of σ1 satisfies ∃m Ri(n, Y � m). So in this case we are done. If on the other
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hand at every stage of the construction Case I obtains, then for every σ1 chosen at any stage s
we have σ1 6∈ P i

s , and hence X 6∈ X since apart from the 1’s in σ1 the string X only contains 0’s,
and dom(P i

n) ⊆
{

σ1 : σ w 0i1
}

. But also at every stage s a new witness m is found such that
Ri(s,X � m), hence ∀s∃m Ri(s,X � m), and again X satisfies (3.1).

Intuitively, the classes Σ0
1[Π

0
1], Π0

1[Σ
0
1], Σ0

2[Σ
0
1], Π0

2[Π
0
1], . . . are slightly more powerful than their

respective counterparts in the arithmetical hierarchy because they use one additional quantifier that
is limited to the predicate. We now give a simple example of a class that is best classified in this
hierarchy: the class of 1-generic sequences.

Proposition 3.3. The class of all 1-generic sequences is Π0
2[Π

0
1] but not Σ0

3. It is also not Σ0
2.

Proof. Recall that a sequence X ∈ C is 1-generic (see e.g. Jockusch [10]) if

(∀e)(∃σ @ X)
[

{e}σ(e) ↓ ∨ (∀τ A σ)[{e}τ (e) ↑]
]

From this definition it is immediate that the class G = {X | X is 1-generic} is in Π0
2[Π

0
1]. To show

that G is not Σ0
3, suppose that it is. Then there is a uniform sequence of Σ0

1-classes On,m such that
G =

⋃

n

⋂

m On,m. Without loss of generality On,m ⊇ On,m+1 for all n,m. Now G is comeager, so
there is n such that

⋂

m On,m is not nowhere dense, hence dense in some interval Cσ. Then every
On,m, m ∈ N, is dense in Cσ. Now it is easy to construct, using a computable finite extension
construction, a computable sequence (starting with σ) in

⋂

m On,m, contradicting that 1-generic
sets are noncomputable.

That the 1-generic sets are not Σ0

2
follows quickly from Lemma 4.3 below, noting again that

the 1-generic sets are a comeager class.

Staiger has pointed out to us that the class Π0
1[Σ

0
1] already occured under a different guise in [23]

where it was called P, and several presentations were proven to be equivalent to it. The following
definitions are contained in [22]. Let W be any set of initial segments. Define

lim W = {A ∈ 2ω : ∀σ @ A(σ ∈ W )},

W σ = {A ∈ 2ω : ∀∞σ @ A(σ ∈ W )}.

Staiger proved that the classes in Π0
1[Σ

0
1] are those of the form limW , for W ∈ Σ0

1, and the classes
in Σ0

2[Σ
0
1] are those of the form W σ, for W ∈ Σ0

1.

4 Classification of DIMα and DIMα
str

In this section we investigate the arithmetical complexity of the following dimension and strong
dimension classes.

DIMα = {A ∈ C | dim(A) = α}

DIM≤α = {A ∈ C | dim(A) ≤ α}

DIM≥α = {A ∈ C | dim(A) ≥ α}

DIMα
str = {A ∈ C | Dim(A) = α}

DIM≤α
str = {A ∈ C | Dim(A) ≤ α}

DIM≥α
str = {A ∈ C | Dim(A) ≥ α}

9



Let α ∈ [0, 1] be ∆0
2-computable. For any such α, it is well known that there is a computable

function α̂ : N → Q such that lim
n→∞

α̂(n) = α. Using (2.5), we have

dim(X) ≤ α ⇐⇒ lim inf
n→∞

K(X � n)

n
≤ α

⇐⇒ (∀k)(∀N)(∃n ≥ N)K(X � n) < (α̂(n) + 1/k)n,

so DIM≤α is a Π0
2-class. Also,

dim(X) ≥ α ⇐⇒ lim inf
n→∞

K(X � n)

n
≥ α

⇐⇒ (∀k)(∃N)(∀n ≥ N)K(X � n) > (α̂(N) − 1/k)n,

so DIM≥α is a Π0
3-class. Therefore we have the following.

Proposition 4.1. 1. The class DIM0 is Π0
2.

2. For all ∆0
2-computable α ∈ (0, 1], DIMα is a Π0

3-class.

3. For arbitrary α ∈ (0, 1], DIMα is a Π0
3-class.

The situation is slightly more complicated for strong dimension. By (2.6), we have

Dim(X) ≤ α ⇐⇒ lim sup
n→∞

K(X � n)

n
≤ α

⇐⇒ (∀k)(∃N)(∀n ≥ N)K(X � n) < (α̂(N) + 1/k)n

⇐⇒ (∀k)(∃N)(∀n ≥ N)(∃〈π, t〉)|π| < (α̂(N) + 1/k)n

and U(π) = X � n in ≤ t computation steps,

where U is the fixed universal self-delimiting Turing machine used to define K. From this it is clear
that DIM≤α

str ∈ Π0
4. However, the “(∃〈π, t〉)” quantifier is local to the defining predicate, so we have

DIM≤α
str ∈ Π0

3, and in fact, it is a Π0
3[Σ

0
1]-class. Also,

Dim(X) ≥ α ⇐⇒ lim sup
n→∞

K(X � n)

n
≥ α

⇐⇒ (∀k)(∀N)(∃n ≥ N)K(X � n) > (α̂(n) − 1/k)n,

so DIM≥α
str is a Π0

2[Π
0
1]-class. This establishes the following analogue of Proposition 4.1.

Proposition 4.2. 1. The class DIM1
str is Π0

2[Π
0
1].

2. For all ∆0
2-computable α ∈ [0, 1), DIMα

str is a Π0
3[Σ

0
1]-class.

3. For arbitrary α ∈ [0, 1), DIMα
str is a Π0

3-class.

In the remainder of this section we prove that the classifications in Propositions 4.1 and 4.2
cannot be improved in their respective hierarchies.
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4.1 Category Methods

Recall that a class X is meager if it is included in a countable union of nowhere dense subsets of C,
and comeager if its complement X is meager. The following lemma (implicit in Rogers [19, p341])
will be useful.

Lemma 4.3. If X ∈ Σ0
2 and X is dense then X is meager.

Proof. Suppose that X =
⋃

n Xn, Xn closed. Since X is dense, Xn contains no basic open set, hence
Xn is nondense (i.e. its closure contains no basic open set), and X is a countable union of nondense
sets.

As a warm-up we give a short proof of Shoenfield’s result that the class of computable sequences
is not a Π0

3-class.

Theorem 4.4. (Shoenfield [19, p346]) The class ∆0
1 of computable sets is a Σ0

2[Σ
0
1]-class, but it is

not a Π0
3-class. It is also not a Π0

2-class.

Proof. Clearly ∆0
1 ∈ Σ0

2[Σ
0
1]. Suppose for a contradiction that ∆0

1 is Σ0
3. Then there is a uniform

sequence of Σ0
1-classes On,m such that ∆0

1 =
⋃

n

⋂

m On,m. Without loss of generality On,m ⊇

On,m+1 for all n,m. Now ∆0
1 is meager because it is countable, so ∆0

1 is comeager, so there is an
n such that

⋂

m On,m is not nowhere dense, hence dense in some interval Cσ. Then every On,m,
m ∈ N, is dense in Cσ. Now it is easy to construct a computable sequence (starting with σ) in
⋂

m On,m, contradicting that
⋂

m On,m ⊆ ∆0
1.

That ∆0
1 is not Π0

2 follows from Lemma 4.3, since ∆0
1 is comeager.

The class RAND of Martin-Löf random sets can easily be classified with category methods.

Theorem 4.5. (folk) RAND is a Σ0
2-class, but it is not a Π0

2-class.

Proof. This is analogous to the proof in Rogers [19, p 341] that {X : X finite} is a Σ0
2-class but

not a Π0
2-class. Both RAND and its complement are dense, so by Lemma 4.3, RAND is meager. If

RAND were a Π0
2-class, then again using Lemma 4.3, its complement would also be meager. This

contradicts the fact that C is not meager.

As DIM0 and DIM1
str are dense Π0

2-classes that have dense complements, an argument similar
to the one used for Theorem 4.5 shows that they are not Σ0

2-classes.

Theorem 4.6. The classes DIM0 and DIM1
str are not Σ0

2-classes.

We now develop category methods for the other DIMα classes. For every rational s, define the
computable order hs(n) = 2(1−s)n. Let d be the optimal constructive supermartingale.

Lemma 4.7. For every rational s ∈ (0, 1), Shs [d] is a comeager Π0
2-class.

Proof. Notice that Shs [d] ∈ Σ0
2 and Shs [d] is dense. Now apply Lemma 4.3.

Lemma 4.8. For all α ∈ (0, 1], DIMα is meager.

Proof. Let s < α be rational. Lutz [15] showed that d(s)(w) = 2(s−1)|w|d(w) is an optimal construc-

tive s-supergale. It follows that for any A ∈ C, A ∈ Shs [d] ⇒ dim(S) < α. Therefore DIMα ⊆ Shs ,
so DIMα is meager by Lemma 4.7.
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Proposition 4.9. For all α ∈ (0, 1], DIMα is not a Π0
2-class.

Proof. If DIMα ∈ Π0
2, then Lemma 4.3 implies that DIMα is comeager, contradicting Lemma

4.8.

To strengthen Proposition 4.9 to show that DIMα is not Σ0
3, we now turn to Wadge reductions.

4.2 Wadge Reductions

Let A,B ⊆ C. A Wadge reduction of A to B is a function f : C → C that is continuous and
satisfies A = f−1(B), i.e., X ∈ A ⇐⇒ f(X) ∈ B. We say that B is Wadge complete for a class
Γ of subsets of C if B ∈ Γ and every A ∈ Γ Wadge reduces to B. As the classes of the Borel
hierarchy are closed under Wadge reductions, Wadge completeness can be used to properly identify
the location of a subset of C in the hierarchy.

We now prove that DIM1 is Wadge complete for Π0
3. We will then give Wadge reductions from

it to DIMα for the other values of α.

Theorem 4.10. DIM1 is Wadge complete for Π0
3. Therefore DIM1 is not a Σ0

3-class, and in
particular it is not a Σ0

3-class.

Proof. One could prove this by reducing a known Π0
3-complete class to DIM1, e.g. the class of sets

that have a limiting frequency of 1’s that is 0 (this class was proved to be Π0
3-complete by Ki and

Linton [11]), but it is just as easy to build a direct reduction from an arbitrary Π0
3-class.

Let d be the universal constructive supermartingale. Note that we have (cf. Proposition 2.1)

S2n

[d] ( . . . ( S2
1
k

n

[d] ( S2
1

k+1
n

[d] ( . . . ( DIM1.

Let
⋃

k

⋂

s Ok,s be a Σ0
3-class. Without loss of generality Ok,s ⊇ Ok,s+1 for all k,s. We define a

continuous function f : C → C such that

∀k

(

X ∈
⋂

s

Ok,s ⇐⇒ f(X) ∈ S2
1
k

n

[d]

)

(4.1)

so that we have

X 6∈
⋃

k

⋂

s

Ok,s ⇐⇒ ∀k

(

f(X) 6∈ S2
1
k

n

[d]

)

⇐⇒ f(X) ∈ DIM1.

The image Y = f(X) is defined in stages, Y =
⋃

s Ys, such that every initial segment of X defines
an initial segment of Y .

At stage 0 we define Y0 to be the empty sequence.
At stage s > 0 we consider X � s, and for each k we define tk,s to be the largest stage t ≤ s such

that X � s ∈ Ok,t. (Let tk,s = 0 if such a t does not exist.) Define k to be expansionary at stage s
if tk,s−1 < tk,s. Now we let k(s) = min{k : k is expansionary at s}. There are two substages.

Substage (a). First consider all strings σ extending Ys−1 of minimal length with d(σ) ≥ 2
1

k(s)
|σ|

,

and take the leftmost one of these σ’s. Such σ’s exist because S2
1

k(s)
n

[d] is dense. If k(s) does not
exist, let σ = Ys−1.
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Substage (b). Next consider all extensions τ w σ of minimal length such that d(τ � i) ≤ d(τ �

(i − 1)) for every |σ| < i < |τ |, and d(τ) ≤ |τ |. Clearly such τ exist, by direct diagonalization
against d. Define Ys to be the leftmost of these τ . This concludes the construction.

So Ys is defined by first building a piece of evidence σ that d achieves growth rate 2
1

k(s)
n

on Y and then slowing down the growth rate of d to the order n. Note that f is continuous. If
X ∈

⋃

k

⋂

s Ok,s, then for the minimal k such that X ∈
⋂

s Ok,s, infinitely many pieces of evidence σ

witness that d achieves growth rate 2
1
k
n on Y , so Y 6∈ DIM1. On the other hand, if X 6∈

⋃

k

⋂

s Ok,s

then for every k only finitely often d(Ys) ≥ 2
1
k
|Ys| because in substage (a) the extension σ is chosen

to be of minimal length, so Y 6∈ Shk
[d]. Hence Y ∈ DIM1.

As RAND is a Σ0
2-class, we have the following corollary (which can also be proved by a direct

construction).

Corollary 4.11. (Lutz [15]) RAND is a proper subset of DIM1.

In order to establish the existence of ∆0
2-computable sequences of any ∆0

2-computable dimension
α ∈ [0, 1), Lutz [15] defined a dilution function gα : C → C that is computable and satisfies
dim(gα(X)) = α · dim(X) for all X ∈ C. Applying this to any ∆0

2-computable Martin-Löf random
sequence (which must have dimension 1) establishes the existence theorem. (We note that gα(X)
has the same Turing degree as X. Since by the Low Basis Theorem of Jockusch and Soare [18,
Theorem V.5.32] there are Martin-Löf random sets of low degree, we immediately obtain that there
are low sets of any ∆0

2-computable dimension α.) As gα is continuous, it is a Wadge reduction from
DIM1 to DIMα if α > 0. Combining this with the previous theorem, we have that DIMα is Wadge
complete for Π0

3 for all ∆0
2-computable α ∈ (0, 1). We now give a similar dilution construction that

will allow us to prove this for arbitrary α ∈ (0, 1).
Let X ∈ C and let α ∈ (0, 1). Write X = x1x2x3 . . . where |xn| = 2n − 1 for all n, noting that

|x1 · · · xn| = n2. For each n, let

kn =

⌈

n
1 − α

α

⌉

and yn = 0kn . We then define

fα(X) = x1y1x2y2 · · · xnyn · · · .

Observe that fα is a continuous function mapping C to C. We now show that it modifies the
dimension of X in a controlled manner.

Lemma 4.12. For any X ∈ C and α ∈ (0, 1),

dim(fα(X)) = α · dim(X)

and
Dim(fα(X)) = α · Dim(X).

Proof. The proof uses (2.5) and (2.6), the Kolmogorov complexity characterizations of dimension
and strong dimension.

Let w v fα(X). For some n,
w = x1y1 · · · xn−1yn−1v,

13



where v v xnyn. Then

K(w) ≤ K(x1 · · · xn−1) + K(v)

+K(k1) + · · · + K(kn−1) + O(1)

≤ K(x1 · · · xn−1) + O(n log n).

Because

|w| ≥ |x1y1 · · · xn−1yn−1| ≥
(n − 1)2

α
,

we have
K(w)

|w|
≤

α · K(x1 · · · xn−1)

|x1 · · · xn−1|
+

O(n log n)

(n − 1)2
,

It follows that

dim(fα(X)) ≤ α lim inf
n→∞

K(x1 · · · xn−1)

|x1 · · · xn−1|

= α lim inf
n→∞

K(x � n)

n
= α · dim(X),

where the first equality holds because the block xn is short relative to x1 · · · xn−1. Similarly,
Dim(fα(X)) ≤ α · Dim(X).

For the other inequality, we have

K(x1 · · · xn−1) ≤ K(w) + K(k1) + · · · + K(kn−1)

+O(1)

≤ K(w) + O(n log n)

and

|w| ≤ |x1y1 · · · xnyn| ≤
n2

α
+ n ≤

(n + 1)2

α
,

so

K(w)

|w|
≥ α

K(x1 · · · xn−1) − O(n log n)

(n + 1)2

= α
K(x1 · · · xn−1)

|x1 · · · xn−1|

(n − 1)2

(n + 1)2
−

O(n log n)

(n + 1)2
.

Therefore

dim(fα(X)) ≥ α lim inf
n→∞

K(x1 · · · xn−1)

|x1 · · · xn−1|

= α lim inf
n→∞

K(x � n)

n
= α · dim(X),

and analogously, Dim(fα(X)) ≥ α · Dim(X).

The function fα establishes the completeness of DIMα.
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Theorem 4.13. For all α ∈ (0, 1), DIMα is Wadge complete for Π0
3. Therefore it is not a Σ0

3-class,
and in particular it is not a Σ0

3-class.

Proof. By Lemma 4.12, fα is a Wadge reduction from DIM1 to DIMα. Therefore DIMα is Wadge
complete for Π0

3 by composing fα with the reduction from Theorem 4.10.

As gα is also a Wadge reduction from DIM1
str to DIMα

str, we have from Theorem 4.6 that DIMα
str

is not a Σ0
2-class for all α ∈ (0, 1). We now prove that DIMα

str is not even Σ0
3 for all α ∈ [0, 1).

Theorem 4.14. For all α ∈ [0, 1), DIMα
str is Wadge complete for Π0

3. Therefore DIMα
str is not a

Σ0
3-class, and in particular it is not a Σ0

3[Π
0
1]-class.

Proof. The proof is similar to that of Theorem 4.10, but uses (2.6), the Kolmogorov complex-
ity characterization of strong dimension. Let C =

⋃

k

⋂

s Ok,s be a Σ0
3-class and without loss of

generality assume that Ok,s ⊇ Ok,s+1 for all k,s.
Let α ∈ (0, 1). (We will discuss the simpler case α = 0 later.) We define a continuous function

f : C → C in stages that will Wadge reduce C to DIMα
str. The image Y = f(X) will be the unique

sequence extending Ys for all s. At stage 0 we define Y0 to be the empty sequence.
At stage s > 0 we consider X � s, and define k(s) as in the proof of Theorem 4.10. There are

three substages.
Substage (a). First consider all strings ρ extending Ys−1 of minimal length with K(ρ) ≥ α|ρ|,

and take the leftmost one of these ρ’s.
Substage (b). Next consider all strings σ extending ρ of minimal length with K(σ) ≥ (α+ 1

k(s) )|σ|,

and take the leftmost one of these σ’s. If k(s) does not exist, let σ = ρ.
Substage (c). Extend σ with a block of 0’s to obtain Ys = σ0|σ|

2−|σ|.
That is, to define Ys, we first select ρ to increase the Kolmogorov complexity rate to α. This

ensures that Y will have strong dimension at least α. We then construct a piece of evidence σ
that Y has strong dimension at least α + 1

k(s) . We finish Ys with a long block of 0’s to bring the
Kolmogorov complexity down to a near-zero rate, so that the next stage will work properly.

If X ∈ C, then for the minimal k such that X ∈
⋂

s Ok,s, infinitely many prefixes σ v Y satisfy
K(σ) ≥ (α + 1

k
)|σ|. Therefore Dim(Y ) ≥ α + 1

k
, so Y 6∈ DIMα

str.
Now let X 6∈ C. Let α′ > α be arbitrary, and choose k so that 1

k
< α′ − α. Because X 6∈ C,

we have k(s) > k for all sufficiently large s. Let s0 be large enough to ensure k(s) > s and
K(Ys−1) ≤

√

|Ys−1| + O(1) < α|Ys−1| hold for all s ≥ s0. Suppose that

K(w) ≥ α′|w|. (4.2)

holds for some w with Ys−1 v w v Ys for some stage s ≥ s0. We then have that ρ is a proper
extension of Ys−1. By choice of ρ and σ and the fact that α′ > α + 1

k
> α + 1

k(s) , we must have
w = ρ or σ v w. We analyze these two cases separately.

(i) w = ρ: Let ρ′ be the string obtained from ρ by removing the last bit. Then K(ρ) ≤ K(ρ′) +
O(1). By choice of ρ, we have K(ρ′) < α|ρ′|. We also have K(ρ) ≥ (α′)|ρ| by (4.2). Putting
these three statements together yields

α′|ρ| < α(|ρ| − 1) + O(1),

which is a contradiction if |ρ| = |w| is sufficiently large.
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(ii) σ v w: Obtain σ′ from σ by removing the last bit of σ. Then we have

K(w) ≤ K(σ′) + K(|w| − |σ|) + O(1)

≤ K(σ′) + log(|w| − |σ|) + O(1)

≤ K(σ′) + 2 log |σ| + O(1).

By choice of σ, K(σ′) < (α + 1
k(s))|σ

′|. These two facts together with (4.2) tell us that

α′|w| <

(

α +
1

k(s)

)

(|σ| − 1) + 2 log |σ| + O(1),

which is a contradiction for large |w| because |w| ≥ |σ| and α′ > α + 1
k(s) .

Therefore, for all sufficiently long w v Y , (4.2) does not hold. It follows that Dim(Y ) ≤ α. On
the other hand, there are infinitely many ρ v Y with K(ρ) ≥ α|ρ|, so Dim(Y ) ≥ α. Therefore
Y ∈ DIMα

str.
This shows that f is a Wadge reduction from C to DIMα

str. As C is an arbitrary Σ0
3-class, this

shows that DIMα
str is Wadge complete for Π0

3.
The proof for the case α = 0 is similar, but simpler as substage (a) is omitted in the construction.

4.3 Ad Hoc Methods

When classifying classes in the arithmetical hierarchy of reals there are several methods one can use.
As we have seen, category methods are sometimes useful up to the third level, Wadge reductions are
useful if the classification in the effective (lightface) hierarchy coincides with that in the classical
(boldface) hierarchy, and sometimes (as in Proposition 3.1 and Proposition 3.2) one just needs
something else. In particular when the level of the class in the effective hierarchy is not the same
as the level in the classical hierarchy one often needs to resort to ad hoc arguments. One might
think that the notion of effective Wadge reduction, or recursive functional, would be the proper
notion to use in classifying classes of reals in the effective hierarchy. However, this notion is rarely
useful for the following reason. Let X be a class without computable elements, such as the class of
Martin-Löf random sets or the class of 1-generic sets. Then X cannot be proven to be complete for
any level of the effective hierarchy by a recursive Wadge reduction f . For if X is recursive, then
so is f(X), so we can never have X ∈ C ⇐⇒ f(X) ∈ X . So we see that “easy” classes like C

that contain recursive elements cannot be reduced in such a way to many “difficult” classes, which
renders the notion rather useless.

We have left open the question whether DIM1
str is not in Π0

2, and whether DIMα
str is not in Π0

3

for any ∆0
2-computable α ∈ [0, 1). We have no answer to the second question, but we provide an

answer to the first in the next theorem. We make use of the following lemma.

Lemma 4.15. If X ∈ Π0
2 is dense then there is a computable X ∈ X .

Proof. This is an easy finite extension argument. Suppose that X = {X : (∀m)(∃k)RX(m, k) ↓=
1} ∈ Π0

2 is dense. (Here R is a computable predicate. Note that R does not have to be defined
with oracles X that are not in X .) Given any initial segment τ such that

(∀n < m)(∃k)Rτ (m, k)↓= 1,
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we show how to compute an extension σ A τ such that

(∃k)Rσ(m, k)↓= 1. (4.3)

Because X is dense, there are X A τ and k such that RX(m, k) ↓= 1. Let u be the use of this
computation, i.e. the part of the oracle X used in it. Now define σ = max{X �u, τ}. Then σ w τ
satisfies (4.3).

Now it is clear that for every m we can compute appropriate extensions σm such that X =
⋃

m σm is computable and (∀m)(∃k)Rσm(m, k)↓= 1, so that X ∈ X .

Theorem 4.16. DIM1
str is not a Π0

2-class. Hence it is properly Π0
2[Π

0
1].

Proof. Suppose that DIM1
str is Π0

2. Then, since clearly DIM1
str is dense, by Lemma 4.15 it contains

a computable real, contradicting that every computable real has strong dimension 0.

We conclude this section by summarizing its main results in the following table.

DIMα DIMα
str

α = 0 Π0
2 −Σ0

2 Π0
3[Σ

0
1] −Σ0

3

α ∈ (0, 1) ∩ ∆0
2 Π0

3 −Σ0
3 Π0

3[Σ
0
1] −Σ0

3

α = 1 Π0
3 −Σ0

3 Π0
2[Π

0
1] − (Σ0

2 ∪ Π0
2)

arbitrary α ∈ (0, 1) Π0
3 −Σ0

3 Π0
3 −Σ0

3

Question 4.17. Is it the case that DIMα
str is not in Π0

3 for any ∆0
2-computable α ∈ [0, 1)?

5 Effective Randomness Classes

We begin this section by pointing out some relationships between computable dimension, Church
randomness, and Schnorr randomness.

Analogously to what was done for the constructive case, the computable dimension of a class
A ⊆ C is defined as

dimcomp(A) = inf

{

s

∣

∣

∣

∣

there exists a computable
s-gale d for which A ⊆ S∞[d]

}

.

A selection rule is a function ϕ : {0, 1}∗ → {0, 1}. With every selection rule ϕ we associate a
function Φ : {0, 1}∗ → {0, 1}∗ defined by Φ(λ) = λ and

Φ(wi) =

{

Φ(w)i if ϕ(w) = 1,
Φ(w) if ϕ(w) = 0.

A set A is called Church random if every substring of χA (the characteristic string of A) defined
by a computable selection rule is stochastic, i.e., satisfies the law of large numbers. Consider the
following property of selection rules:

inf
w∈{0,1}∗

|Φ(w)|

|w|
> 0. (5.1)

A computable null set of exponential order is a set of the form San

[d], where d is a computable
martingale and a > 1. It is easy to check that a set is not in any computable null set of exponential
order if and only if {A} has computable dimension 1. With this observation, we can restate a result
of Schnorr as follows.
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Theorem 5.1. (Schnorr [20, Satz 17.8]) {A} has computable dimension 1 if and only if every
substring of χA selected by a computable selection rule with the property (5.1) is stochastic.

In particular every Church random sequence is not in any null set of the form San

[d] where d
is computable. In the words of Schnorr [21], “Church random sequences approximate the behavior
of Schnorr random sequences.”

Proposition 5.2. There are sequences with computable dimension 1 that are not Church random.

Proof. Let R be computably random, and let D = {2n | n ∈ N} be an exponentially sparse decidable
domain. Then A = R − D has computable dimension 1, but D can be computably selected, so A
is not Church random.

We now classify the Schnorr random sequences in the arithmetical hierarchy.

Theorem 5.3. RANDSchnorr is a Π0
3-class, but not a Σ0

3-class.

Proof. First note that RANDSchnorr ∈ Π0
3: X ∈ RANDSchnorr if and only if for every pair of codes

e and f , either the e-th partial computable function ϕe is not a computable order (i.e. is not total
or decreases at some point), ϕf is not a computable martingale (i.e. is not total or violates the
martingale property at some point), or X 6∈ Sϕe [ϕf ], and that every one of these options is Σ0

2.
The rest of the proof resembles that of Theorem 4.10. Fix a (non-computable) sequence of

computable martingales {dk}k∈
� and a sequence of computable orders {hk}k∈

� such that

(i) X ∈ RANDSchnorr ⇐⇒ ∀k(X 6∈ Shk [dk]).

(ii) Shk [dk] − Smin{hj :j<k}[
∑

j<k dj ] is dense for every k.

The dk can be defined by taking appropriate sums of computable martingales so that for any
computable martingale d, there is some dk such that dk(w) ≥ d(w) for all w. For the hk one can
take any family of computable orders such that every computable order h dominates some hk. (Of
course the dk and hk cannot be uniformly computable families, but that is of no concern to us.)

Let
⋃

k

⋂

s Ok,s be a Σ0
3-class. We define a continuous function f : C → C such that

∀k

(

X ∈
⋂

s

Ok,s ⇐⇒ f(X) ∈ Shk [dk]

)

(5.2)

so that by (i) we have X 6∈
⋃

k

⋂

s Ok,s ⇐⇒ f(X) ∈ RANDSchnorr.
As in the proof of Theorem 4.10 we define the image Y = f(X) in stages. Every time we

find a new piece of evidence that X ∈
⋂

s Ok,s, at stage s say, we build a piece of evidence that
Y ∈ Shk [dk] by choosing an appropriate finite extension at stage s. Such an extension can be found
by (ii). The rest of the proof is identical to that of Theorem 4.10.

With only some obvious changes one can also prove the following theorem.

Theorem 5.4. RANDcomp is a Π0
3-class, but not a Σ0

3-class.

Proof. Note that X is computably random if and only if for every e, ϕe is not a computable
martingale or X 6∈ S∞[ϕe], so the class is Π0

3. That it is properly Π0
3 is actually easier than the

proof of Theorem 5.3 since we only need the sequence {dk} and not the {hk}.
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In contrast to the universal constructive supermartingale d satisfying RAND = S∞[d], Theorem
5.4 implies that, even from a noncomputable standpoint, RANDcomp has no such universal object.

That is, RANDcomp 6= S∞[d] for any (arbitrarily noncomputable) supermartingale d, as otherwise
RANDcomp would be a Σ0

2-class.
In this paper we have considered only the extension of the artimetical hierarchy of reals by adding

one local quantifier. We end by remarking that one can add of course more local quantifiers. The
classes thus obtained also have natural inhabitants. To give an example, again from the theory of
randomness, recall that a set A is n-random if it is Martin-Löf random relative to ∅(n−1). So it is
1-random if it is Martin-Löf random, 2-random if it is Martin-Löf random relative to K, etc. Now
the class of n-random sets is Σ0

2 for every n, and in fact one can check that it is Σ0
2[Σ

0
n−1].
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