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Abstract. We investigate the class of disjoint NP-pairs under different reduc-
tions. The structure of this class is intimately linked to the simulation order of
propositional proof systems, and we make use of the relationship between propo-
sitional proof systems and theories of bounded arithmetic as the main tool of
our analysis. Specifically we exhibit a pair which is complete under strong re-
ductions for all disjoint NP-pairs representable in a theory. We use these pairs to
explain the simulation order of NP-pairs under these reductions. As corollaries
we also get simplified proofs of results obtained earlier in [5] and [7].

1 Introduction

Disjoint NP-pairs (DNPP) naturally occur in cryptography (cf. [6]). The in-
vestigation of disjoint NP-pairs in connection with propositional proof systems
was initiated by Razborov [17] and further developed by Pudlak [16] and K&bler
et al. [7]. These applications attracted more complexity theoretic research on
the structure of the class of disjoint NP-pairs (cf. [4,5,7]). Various reductions
between NP-pairs were introduced by Grollmann and Selman [6]. For the most
usual form of a many-one-reduction between DNPP a polynomial time com-
putable function is required to map the components of the two pairs to each
other. We denote this reduction here by <,. Later Kébler et al. defined in [7]
a strong reduction (denoted by <j), where additionally to <, the reduction
function has to map the complements of the pairs to each other.

One of the most prominent questions regarding disjoint NP-pairs is whether
there exist complete pairs for the class of all DNPP under these reductions.
These problems remain open and various oracle results from [4] indicate that
these are indeed difficult questions. Under the assumption that there is an
optimal proof system, however, Razborov showed the existence of a <)-complete
pair. This was improved by Kébler et al. in [7] to the existence of a complete
pair for <.

Razborov associates to a proof system a canonical disjoint NP-pair and
uses the relationship between theories of bounded arithmetic and propositional
proof systems for his investigation. In this paper we define another canonical
pair for a proof system which plays the same role for the stronger < -reduction
as Razborov’s pair for <,. We show that these canonical pairs are quite typical
for the class of all DNPP in the sense that every DNPP is <;-reducible to such
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a canonical pair, and if there exists a <;-complete pair then it is equivalent to a
canonical pair. As one consequence we obtain that, while <, and <; are gener-
ally different, the existence of a <,-complete pair already implies the existence
of a <s;-complete pair. This was also observed by Glafer et al. in [5] using direct
arguments where no reference to proof systems is made.

In this paper, however, we aim to explain some facts about the structure of
disjoint NP-pairs by using the close relationship between NP-pairs, proof sys-
tems and bounded arithmetic. This also considerably simplifies proofs of earlier
results in [5] and [7] which were originally shown by more involved simulation
techniques.

Pursuing the afore mentioned goal we start in Sect. 2 by reviewing relevant
facts about the connection between propositional proof systems and bounded
arithmetic. We only give a very brief presentation tailored to our applications
in later sections and refer the reader to [8] or [15] for a detailed account of this
rich relationship.

In Sect. 3 we define and separate the afore mentioned reductions between
NP-pairs.

In Sect. 4 we start to explain the relationship between disjoint NP-pairs and
propositional proof systems by restricting the class of all DNPP to the DNPP
representable in some theory 7' of bounded arithmetic, where a DNPP is called
representable in T if the disjointness of the pair is provable in the theory T'.
We present a <;-complete pair for all DNPP representable in sufficiently strong
theories. To make the paper self contained we also reprove some known results.

In Sect. 5 we show that if <;-complete pairs exist then these are equivalent to
a canonical pair from Sect. 4 and derive some consequences on the relationship
between the simulation order of proof systems and the class of DNPP.

In Sect. 6 we discuss separators and Turing reductions. We show that our
pairs from Sect. 4 are candidates for NP-pairs which can not be separated by
sets from P, and that the class of all DNPP representable in some theory T is
closed under smart Turing-reductions implying that even the existence of smart
Turing-complete pairs suffices for the existence of <;-complete DNPP which is
also shown in [5].

Finally in Sect. 7 we conclude with an application to the construction of
hard tautologies from pseudorandom generators (see [1], [9] and [10]).

2 Preliminaries

Propositional proof systems were defined in a very general way by Cook and
Reckhow in [3] as polynomial time functions P which have as its range the set
of all tautologies. A string 7 with P(7) = ¢ is called a P-proof of the tautology
¢. By P F<p ¢ we indicate that there is a P-proof of ¢ of length < m. If ¢, is
a sequence of propositional formulas we write P F, ¢, if there is a polynomial
p such that P Fcp,.) ¢n-

Given two proof systems P and S we say that S simulates P (denoted by
P < 8) if there exists a polynomial p such that for all tautologies ¢ and P-
proofs 7 of ¢ there is a S-proof 7’ of ¢ with |7'| < p(|n]). If such a proof 7’ can
even be computed from 7 in polynomial time we say that S p-simulates P and



denote this by P <, S. A proof system is called (p-)optimal if it (p-)simulates
all proof systems. A proof system P is called polynomially bounded if there is a
polynomial p such that P t-<,,|) ¢ for all tautologies ¢. By a theorem of Cook
and Reckhow in [3] polynomially bounded proof systems exist iff NP=coNP.

In this paper we are only concerned with sufficiently strong proof systems
simulating the extended Frege proof system E'F, where EF is a usual textbook
proof system based on axioms and rules and augmented by the possibility to
abbreviate complex formulas by propositional variables to reduce the proof size
(see e.g. [8]). For simplicity we call proof systems simulating EF strong. A
method how to actually construct strong proof systems was recently described
in [11].

We now review the relationship between theories of arithmetic and proof
systems. Let L be the language of arithmetic (cf. [8]). Bounded L-formulas are
formulas in the language of L where only quantifiers of the form (Vz < ¢(y))
and (3z < s(y)) occur with L-terms ¢ and s. In the following we are particularly
interested in I7? and X%-formulas where only bounded universal and bounded
existential quantifiers are allowed, respectively.

To explain the connection to propositional proof systems we have to trans-
late L-formulas into propositional formulas. Let ¢(z) be a IT?-formula. We can
assume that ¢ is of the form (Vy)|y| < |z|*¥ — v (z,y) with some polynomial
time computable predicate 1. Hence we can compute 1(z,y) by polynomial size
boolean circuits C), for numbers z of length n. From C),, we build a proposi-
tional formula ||¢||™ with atoms py,...,p, for the bits of z, atoms q1,...,q,x
for the bits of y and auxiliary atoms r1,...,7,00) for the inner nodes of C;.
The formula ||¢||™ describes that if the values for 7 are correctly computed from
p and g then the output of the computation of C), is 1. Thus we get a sequence
of propositional formulas ||¢||™ of polynomial size in n and ||¢||™ is a tautology
iff p(z) holds for all natural numbers of length < n.

Encoding propositional formulas as numbers in some straightforward way
we can in a theory T speak of propositional formulas, assignments and proofs.
Let Prfp(m, ¢) be a L-formula describing that 7 is the encoding of a correct
P-proof of the propositional formula encoded by ¢. Similarly, let Taut(y) be
a L-formula asserting that all assignments satisfy the formula ¢. Because P
is a polynomial time computable function Prfp is definable by a X?-formula
whereas Taut is in I7?.

The reflection principle for a propositional proof system P is the L-formula

RFN(P) = (Vr)(Vp)Prp(m, ) — Taut(p)

and states a strong form of the consistency of the proof system P. From the
last remark it follows that RFN(P) is a VII?-formula.

In [13] a general correspondence between L-theories 7' and propositional
proof systems P is introduced. Pairs (T, P) from this correspondence possess
in particular the following two properties:

1. For all (z) € IT? with T + (Vz)p(z) we have polynomially long P-proofs
of the tautologies ||p(z)||".



2. T proves the correctness of P, i.e. T F RFN(P). Furthermore P is the
strongest proof system for which 7" proves the correctness, i.e. T' - RFN(S)
for a proof system S implies S <, P.

The most prominent example for this correspondence is the pair (S5, EF) where
S5 is a L-theory with induction for X%-formulas. This in particular allows the
formalization of polynomial time computations and the provability of its basic
properties (see e.g. [8] Chapter 6).

To every L-theory T' D Si with a polynomial time set of axioms we can
associate a proof system P which is unique up to <,-equivalence by property 2
above. Conversely every strong proof system has a corresponding theory, but
here according to property 1 only the VIT?-consequences of T are determined
by P.

As the correspondence only works for sufficiently strong proof systems we
will restrict ourselves to proof systems P simulating the extended Frege-system
EF and theories T D S3.

By N we denote the standard model of arithmetic which is in particular a
submodel of all models of theories 7" considered here.

3 Reductions between NP-Pairs

A pair (A, B) is called a disjoint NP-pair (DNPP), if A, B € NP and ANB = .
To exclude trivial cases we additionally require A # () and B # (. We consider
the following reductions between disjoint NP-pairs.

Definition 1. Let (A, B) and (C,D) be DNPP.

1. (A, B) is polynomially reducible to (C,D) ((A,B) <, (C, D)), if there ezists
a function f € FP such that f(A) C C and f(B) C D.

2. (A, B) is strongly reducible to (C,D) ((A,B) <s (C,D)), if there exists a
function f € FP such that f~'(C) = A and f~'(D) = B.

3. As usual we write (A,B) =, (C,D) for (A,B) <, (C,D) and (C,D) <,
(A, B). =4 is defined in the same way.

(A,B) <, (C,D) does not in general imply that A and B are reducible to C
and D, respectively, but if f realizes a <;-reduction from (A4, B) to (C, D), then
f is simultaneously a many-one-reduction between A and C' as well as between
B and D. Equivalently we can also view <, as a reduction between triples. In
addition to the two conditions f(A) C C and f(B) C D for <, we also require
f(AUB) CCUD.

Obviously <, is a refinement of <,. Under the assumption P # NP this is
indeed a proper refinement. The reason for this lies in the following proposition:

Proposition 2. For every DNPP (A, B) there exists a DNPP (A', B') such
that (A, B) =p (A',B") and A', B' are NP-complete.

Proof. Choose A’ = A x SAT and B’ = B x SAT. Then we have (A4, B)
(A", B") via z — (z, o) with a fixed formula ¢y € SAT, and (4", B') <, (4,
via the projection (z, p) — .

oEQ



With this proposition we can easily separate the reductions <, and <; under
the assumption P # NP. Namely, let A and B be nonempty sets in P such that
AU B is also nonempty. Choose A’ and B’ as in the last proposition. Then
(A,B) =, (A',B') but (4,B) #, (A',B’) because (A',B') <; (A, B) would
imply in particular A’ <P A and hence P=NP. On the other hand if P=NP
then all DNPP (A, B) where all three components A, B, AU B are nonempty
would be <,-equivalent. This equivalence of P # NP and the separation of <,
from <, for DNPP with all three components nonempty (or equivalently for
DNPP with all three components infinite) is also observed in [5].

4 Representable NP-Pairs

In the following we investigate the relationship between disjoint NP-pairs and
propositional proof systems. For this we will use the correspondence between
proof systems and theories of bounded arithmetic as explained in the Sect. 2.
For this section let P be a strong proof system and T' be a corresponding theory.

Following Razborov we call a X?-formula ¢ a representation of an NP-set
A, if for all natural numbers a

NEyla) < acA.

A DNPP (A, B) is representable in T, if there are X?-formulas ¢ and v repre-
senting A and B, respectively, such that

T+ (Vo) (-p(x) V ~9(z)) -

For the last line we also use the abbreviation T - AN B = (). Since ANB = is
a VIT?-formula we can also express the disjointness of A and B propositionally
by the sequence of tautologies ||—¢(z) V-1 (z)||", which we again shortly denote
by ||AN B = 0||™.

The DNPP representable in 7' can also be characterized via the correspond-
ing proof system P in the following way:

Proposition 3. A DNPP (A, B) is representable in T if and only if
PH, |[ANB=0|"
for suitable representations of A and B.
Proof. Let ¢ and v be representations for A and B, respectively, such that
T+ (Vz)(-ep(z) V ()
Because this is a VIT?-formula, we have
Py [[mo(z) vV —ep(a)]”,

which we write by definition as P I, ||A N B = 0||".



For the other direction let ¢ and 1 be representations of A and B, such that
for some natural number k£ we have

Prcpi [|=e(z) v —p(a) [

Consider the formula
¥ () = p(a) A @r)|n| < [2]F A PrEp(m, | =o(y) V - (y)]*) .

We have ¢/ € X% and furthermore N' = (Vz)y'(z) < %(x), i.e. ¢ is also
a representation of B. From T+ RFN(P) it follows that T + (Vz)(—¢(z) V
—-9)'(z)), hence (A, B) is representable in T O

We remark that in the last proof we only have to change the representation
of one of the NP-sets (in the proof of that of B) when switching between the rep-
resentation of the DNPP (A, B) in the proof system P and in the corresponding
theory T'.

Lemma 4 (Razborov [17]). The set of all DNPP representable in T is closed
under <,-reductions.

Proof. Let (A,B) and (C,D) be DNPP such that f : (4,B) <, (C,D) and
T+ CND ={. Consider the NP-sets

A'={z|z € Aand f(z) € C}
B'={z|z € B and f(z) € D} .

Obviously A = A" and B = B'. From T D S} and f € FP we get T
(Vz)(3) f(z) = y. Hence

TH(Vz)(z e ANB' — f(z) e CND)
and with T+ CND =0 we conclude T + A' N B' = . O

Following Razborov [17] we associate a disjoint NP-pair (Ref(P),SAT*)
with a proof system P with

Ref(P) = {(¢,1™) | P F<m ¥}
SAT* = {(¢,1™) | ~p € SAT} .

(Ref(P),SAT™) is called the canonical pair of P.

Lemma 5 (Razborov [17]). The canonical pair of P is representable in the
theory T

Proof. We argue in T. Let (¢,1™) € Ref(P). Then there is a P-proof 7 of
@. Since RFN(P) is available in T" we conclude from Prfp(m, ¢) the formula
Taut(¢), hence ¢ ¢ SAT and therefore (p,1™) ¢ SAT*. O



Now we associate a second disjoint NP-pair with a proof system P. For a
propositional formula ¢ let Var(y) be the set of propositional variables occurring
in ¢. Let

Ui (P) ={(p,%,1™) | Var(p) N Var(¢)) =0, —¢ € SAT and P F<,, ¢ V 9}
Uz = {(p,,1™) | Var(p) N Var(¢)) = 0 and —1p € SAT} .

Let us first argue that (U1(P),Uz) is indeed a disjoint NP-pair. Clearly both
components are in NP. Let (p,,1™) € U1 (P). Since we have a P-proof of ¢ V1
the formula is a tautology. Because ¢ and 1 do not share variables one of ¢
or v is itself a tautology. Because — is satisfiable v is a tautology. Therefore
-1 ¢ SAT and hence (¢, 9, 1™) ¢ Us.

We could have defined the pair in a more symmetric way by requiring P F<;,
@ V1 also for the second component but for the following this is not important.
As for the canonical pair we get:

Lemma 6. The pair (U1(P),Us) is representable in T.

Proof. Let (¢,9,1™) € U;(P) and 7 be a P-proof of ¢ V 9 of length < m.
Because —¢ € SAT we have an assignment a with ¢(a) = 0. If we substitute
the variables of ¢ by 0 or 1 according to a, we get from the proof 7 a proof 7’
of 1. Hence we have

T+ 3n")Prfp(n' 1) .

Because T proves the correctness of P, we get T F Taut(¢) and thus T +
(p,9,1™) € Us. O

Now we come to the main theorem of this section which states the com-
pleteness of (U1 (P),Us) for all DNPP representable in 7' under <;-reductions.

Theorem 7. A DNPP (A, B) is representable in T if and only if (A, B) <;
(UL(P), Ua).

Proof. Let (A, B) be a DNPP such that T+ AN B = (). Let the NP-sets A and
B be of the form

A={z|@Yly| < |2[7D A (,y) € C}
B = {z| (32)|2| < |z|°M) A (z,2) € D}

with polynomial time predicates C' and D. Because of the correspondence be-
tween T and P there is a polynomial p for the VII?-formula A N B = () such
that

Prepmy [ANB =0|" .

Here the formula ||[A N B = (§||" is more explicitly ||(z,y) & C V (z,2) ¢ D||"
and has propositional variables for z,y and z and auxiliary variables for the
computation of boolean circuits for C and D. We can plug into this formula
natural numbers a of length n for z by substituting the propositional variables
corresponding to z by the bits of a. We indicate this by the suffix (z/a).



Now we claim that the function

(@) = (I(z,9) & Cll“(z/a),l|(z,2) & D||*(z/a), 1714))

realizes a <;-reduction from (A4, B) to (U1(P),Us).

If we choose different auxiliary variables for the computation of C' and D and
also disjoint variables for y and z, then the formulas ||(z,v) ¢ C||!*(z/a) and
|l(z, 2z) & D||!*l(z/a) have no common variables. Furthermore for every natural
number a the formulas

I(z,y) ¢ Cll* (z/a) V ||(z,2) ¢ D||*(z/a) =
I(z,y) ¢ CV (z,2) ¢ Dl|*l(z/a) =
IANB =0 (z/a)

have P-proofs of length < p(|a|), which we get from the P-proofs of ||ANB =
0|'el by substituting the variables for = by the bits of a.
The last thing to check is that the formula

—ll(z,y) ¢ ClI* = ll(z,y) € C||I“,

expressing, that there is a correct accepting computation of C with input (z,y),
is satisfiable if and only if the variables of z are substituted by the bits of a
number a € A.

Similarly, —||(z, z) € D|l*(z/a) is satisfiable if and only if a € B.

The backward implication follows from Lemma 6 and the fact, that the
DNPP representable in T are closed under <, and hence also under <, accord-
ing to Lemma 4. ad

The pair (U;(P),Uz) strongly resembles the interpolation pair defined by
Pudlédk in [16]:

1Y = {(p, 9, m) | P(m) = ¢ V4, Var(p) N Var(sp) = @ and ~¢ € SAT}
Ip ={(¢,%, ) | P(r) = ¢ V4, Var(p) N Var(y) = ) and ~¢ € SAT} .

This pair is p-separable, if and only if the proof system P has the efficient
interpolation property. For ||.||-translations of VIT?-formulas provable in T' we
can efficiently construct polynomially long P-proofs (i.e. with functions from
FP). Hence the proof of the last theorem also shows the <;-completeness of
(I%,I}) for all DNPP representable in 7.

In [16] Pudlak defined a DNPP (A4, B) to be symmetric if (B, A) < (4, B).
With Lemma 6 also the pair (Us,U;1(P)) is representable in 7', hence by the
last theorem (U;(P),Us) is symmetric even with respect to the stronger <,-
reduction.

As a corollary of Theorem 7 we obtain the <,-completeness of the canonical
pair for all DNPP representable in T', which was shown by Razborov:

Theorem 8 (Razborov [17]). A DNPP (A, B) is representable in T if and
only if (A, B) <, (Ref(P), SAT™).



Proof. For the forward implication we reduce (U1(P),Us;) to (Ref(P),SAT*)
via the projection

with a suitable polynomial p.

Let (¢,1,1™) € Uy (P). Then there is a P-proof 7 of length < m of ¢(Z) vV
(7). The formula —¢(Z) is satisfiable, so by substituting a satisfying assignment
a into the proof ™ we get a proof " with |7'| < m for p(a) V (7). Since ¢(a)
is a false formula without free variables we can evaluate it in polynomially long
P-proofs to L. Let p be a corresponding polynomial. Thus we get a P-proof of
length < m + p(|¢p|) for 4.

If (p,1,1™) € Uy, then —1p is satisfiable and hence (1, 1 P(¢1)) € SAT*.

This <,-reduction from (U (P), Uz) to (Ref(P),SAT*) yields together with
the last theorem the <,-completeness of (Ref(P), SAT*) for all DNPP repre-
sentable in T'.

The backward implication follows from Lemma 4 and Lemma 5. O

Thus the pairs (Ref(P),SAT*) and (U1(P),Us) are complete for all DNPP
representable in 7" under <,- and <,-reductions, respectively.

5 NP-Pairs and the Simulation Order of Proof Systems

Now we use the results of the last section to make some observations about the
connection between the simulation order of proof systems and disjoint NP-pairs.

In Sect. 3 it was shown that the reductions <, and <, are different under
the assumption P # NP. Still we have:

Proposition 9. For all strong proof systems P and DNPP (A, B) it holds
(A,B) <, (U1(P),Uz) <= (A,B) <, (U1(P),Us) .

Proof. Let (A,B) <, (Ui(P),Us). (Ui(P),Us) is representable in 7. Hence
with Lemma 4 also (A, B) is representable in 7', from which we conclude with
Theorem 7

(AaB) <s (UI(P)aUZ) :

The opposite implication follows by definition. O

Corollary 10. Let P and S be strong proof systems. Then we have:
(Ref(P),SAT*) <, (Ref(S),SAT*) <= (U:1(P),Uz) <, (U1(S),U2) .
Proof. For the first direction we get from
(U1(P),Uz) <p (Ref(P),SAT") <, (Ref(S), SAT™) <, (U1(S), Uz)
together with the last proposition
(U1(P),U2) <5 (U1(S),Us) -
The other implication follows from

(Ref(P), SAT*) <, (U1(P), Us) <p (U1(S), Us) <p (Ref(S), SAT*) .



The following proposition is well known (see e.g. [16]):

Proposition 11. If P and S are proof systems with P < S, then we have
(Ref(P), SAT*) <, (Ref(S),SAT™) .

Proof. By assumption there is a polynomial p, such that for all formulas ¢ and
P-proofs 7 of ¢ there is a S-proof 7’ of length < p(|7|). Therefore the mapping

(9, 1) = (p, 1)
is a <p-reduction from (Ref(P), SAT*) to (Ref(S), SAT*). O

Proposition 11 and Corollary 10 yield:
Corollary 12. If P and S are strong proof systems with P < S, then we have

(U1(P),Us) <5 (U1(5),U2) -

Kébler, Messner and Tordn proved in [7] that the existence of an optimal proof
system implies the existence of <;-complete NP-pairs. This result also follows
from the last corollary. Additionally we can exhibit a complete DNPP in this
case:

Corollary 13. If P is an optimal proof system, then (U1 (P),Us) is <s-complete
for the class of all DNPP.

Proof. Let P be an optimal proof system and (A, B) a DNPP. The sequence
of tautologies ||A N B = (||™ can be constructed in polynomial time. Hence
there is a proof system S with polynomially long proofs of these tautologies
(for example just add these tautologies as axioms to the extended Frege sys-
tem). Using Proposition 3 and Theorem 7 we get (4, B) <, (U1(S),Uz). By
assumption we have S < P. Together with the previous corollary this yields
(U1(8),Us) <s (U1(P),Us), and hence (A, B) <s (U1(P),Us).

Therefore the pair (Ui (P),Us) is <,-complete for all DNPP. 0

Proposition 14. Let (A, B) be <p-complete for the class of all DNPP. Then
we have (A, B) =, (Ref(P),SAT*) for some proof system P.

Proof. As in the last proof let P be a proof system with P -, ||[AN B = §||".
Then (4, B) <, (Ref(P),SAT*) and by assumption (Ref(P),SAT*) <, (4, B).
O

In the same way we get:

Proposition 15. Let (A, B) be <;-complete for the class of all DNPP. Then
we have (A, B) =5 (U1(P),Us) for some proof system P.

The following proposition is also observed in [5]:

Proposition 16. The class of all DNPP contains a <,-complete DNPP if and
only if it contains a <s;-complete DNPP.

10



Proof. For the first direction we can assume with Proposition 14 that the <p,-
complete DNPP has the form (Ref(P),SAT*) for some proof system P. Then
by Theorem 7 and Theorem 8 all DNPP are <;-reducible to (U;(P), Us).

The other direction holds by definition. O

Besides < and <, we can also study weaker reductions for propositional
proof systems. In [12] a weak reduction <’ is defined between proof systems P
and @ as follows: P <’ Q holds iff for all polynomials p there exists a polynomial
g such that for all tautologies ¢

PFpo) ¢ = QF<q(le) ¢ -
We first observe that it is easy to separate < and <’:

Proposition 17. Let P be a proof system that is not polynomially bounded.
Then there exists a proof system Q such that P <" Q but P £ Q.

Proof. Let P be given. We define the system (). Q-proofs consist of multiple
copies of P-proofs where the number of copies depends on the length of the
P-proof, more precisely Q(m) = ¢ iff there exists a P-proof @' of ¢ such that
7 = (n')! where the number [ of the copies of 7’ is determined as follows. Let
k be a number such that |p|*~' < |7'| < |¢|¥. Then [ is chosen as [ = ||k~ Dk,
Hence we have

_ _ 2_ o 2
lo|F 2| BDE = k"1 < || < |gofF || BDE = ||F° .

P is <'-simulated by Q because for each polynomial p majorized by n* we can
choose q as nkQ, ie.

P |—S‘¢,|k p = Q |_§|<p|k2 @ .
But if P is not polynomially bounded then there is apparently no polynomial
g such that

Prem ¢ = QF<ym) ¢

ie. P £ Q. O

Now we want to use this observation to illustrate with some examples that
the converse of Proposition 11 does not hold. We first show an analogue of
Proposition 11 for <’ for proof systems fulfilling the moderate condition of the
next proposition.

Proposition 18. Let P be a proof system with the following property. There is
a polynomial p such that for all tautologies ¢ P t-<m ¢ implies P tcpimy oV L™
where L™ stands for LV ...V L (m disjuncts).

Let further Q be a proof system such that P <" Q. Then (Ref(P),SAT*) <,
(Ref(Q), SAT™).

Proof. We claim that for some suitable polynomial ¢ the mapping

(9, 1) = (v L™, 190M)
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performs the desired <,-reduction. To see this let first (¢,1™) be in Ref(P).
From P F<p ¢ we get by assumption P by ¢ V L™. Because of P < Q
there is a polynomial ¢ such that Q F<yim) ¢ V L™, ie (p V L™, 19(m)) ig in
Ref(Q).

If (p,1™) € SAT* then the satisfiability of —¢p is transferred to —=(pV L™) =
- ATA...AT. O

Combining the last two propositions we get the afore mentioned counterexam-
ples to the converse of Proposition 11. One such example is given by Pudlik in
[16], where he shows that two versions of the cutting planes proof system CP
which do not <-simulate each other have <j,-equivalent canonical pairs. Here
we construct to every proof system P which fulfills the weak condition from the
last proposition a nonequivalent proof system () with the same canonical pair.

Corollary 19. Let P be a proof system which fulfills the condition from Propo-
sition 18 and is not polynomially bounded. Then there exists a proof system Q
such that

P #Q and (Ref(P),SAT*) =, (Ref(Q),SAT") .

Proof. The proof system @ constructed from P in Proposition 17 fulfills P <’
Q@ < Pand P «£ Q. Hence P # Q.

By Proposition 11 we have (Ref(Q), SAT*) <, (Ref(P),SAT*) and applying
Proposition 18 we conclude (Ref(P),SAT*) <, (Ref(Q), SAT™). O

We call a proof system <’-optimal if it <’-simulates all proof systems. The
hypothesis of Proposition 18 is fulfilled by all proof systems which are closed
under the weakening rule, i.e. which can infer from a formula ¢ the disjunction
@ V 19 for an arbitrary formula 1. Therefore we have for any proof system
P a stronger system fulfilling the hypothesis of Proposition 18 which can be
obtained for example by augmenting P by the weakening rule.

Hence from Proposition 18 we get in the same manner as in Corollary 13
the existence of complete NP-pairs under a possibly weaker assumption:

Corollary 20. If there exists a <'-optimal proof system then there exist disjoint
NP-pairs which are <,- and <;-complete for the class of all DNPP.

6 Separators and Turing Reductions

For disjoint NP-pairs we can also study Turing reductions as defined by Groll-
mann and Selman in [6]. For this we need the notion of a separator.

Definition 21. A set S is a separator for the DNPP (A,B) if A C S and
BCS.

Of central interest is the case where a given DNPP has a separator belonging
to P. Such a pair (A, B) is called p-separable. The set of all p-separable DNPP
form the lowest degree with respect to the <,-reduction, namely:

Proposition 22. Let (A, B) be a p-separable DNPP. Then (A, B) is <p-reducible
to any other disjoint NP-pair. If on the other hand a pair (C, D) is <,-reducible
to (A, B) then also (C, D) is p-separable.

12



For the stronger <;-reduction this minimal degree shrinks to the set of all p-
separable pairs with empty complement, i.e. sets of the form (A, A) with A €
P:

Proposition 23. Let A be a set in P. Then (A, A) is <s-reducible to any other
disjoint NP-pair. If on the other hand a pair (C,D) is <s-reducible to (A, A)
then D = C and C € P.

But also the set of all p-separable pairs with nonempty complement splits into
different =;-degrees. Firstly, no such pair is <;-reducible to any pair from the
minimal =;-degree. Secondly, if (A, B) is a p-separable DNPP then the pair
(A x SAT, B x SAT) is also p-separable and both of its components are NP-
complete, hence we have:

Proposition 24. P # NP iff there ezxist p-separable pairs (A, B) and (C, D),
such that AU B and C'U D are nonempty and (A, B) #5 (C, D).

The question whether p-inseparable pairs exist is open. Candidates for p-
inseparable pairs come from cryptography (see [6]) and proof systems. Namely,
Krajitek and Pudldk demonstrate in [14] that a pair (Ag, A1) associated with
the RSA-cryptosystem is representable in the theory S corresponding to EF.
By the results from Sect. 4 this means that (4g, A1) <, (Ref(EF),SAT*) and
(Ao, A1) <s (Ui(EF),Us). Assuming the security of RSA the pair (A4y, 41)
is not p-separable, hence under this assumption neither (Ref(P),SAT*) nor
(U1(P),Us) is p-separable for any P > EF.

If we look at the property of symmetry of pairs under <; it is clear that a
DNPP (A4, B) can not be symmetric if we choose A from P and B NP-complete.
In other words:

Proposition 25. P # NP iff there exist non-symmetric pairs with respect to
<.

A similar result for <, is not known as <,-non-symmetric pairs are p-inseparable
and it is not clear how to derive the existence of p-inseparable pairs from the
assumption P # NP.

We now come to the definition of Turing-reductions between DNPP from
[6]:
Definition 26. Let (A, B) and (C,D) be DNPP. We say that (A, B) is Turing
reducible to (C, D) ((A,B) <7 (C, D)), if there exists a polynomial time oracle
Turing machine M such that for every separator T of (C,D) L(MT) separates
(4, B).

If for inputs from AU B the machine M makes only queries to C U D we
call the reduction performed by M a smart Turing reduction.

In [5] GlafBler et al. prove that the existence of a complete DNPP under smart
Turing reductions already implies the existence of a <,-complete DNPP (and
hence by Proposition 16 also of a <;-complete pair). We can easily reprove their
result in our framework by noticing:

Lemma 27. The set of all DNPP representable in a theory T is closed under
smart Turing reductions.
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Proof. Let the pair (A, B) be smartly Turing reducible to (C, D) via the de-
terministic oracle Turing machine M, and let (C, D) be representable in T'.
Consider the NP-sets

A'={z |z € A and M(z) accepts}
B'={z|z € B and M(z) rejects} .

By "M (z) accepts” we mean that M accepts the input z by a computation
where all oracle queries that are positively answered are verified by a computa-
tion of a nondeterministic machine for C' and all negative answers are verified by
D. Since the reduction is smart we have A = A’and B = B. For T+ A'NB’' = ()
it suffices to show in T the uniqueness of the computation of M at inputs z
from AU B. T can prove the uniqueness of computations of the deterministic
machine M, and the possibility to answer an oracle query both positively and
negatively is excluded by T+ C N D = (. 0

From this we conclude:

Proposition 28. Suppose (A, B) is a smart <p-complete pair. Then for any
theory T such that T+ AN B = 0 the pair (U1(P),Us) is <;-complete for all
DNPP where P is the proof system corresponding to T.

Proof. Choose a theory T with T H AN B = (). Then by the last lemma all
DNPP are representable in 7" and hence by Theorem 7 the pair (U (P),Us) is
<s-complete. O

It is not clear whether the class of pairs representable in some theory T is
also closed under <p-reductions. This corresponds to the open problem from
[6] whether the existence of a <7-complete pair implies the existence of a <,-
complete DNPP.

7 An Application

We conclude by mentioning a potential application of the results of Sect. 4 for
the construction of hard tautologies from pseudorandom generators (called 7-
formulas) as described in [1], [9] and [10]. These 7-formulas are candidates for
tautologies without polynomially long proofs in the strong proof systems con-
sidered here. Proving super polynomial lower bounds for strong proof systems
constitutes a major open problem in propositional proof complexity. The aim
of this section is to illustrate that the hardness of 7-formulas can be expressed
by properties of disjoint NP-sets.

We recall some terminology from [10]. Let C = (Cp)nen be a family of
polynomial size boolean circuits such that C, is a circuit with n input and
m(n) > n output bits with some polynomial m. Functions f computed by such
families C' are called polynomially stretching (p-stretching).

For b € {0,1}™™ we consider propositional formulas 7(C),. The formula
7(C)p has propositional variables pi,...,p, for the bits of the input of C,,
q1; - - -, qm(n) for the bits of the output of Cp, and r1, ..., 7,,0(1) for the inner nodes
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of Cy,. The formula 7(C); expresses, that, if 7 are correctly computed according
to C,, from the input variables p, then the values of the output variables g are
different from the bits of b. The formula 7(C); is a tautology, if and only if
b & rng(f). But apparently 7(C); does not only depend on rng(f), but also on
the particular circuits C), used for the computation of f.

The formulas 7(C) from a circuit family C,, are called hard for a proof
system P, if there does not exist a sequence of pairwise different numbers b,, €
{0,1}™™) n € N, such that

P, 7m(C), -

The intuition is that for functions having pseudorandom properties it should
be hard to prove that a given element lies outside the range of the function.
In fact the hardness of the function f should not depend on the particular
circuits used for the computation of f. Focusing on the case where the circuit
families are uniformly given we therefore say that a polynomial time computable
p-stretching function f yields representationally independent hard 7-formulas
for P, if for every uniformly given circuit family C' computing f the resulting
formulas 7(C) are hard for P.

The connection between the hardness of 7-formulas and disjoint NP-pairs
is established by the following theorem:

Theorem 29 (Kraji¢ek [10]). Let f € FP be a p-stretching function and C
a polynomial size uniform circuit family computing f. Then the following are
equivalent:

1. The formulas 7(C) are hard for P.
2. Every set A € NP with P b, ||[ANrng(C) = 0||™ is finite.

With Proposition 3 we can replace condition 2 of the theorem by the following
condition 2’:

2’. Every set A€ NP with T+ ANrng(C) =0 is finite.

We point out that in condition 2’ the disjointness of A and rng(f) has to be
proven with respect to the circuit family used for the computation of f, while
the representation of A can be chosen arbitrarily.

Using Theorem 7 we can restate Theorem 29 in the following form:

Corollary 30. For every p-stretching function f € F P the following are equiv-
alent:

1. f yields representationally independent hard T-formulas for P.
2. Every set A € NP with ANrng(f) =0 and (A,rng(f)) <s; (U1(P),Us) is
finite.

Dropping the condition (A,rng(f)) <s (Ui(P),Us) from 2 we arrive at an NP-
set B = rng(f) containing no infinite NP-set in its complement B. Such sets
B are called NP-simple (see [2] or [18]). By Corollary 30 NP-simple sets would
yield representationally independent hard 7-formulas for all proof systems, but
their existence is open.
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On the other hand it is easy to see that a set B = rng(f) satisfying con-

dition 2 of Corollary 30 cannot contain an infinite P-set in its complement,
i.e. B has to be P-immune. Therefore condition 2 of Corollary 30 asks for the
existence of NP-sets which are NP-simple "relative to the DNPP (U (P),Us)”,
a notion which lies in strength between P-immunity of the complement and
NP-simplicity.
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