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Abstract

We introduce the study of Kolmogorov complexity with error. For a metric d, we define
C.(z) to be the length of a shortest program p which prints a string y such that d(z,y) < a.
We also study a conditional version of this measure C, ,(z|y) where the task is, given a string
y' such that d(y,y') < b, print a string z' such that d(z,z') < a. This definition admits both
a uniform, the same program should work given any y’ such that d(y,y') < b, and nonuniform
measures, where we take the length of a program for the worst case y’'. We study the relation
of these measures in the case where d is Hamming distance, and show an example where the
uniform measure is exponentially larger than the nonuniform one. We also show an example
where symmetry of information does not hold for complexity with error.

1 Introduction

Kolmogorov complexity measures the information content of a string typically by looking at the
size of the smallest program generating that string. Suppose we received that string over a noisy
or corrupted channel. Such a channel could change random bits of string, possibly increasing its
Kolmogorov complexity without adding any real information.

In this paper we explore a variation of Kolmogorov complexity designed to help us measure
information over a noisy channel. We define Kolmogorov complexity with error by defining the
complexity of a string z with error a as the smallest program generating a string z’ that differs
from z in at most a bits. We give tight bounds (up to logarithmic factors) on the maximum
complexity of such strings and also look at time-bounded variations.

We also look at conditional Kolmogorov complexity with errors. Traditional conditional Kol-
mogorov complexity looks at the smallest program that converts a string y to a string z. In our
context both x and y could be corrupted. We want the smallest program that converts a string close
to y to a string close to . We consider two variations of this definition, a uniform version where we
have a single program that that converts any ¥’ close to y to a string z’ close to z and a nonuniform
version where the program can depend on y’. We show examples giving a large separation between
the uniform and nonuniform definitions.

Finally we consider symmetry of information for Kolmogorov complexity with error. Tradi-
tionally the complexity a a pair (z,y) is roughly equal to the sum of the complexity of z and the
complexity of y given . We show that for any values of d and a the complexity of (z,y) with error
d is at most the sum of the complexity of z with error ¢ and the complexity of converting a string
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y with d — a error given x with a bits of error. We show the other direction fails in a strong sense,
we do not get equality for any a.

2 Preliminaries

We use |z| to denote the length of a string z, and ||A|| to denote the cardinality of a set A. All
logarithms are base 2.

We use dy(x,y) for the Hamming distance between two binary strings z,y, that is the number
of bits on which they differ. For z € {0,1}" we let B, (z, R) denote the set of n-bit strings within
Hamming distance R from z, and V(n, R) = Zf;l (™) is the volume of a Hamming ball of radius R

1
over n-bit strings. We will use the following approximation of V'(n, R) (see [1]) on several occasions.

LEMMA 1. Suppose that 0 < A < 1/2 and An is an integer. Then
onH(A)

L < V(n,n) < 20HO,
8nA(l — )

3 Defining Kolmogorov Complexity with Error

We consider several possible ways of defining Kolmogorov complexity with error. In this section we
present these alternatives in order to evaluate their relative merits in the coming sections. First,
we review the standard definition of Kolmogorov complexity. More details can be found in [5].

For a Turing machine 7', the Kolmogorov complexity Cr(z|y) of z given y is the length of
a shortest program p such that T'(p,y) = z. The theory of Kolmogorov complexity begins from
the following invariance theorem: there is a universal machine U such that for any other Turing
machine T, there exists a constant ¢y such that Cy(z|y) < Cr(zly) + cr, for all z,y. We now fix
such a U and drop the subscript.

DEFINITION 1. Let d : {0,1}" — R be a metric, and a € R. The complezity of x with error a,
denoted Cy(x) is Cy(z) = ming{C(z') : d(z',z) < a}.

We will also consider a time bounded version of this definition, C!(z) = ming {C*(z') : d(z,z") <
a}, where C*(z) is the length of a shortest program which prints  in less than #(|z|) time steps.

A relative version of Kolmogorov complexity with error is defined by Impagliazzo, Shaltiel
and Wigderson [3]. That is, they use the definition Cs(z) = min{C(y) : du(z,y) < d|z|}. We
prefer using absolute distance here as it behaves better with respect to concatenations of strings—
using relative distance has the disadvantage of severe nonmonotonicity over prefixes. Take, for
example, z € {0,1}" satisfying C(z) > n. Let y = 0°". Then Cy3(z) > n —logV(n,n/3) while
C1/3(zy) <logn + O(1). Using absolute error we have that Cy(zy) > Co(z) — O(logn), that is it
only suffers from logarithmic dips as with standard definition.

Defining conditional complexity with error is somewhat more subtle. We introduce both uniform
and nonuniform versions of conditional complexity with error.

DEFINITION 2. Uniform conditional complezity, denoted Cg7b(w|y), is the length of a shortest pro-
gram p such that, for any y' satisfying d(y,vy') < b it holds that U(p,y') outputs a string whose
Hamming distance from x is less than a.



DEFINITION 3. Nonuniform conditional complezity, which we denote C, (x| y) is defined as Cop =
miny max, {C(z' |¢) : d(z',z) < a and d(y',y) < b}.

In section 5 we study the difference between these two measures.

4 Strings of Maximal Complexity

One of the most famous applications of Kolmogorov complexity is the incompressibility method
(see [5], Chapter 6). To prove there exists an object with a certain property, we consider an object
with maximal Kolmogorov complexity and show that it could be compressed if it did not possess
this property.

This method relies on a simple fact about strings of maximal complexity: for every length n,
there is a string x of complexity at least n. This follows from simple counting. It is also easy to
see that, up to an additive constant, every string has complexity at most its length. What is the
behavior of maximal complexity strings in the error case?

Again by a counting argument, we see that for every n there is an z of length n with Cy(z) >
log2™/V(n,a) = n—logV(n,a). Upper bounding the complexity of strings in the error case requires
a bit more work, and has a close connection with the construction of covering codes. A covering
code C of radius a is a set of strings such that for every = € {0,1}" there is an element y € C such
that dg(z,y) < a. Thus an upper bound on the maximum complexity strings will be given by the
existence of covering codes of small size. The following Lemma, is well known in the covering code
literature, (see [1] or [4]).

LEMMA 2. For any n and integer R < n, there ezists a set C C {0,1}" with the following properties:
1. ||l £ n2"/V(n, R)
2. for every xz € {0,1}", there exists ¢ € C with dg(z,c) < R

3. The set C can be enumerated in time poly(2")

Proof. For the first two items we argue by the probabilistic method. The third item will be obtained
by derandomizing this argument with the method of conditional probabilities.

Fix a point z € {0,1}". We uniformly at random choose k distinct elements z1,...,z; of
{0,1}". The probability P, that z is not contained in U¥_, B(x;, R) is precisely

)
P =~k 1
@) W

< (1-V(n,R)/2") < T HVIWR (2)

For the inequality we have used the fact that e > 1 — z for any 0 < z < 1. Taking k to be
n2"/V (n, R) makes this probability strictly less than 2-". Thus the probability of the union of the
events P, over z € {0,1}" is, by the union bound, less than 1 and there exists a set of n2"/V(n, R)
centers which cover {0,1}". This gives items 1 and 2.

For item 3 we now derandomize this argument. Let ¢ = n2"/V (n, R) be the desired size of our
covering, and let x1,z9, ...,z be alist of z € {0,1}" in lexicographical order. Roughly speaking,
we will consider each z; in turn and decide if the covering is better with or without it, given the
partial covering selected from x1,...,z;—1. Initially, we know that the probability that £ randomly



chosen points do not form a covering is less than one. We add points to our covering in such a way
that this probability does not increase.

Say that we have considered the points z1,...,z;_1 and selected some subset of them X; ;1 to
be part of the covering, where || X;_1|| = k. At stage 7 we decide whether or not to include z; in
our partial covering. To do this we consider the two cases:

e We take X; := X;_1 U{z;} and the remaining ¢t — k — 1 elements of the covering are chosen
uniformly from z;41,...,%on.

o We take X; := X; 1, and the remaining ¢ — k elements of the covering are chosen uniformly
from z;y1,...,2on.

Following equation 1 we can calculate the probability that our result is not a covering in these two
cases. If the first is not larger than the second, we take z; as part of our covering. As these are
disjoint events, and we know that given the partial covering X; 1 the probability of not getting a
covering when choosing ¢ — k elements at random is less than one, by an averaging argument, the
probability of one of these events must also be less than one. O

THEOREM 1. For every n,a and z € {0,1}", Co(z) <n —logV(n,a)+ O(logn).

Proof. By Lemma 2 we know that a covering code with radius a of cardinality less than n2" /V (n, a)
exists. Let C be the lexicographically first such covering. Such a covering can be described by saying
“look for the lexographically first covering over {0,1}" of radius a”, and thus has a description of
size O(logn). For any z € {0,1}" there is an element ¢ € C such that dg(z,c) < a. Once we know
the covering, this element ¢ can be described by index in the covering, of size n+1logn—log V (n, a).
Thus the total description is of size n —log V' (n,a) + O(logn). O

One nice property of covering codes is that they behave very well under concatenation. Let Cy
be a covering code of {0,1}™ of radius Ry and C; be a covering code of {0,1}"2 of radius Ry. Now
let C = {ccd' : ¢ € C1,¢ € Co} be the set of all ordered concatenations of codewords from Co, with
codewords from Cc. Then C is a covering code over {0,1}"17™2 of radius Ry + Ry. We can use this
idea in combination with item 3 of Lemma 2 to efficiently construct near-optimal covering codes.
This construction has already been used for a complexity-theoretic application in [2].

THEOREM 2. Let 0 < A < 1/2 and let d = |An], for a sufficiently large n. There is a polynomial
time bound p(n) such that Ch(z) <n —logV(n,d)+ O(nloglogn/logn) for every z € {0,1}".

Proof. We construct a covering code over {0,1}" with radius d such that the ith element of the
covering can be generated in time polynomial in n. For some constant ¢, we let £ = clogn and divide
n into [n/£] blocks of length £. Let r = [Af]. Now by item 3 of Lemma 2 we can in time polynomial
in n construct a covering code over {0,1}¢ of radius r and of cardinality £2¢/V (¢, 7). Call this
covering Cy. Our covering code C over {0,1}" will be the set of codewords {cica--- ¢y ¢ : i € Cy}-
The size of this code will be:

HC” < (2é—log V(Z,r)—l—log@) [n/€] < 2n—[n/£] log V(£,r)+(2n/£) logt
As r = [M] we can use the estimates of Lemma 1 to obtain:
[n/€]logV(£,7) > nH(X\) — (n/f)log 2L > logV(n,d) — O(nloglogn/logn).

Thus ||C|| < 2”‘10€V(n,d)+0(nloglogn/logn)' -



5 Uniform vs. Nonuniform Conditional Complexity

In this section we show an example where the uniform version of conditional complexity is expo-
nentially larger than the nonuniform one. Our example will be for Cp4(z|z). Notice that this
example is the error correction problem. Given some z’ such that dy(z,z') < d, we want to recover
z exactly. The intuition behind the proof is the following: say we have some computable family S
of Hamming balls of radius d, and let z be the center of one of these balls. Given any z’ such that
d(z,z') < d, there may be other centers of the family S which are also less than distance d from
z'. Say there are ¢ of them. Then z has a nonuniform description of size about log¢ by giving the
index of z in the ¢ balls which are of distance less than d from z'.

In the uniform case, on the other hand, our program can no longer be tailored for a particular
z', it must work for any z’ such that d(z,z') < d. That is, intuitively, the program must be
able to distinguish the ball of z from any other ball intersecting the ball of z. To create a large
difference between the nonuniform and uniform conditional complexity measures, therefore, we wish
to construct a large family of Hamming balls, every two of which intersect, yet that no single point
is contained in the intersection of too many balls. The next lemma shows the existence of such a
family.

LEMMA 3. Given large enough length m of strings and d < m/2 satisfying the inequality
m(2H (d/m) — 1 — H(1 — 2d/m)) > 4logm + 2 (3)

there is a family of at least N a/m)) Hemming balls of radius d such that every two balls
intersect but no string belongs to more than 2m? balls.

Proof. The proof is by probabilistic arguments. Take m?N independent random balls By,..., B, x
of radius d. We will prove that with high probability at least N of them are different and satisfy
the statement.

First we estimate the probability that of the m2N centers at least N are distinct. For a fixed set
U of size N the probability all m2N centers fall in U is (N2~™)™*N_ The number of different sets
of size N is less than 2", thus by a union bound we obtain the probability these m?N centers lie
in any set of size N is at most (N 2_m)m2N 2N Taking the logarithm of this number and dividing
it by Nm we obtain

mlog N —m? +1=—m2H(d/m) + 1.

The inequality (3) implies that H(d/m) > 1/2 hence for large enough m the estimated probability
is close to 0.

Estimate now the probability that there are two disjoint balls. Fix two indexes i < 7 < mN. If
balls B;, B; are disjoint then the center x; of B; is at distance at least 2d from the center z; of B;.
The latter means that z; is at distance at most m — 2d from the string Z;, that is obtained from z;
by flipping all bits. The probability of this is equal to the ratio of cardinality of the ball of radius
m — 2d and 2™:

V(m,m—2d) _ gmH(1—2d/m) _ gm(H(1-2d/m)-1)
2m - 2m ’
Multiplying this probability by the number N (N — 1)/2 of different pairs j, j we get less than

gm(H(1-2d/m)~1)+4log m+2m(1—H(d/m)~1 < 1 /9,

This inequality is just a reformulation of (3).



It remains to estimate the probability that there is a string that belongs to more than 2m? balls
By’s. Fix z. For every i the probability that = lands in B; is equal to p = |B;|/2™. Using Lemma 1

we estimate p as:
2mH(d/m)—m—(10gm)/2—O(1) <p< 2mH(d/m)—m_

So the average number of ¢ with z € B; is at most pm?N < 2mH(d/m)=m(;n2N) = ;2. By the
Chernoff inequality the probability that the number of 7 such that x lands in B; exceeds twice the
average is at most

efpm2N/2 < exp(_QmH(d/m)fmf(log m)/270(1)m2N/2) _ exp(—2(3 10gm)/270(1)) <« 2 ™,

Thus even after multiplying it by 2™ the number of different x’s we get a number close to 0.
Thus with positive probability every balls B;, B; with 4 < j intersect, every string belongs to
at most 2m? B;’s and there are at least 2m(1=H(d/m)) Jifferent B;’s. O

THEOREM 3. Given d < n/2 let m be the largest number m € {2d,...,n} satisfying (3). Then
there is x of length n such that Cyq(z|z) < O(logn) while Cf 4(z|z) > m(1 — H(d/m)).

Ignoring additive terms of order O(logn), m is equal to min{n,d/a} where o = 0.353... is the
solution of the equation 2H(a) = 1+ H(1 — 2a) and Cf 4(z|z) > m(1 — max{H (), H(d/n)}),
where H(a) = 0.93....

Proof. Given n,d find m and find the first family satisfying the lemma. The list of balls has
complexity at most C(d,n) = O(logn). Append 0" ™ to all centers to get another family of balls,
this time of strings of length n. Obviously the new family also satisfies the lemma. For the center
z of every ball in the family we have Cy4(z|z) = O(logn), as given any z’ at distance at most d
from x we can specify z by specifying its index among centers of the balls in the family containing
z' in log(2m?) bits and specifying the family itself in O(logn) bits.

It remains to show that there is a center z with Cf ,(z|z) > m(1 — H(d/m)). Assume the
contrary and choose for every center z a program p, of length less than such that U(p,z') = z for
every z' at distance at most d from z. As the number of different centers is strictly greater than
the number of strings of length less than m(1 — H(d/m)), by the Pigeon Hole Principle there are
different centers z, x2 with pz, = pz,. However the balls with those centers intersect and there is
z' at distance at most d both from z1,z. Hence z; = U(p,z') = x2, a contradiction. O

6 Symmetry of Information

The principle of symmetry of information, independently proven by Kolmogorov and Levin [6],
is one of the most beautiful and useful theorems in Kolmogorov complexity. It states C(z,y) =
C(z)+C(y|z)+ O(logn) for any z,y € {0,1}". The direction C(z,y) < C(z)+C(y|z)+O(logn) is
easy to see—given a program for z, and a program for y given z, and a way to tell these programs
apart, we can print the pair (z,y). The other direction of the inequality requires a clever proof.

Looking at symmetry of information in the error case, the easy direction is again easy: the
inequality Cy(z,y) < Co(x) + Cy—q,a(y|z) + O(logn) holds for any a — let p be a program of
length C,(z) which prints a string z* within Hamming distance a of z. Let ¢ be a shortest
program which, given z*, prints a string y* within Hamming distance d — a of y. By definition,
Ci—a,a(y|z) = miny maxy C(y'|z') > miny, C(y'|z*) = |¢q|- Now given p and ¢ and a way to tell
them apart, we can print the pair (x,y) within d errors.



For the converse direction we would like to have the statement
For every d there exists a such that Cy(z,y) > Co(z) + Cg—q,a(y|z) — O(logn). (%)

We do not expect this statement to hold for every a, as the shortest program for z,y will have a
particular pattern of errors which might have to be respected in the programs for x and y given z.
We now show, however, that even the formulation () is too much to ask.

THEOREM 4. Let n be sufficiently large, and d = [An], for 0 < X\ < 1/2. There exists x,y €
{0,1}" such that Cq(z,y) = n —logV(n,d) + O(logn) yet Cy(y) > n — logV(n,a) — 2logn and
Ci—q,a(z|y) > log (0.91;:14-(1) —logV(n,d)V(n,d —a) for any 0 < a <d.

Proof. Coverings will again play an important role in the proof. Let C be the lexographically
first minimal size covering of radius d. Choose y of length n with C(y) > n, and let z be the
lexographically least element of the covering within distance d of y. It must be the case that
C(z) > n—logV(n,d) — 2logn, as otherwise we could obtain a shorter description of y. Notice
that C(z,y) < n —logV(n,d) + 3logn, as the string zz is within distance d of zy, and can be
described by giving a shortest program for z and a constant many more bits saying “repeat”.

It now remains to lower bound C,(y) and Cy_q (2 |y). As y has maximal complexity, for any
0 < a < d we have Cy(y) > n —logV(n,a) — 2logn. To lower bound Cy_qq(z|y) we will use
symmetry of information in the nonerror case. Let di be the Hamming distance between x and y.
We have have d; > 0.99d, as the maximal complexity of y implies log V (n,d;)+51logn > log V (n, d).
Let 7' be obtained from y by changing a random set of a bits on which z and y agree. Thus
C'|y,z) =log ("7, dl) Notice this means dg(z,y") = d1 + a, and so C(y',z) < logV(n,d; + a).
We show the converse holds in the following sense.

Cram 1. C(y'|xz) > log (,",)

Proof. We use symmetry of information to turn the task of lower bounding C(y' | z) into the task
of upper bounding C(y |y’, ). This works as follows: by symmetry of information,

Cly'y|z) = Clylz) + C(y' |y.z) = C(y' | 2) + Cly | ¥, 2).
We know that C(y|z) > logV(n,d;) and C(y'|y,z) > log ("_adl), thus we obtain C(y,vy'|z) =
log V(n,d)+log ("_adl). Now using the second part of the equality we have C(y' | z) > log V(n,d1)+
log (", dl) — C(y|y',z). Tt thus remains to upper bound C(y|y',z). The string y differs from 3/
on a bits out of the di + a bits on which ¢ and z differ. Thus C(y|y’,z) < log (“*). Hence,
C(y'|z) > logV(n,d;) + log ("_adl) —log (dlja) > log (dI"Jra). O
<

It follows from the claim that C(y' | z") > lo (dﬁ-a) —logV(n,d—a), for any =’ with dy (z,z")
d —a. Thus Cqgu(z|y) > C(2'|y) = C(z') + C(y'|2') - C(y') > log () —logV(n,d —a) -
log V(n,d). O
We can achieve the formulation (*) within an error term of log V' (2n,d).
THEOREM 5. For any n,d < n and z,y € {0,1}",
Ci(z,y) 2 Co(z) + Cap(y | z) —log V(2n,d) — O(logn)

Proof. First note that Cy(z,y) > C(z,y) — log V(2n,d) — O(logn), as given the program p which
prints 2/, y' such that dy (zy, z'y") < d we can then describe z,y with log V(2n,d) more bits. Now
applying ordinary symmetry of information we obtain Cy(z,y) > C(z) + C(y|z) — log V(2n,d) —
O(logn). As C(y|z) > Cyo(y|z) we obtain Cy(z,y) > Co(z) + Cyo(y | z) —log V(2n,d). O
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