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Abstract

We show new lower bounds and impossibility results for general (possibly non-black-box )
zero-knowledge proofs and arguments. Our main results are that, under reasonable complexity
assumptions:

1. There does not exist a two-round zero-knowledge proof system with perfect completeness
for an NP-complete language.

The previous impossibility result for two-round zero knowledge, by Goldreich and Oren
(J. Cryptology, 1994) was only for the case of auxiliary-input zero-knowledge proofs and
arguments.

2. There does not exist a constant-round zero-knowledge strong proof or argument of knowl-
edge (as defined by Goldreich (2001)) for a nontrivial language.

3. There does not exist a constant-round public-coin proof system for a nontrivial language
that is resettable zero knowledge. This result also extends to bounded-resettable zero knowl-
edge, in which the number of resets is a priori bounded by a polynomial in the input length
and prover-to-verifier communication.

In contrast, we show that under reasonable assumptions, there does exist such a (compu-
tationally sound) argument system that is bounded-resettable zero knowledge.

The complexity assumptions we use are not commonly used in cryptography. However, in
all cases, we show that assumptions similar to ours are necessary for the above results.

Most previously known lower bounds, such as those of Goldreich and Krawczyk (SIAM J.
Computing, 1996), were only for black-box zero knowledge. However, a result of Barak (FOCS
2001) shows that many (or even most) of these black-box lower bounds do not extend to the
case of general zero knowledge.
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1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rackoff [GMR], are a funda-
mental notion in cryptography. Since their introduction, there have been a vast number of positive
results for constructing them. The fundamental positive result is that every language in NP has a
zero-knowledge proof (assuming one-way functions exist) [GMW]. However, there were also many
works constructing zero-knowledge proofs that satisfy some additional properties. One important
example of such a property is having a small number of rounds of interaction. Protocols with a
constant number of rounds were constructed by [FS1, BCY, GK1]. Other properties that have
been considered include stronger notions of zero knowledge, such as auxiliary-input zero knowl-
edge [GO], concurrent zero knowledge [DNS] resettable zero knowledge [CGGM], and universally
composable zero knowledge [Can]. These stronger notions are related to whether the protocol re-
mains zero knowledge when executed several times sequentially (in the case of auxiliary-input zero
knowledge), concurrently (in the case of concurrent zero knowledge), under a resetting attack (in
the case of resettable zero knowledge), or within an arbitrary environment (in the case of universally
composable zero knowledge).

Negative results. There are also a few negative results for zero-knowledge proofs. Goldreich
and Oren [GO] showed that any zero-knowledge proof system for a nontrivial language (i.e., for
a language outside BPP) must be interactive, and both the verifier algorithm and the prover
algorithm must be probabilistic. They also showed that there does not exist a two-round auxiliary-
input zero-knowledge proof system for a nontrivial language. The results of [GO] do not depend on
any assumption and hold also for zero-knowledge arguments.1 It was also shown that it is impossible
to obtain universally composable zero-knowledge proofs for nontrivial languages (regardless of the
number of rounds) [Can].2

Negative results for black-box zero knowledge. In addition to these results, there have been
a number of negative results for black-box zero knowledge. Loosely speaking, a protocol is black-box
zero-knowledge if the zero-knowledge condition is shown via a universal simulator that only utilizes
black-box/oracle access to the verifier’s strategy. Black-box zero knowledge is a stronger condition
than auxiliary-input zero knowledge, and it is incomparable to concurrent and resettable zero
knowledge. We note that until recently, all known zero-knowledge protocols were in fact black-box
zero knowledge. Goldreich and Krawczyk [GK2] showed that there is no black-box zero-knowledge
proof for a nontrivial language with 3 rounds. They also showed that there is no black-box zero-
knowledge proof for a nontrivial language that has a constant number of rounds and is of the
public-coin type. (A public-coin proof system, also known as an Arthur–Merlin game, is one in
which the verifier’s strategy in the proof merely consists of sending random strings as messages,
and at the end deciding whether or not to accept by evaluating a polynomial-time predicate on the
transcript of the execution.) It has also been shown that any black-box concurrent zero-knowledge
proof must have at least Ω̃(log n) many rounds, where n is the input length/security parameter
[CKPR] (building on [KPR, Ros]). As in [GK2], the results of [CKPR] do not depend on any

1Loosely speaking, in an argument system (sometimes called a computationally sound proof), the soundness re-
quirement is required to hold only against cheating prover strategies that can be implemented by an efficient algo-
rithm. In contrast, a proof system is required to be statistically sound, i.e. soundness is guaranteed even against
computationally unbounded provers.

2Loosely speaking, the reason is that the universally composable definition requires a black-box simulator that
cannot rewind the adversary [CKL]. It is not hard to show that without setup assumptions, it is impossible to obtain
such a simulator for nontrivial languages.
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assumption and hold also for the case of arguments. Other black-box lower bounds have also been
shown in [BGGL, BL, Rey].

Non-black-box zero knowledge. The problem with black-box lower bounds is that in almost
all applications of zero knowledge, standard (i.e., non-black-box) zero knowledge suffices. There-
fore, the question of interest is typically whether there exist standard (i.e., non-black-box) zero-
knowledge protocols with certain properties, and not whether there exist black-box zero knowledge
protocols with these properties. This point has become much more acute with a recent result
of Barak [Bar], that proves the existence of zero-knowledge protocols that are not black-box zero
knowledge. Specifically, [Bar] constructs a constant-round public-coin zero-knowledge argument
for NP that remains zero knowledge when composed concurrently any fixed polynomial number of
times. The results of [GK2] (and also of [CKPR]) show that such a protocol cannot be black-box
zero knowledge.

This refutes the belief that a black-box lower bound indicates a non-black-box lower bound
and means that an important research direction is to try to find non-black-box lower bounds for
zero-knowledge proofs. In particular, several natural questions are:

1. Does there exist a (non-auxiliary-input) zero-knowledge proof or argument with 2 rounds?

2. Does there exist an auxiliary-input zero-knowledge proof or argument with 3 rounds?

3. Does there exist a constant-round concurrent or resettable zero-knowledge proof or argument?

4. Does there exist a constant-round public-coin zero-knowledge proof system? (The protocol
of [Bar] is a constant-round public-coin argument.)

5. Does there exist a constant-round zero-knowledge strong proof of knowledge?

Strong proofs of knowledge, defined by Goldreich [Gol2, Sec. 4.7.6], are proofs of knowl-
edge whereby the knowledge extractor fulfills the following more stringent requirement: If a
given prover convinces the honest verifier to accept with nonnegligible probability, then the
knowledge extractor runs in strict probabilistic polynomial time and outputs a witness with
probability that is close to 1.3

Recall that a 3-round, public-coin proof system for NP can be obtained from the well-known
protocols of [GMW] (for Three-Coloring) or [Blu2] (for Hamiltonicity) via parallel repetition
(to make the soundness error negligible, as required). However, it is not known whether these
parallelized protocols are zero knowledge, concurrent zero knowledge, or strong proofs of knowledge.
(It is easy to see that they are not resettable zero knowledge.) Thus it is even of interest to study
Items 2–5 for these particular protocols. Indeed, this was the motivation for the black-box results
of [GK2]. However, as mentioned above, recent results show that one cannot infer from the results
of [GK2] an implication on standard (non-black-box) zero knowledge.

We remark that Item 4 has more practical significance than may seem at first glance. The
reason is a relation between the Fiat-Shamir heuristic [FS2] and zero-knowledge protocols. The
Fiat-Shamir heuristic is a way to transform a constant-round, public-coin proof or argument system
into a noninteractive proof system. It is a very popular heuristic, and its security is an intriguing
open question. It is known that this heuristic is completely insecure if it is applied to a protocol

3We note that [BL] used non black-box techniques in order to construct a constant-round zero-knowledge argument
with a strict polynomial-time extractor. However, in their protocol, the extraction probability is not close to 1.
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that is zero knowledge [DNRS]. Thus, the results of [Bar] imply that there exists an argument
system on which the heuristic fails completely (see also [GT]). However, it is not known whether
or not this heuristic is sound when applied to (statistically sound) proofs. Resolving Item 4 may
shed light on this question.

1.1 Our Results

1.1.1 Lower Bounds (Impossibility Results).

In this work, we pursue the question of obtaining non-black-box lower bounds for zero knowledge,
and give partial answers to the above questions. In particular, we show that:

1. Two-round zero knowledge proofs: Under a reasonable assumption, (namely, that E =
DTIME(2O(n)) has a function of nondeterministic circuit complexity 2Ω(n); see Assump-
tion 3.2), there does not exist a 2-round public-coin zero-knowledge proof system for any
nontrivial language. Under a somewhat stronger assumption and assuming NP 6= coNP,
there does not exist a 2-round zero-knowledge proof system with perfect completeness for any
NP-complete language.

The previous impossibility result of [GO] held only for the case of auxiliary-input zero knowl-
edge.

2. Strong proofs and arguments of knowledge: Under a reasonable assumption (namely,
that there exists a pseudorandom generator or one-to-one one-way function that is secure
against 2Ω(n)-sized circuits), there does not exist a constant-round zero-knowledge strong
proof or argument of knowledge for a nontrivial language.

3. Resettable zero knowledge proofs: There does not exist a constant-round public-coin
proof system for a nontrivial language that is auxiliary-input resettable zero knowledge (or
even “bounded-resettable” zero knowledge).

1.1.2 Protocols.

Unlike previous lower bounds, some of our bounds hold only for the case of (statistically sound)
proof systems. They also use complexity assumptions, and even ones that are not common in
cryptography, such as one-way functions strong against 2εn-sized (as opposed to super-polynomial or
2nε

-sized) circuits, and the existence of functions in E that are hard for nondeterministic algorithms.
However, we show that such restrictions (i.e., to proofs only) and complexity assumptions are in
fact inherent. Specifically, we show that:

1. Two-round zero knowledge proofs and arguments:

(a) Ruling out 2-round zero-knowledge proofs requires some sort of a lower bound on nonde-
terministic algorithms. Roughly speaking, if NP could simulate superpolynomial-time
deterministic algorithms, then there exists a 2-round public-coin zero-knowledge proof
system for NP. This justifies our use of a nondeterministic hardness assumption for
proving impossibility for two-round zero-knowledge proofs.

(b) Under a form of the “Noninteractive CS Proofs” conjecture posed by Micali [Mic], there
exists a 2-round public-coin zero-knowledge argument system for NP. Thus, if Micali’s
conjecture turns out to be true, some form of 2-round zero knowledge is possible. Viewed
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differently, this shows that in order to rule out 2-round zero-knowledge arguments, one
must refute Micali’s conjecture.

(c) Under the (non-standard) “Knowledge-of-Exponent” assumption suggested by Damg̊ard [Dam],
there exists a (private-coin) 2-round zero-knowledge proof system for a promise prob-
lem outside of BPP. Hence, our negative result for NP-complete languages cannot be
extended to all nontrivial problems without refuting this assumption.

2. Resettable zero-knowledge arguments: Under standard assumptions, our lower bound
for resettable public-coin proofs does not extend to arguments. Specifically, we construct
a constant-round public-coin argument for NP that is bounded-resettable zero knowledge.
This result is interesting as a positive result in its own right as it is the first constant-round
(public-coin) protocol that is bounded-resettable zero knowledge.

3. Zero-knowledge strong proofs of knowledge: Ruling out constant-round (or even 3-
round public-coin) zero-knowledge strong proofs of knowledge requires some sort of an ex-
ponential lower bound on deterministic algorithms (for a problem in NP). Thus, an expo-
nential lower bound is necessary to rule out constant-round zero-knowledge strong proofs of
knowledge. Loosely speaking, we demonstrate this by showing that if Circuit Satisfiabil-

ity (CSAT) can be solved in subexponential time, then the parallel Hamiltonicity proof
system [Blu2] is a zero-knowledge strong proof of knowledge. Thus, proving that parallel
Hamiltonicity is not zero knowledge requires proving (or assuming) that CSAT cannot be
solved in subexponential time.

1.2 Organization

This paper has two main parts. The first part (Part I; Sections 3–4) contains all the lower bounds
of this paper. That is, it contains all our impossibility results for various forms of zero-knowledge.
The results are all presented under a definition of computational indistinguishability that refers
to nonuniform distinguishers (as is common in the literature); a uniform treatment is presented
in the appendix. The second part (Part II; Sections 6–8) contains several constructions of zero-
knowledge protocols. All of these results are conditional and some of them are based on assumptions
that are highly non-standard or even unlikely to be true. Thus many of these results should be
interpreted not as positive results per se, but rather as complementing Part I by showing what
obstacles one has to face in extending our negative results. (The main exception to the above is our
protocol for bounded-resettable zero-knowledge public-coin arguments that is proven assuming only
standard assumptions.) Part III (Sections 9 and 10) contains our conclusions and open questions.
In particular, it contains discussions of what we consider the main open question of this area which
is the existence of constant-round public-coin zero-knowledge proofs for NP. We present several
conjectures which, if resolved, would shed light on this problem.

2 Preliminaries and Definitions

2.1 Basic Notations

For a finite set S ⊆ {0, 1}∗, we write x←R S to say that x is distributed uniformly over the set S.
We denote by Un the uniform distribution over the set {0, 1}n. A function µ : N → [0, 1] is called
negligible if µ(n) = n−ω(1). We let neg(n) denote an arbitrary negligible function (i.e., when we
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say that f(n) < neg(n) we mean that there exists a negligible function µ(n) such that for every n,
f(n) < µ(n)). Likewise, poly(n) denotes an arbitrary polynomial.

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on input x and coin
tosses r. A(x) is a random variable denoting the output of A for uniformly selected coin tosses.
PPT refers to probabilistic algorithms (i.e. Turing machines) that run in strict polynomial time.

Whenever we refer to reductions and NP-completeness in this paper, we assume it is with
respect to reductions f that are non-shrinking, i.e. there is a constant ε > 0 such that |f(x)| ≥
|x|ε for all x ∈ {0, 1}∗. The reason is that the security properties of zero-knowledge proofs are
traditionally measured as functions of the input length (rather than a separate security parameter).
We say that f is invertible if it is one-to-one (not necessarily onto) and the inverse is computable
in polynomial time.

For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with R is LR = {x : ∃y(x, y) ∈ R}.
For a value x, we denote Rx = {y : (x, y) ∈ R}. R is poly-balanced if there is a polynomial p
such that (x, y) ∈ R ⇒ |y| ≤ p(|x|). R is an NP-relation if it is poly-balanced and decidable
in polynomial time. A relation R is NP-complete if R is an NP-relation and for every NP-
relation R′, there exist non-shrinking polynomial-time computable functions f : {0, 1}∗ → {0, 1}∗

and g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that (x,w) ∈ R′ ⇒ (f(x), g(x,w)) ∈ R (which implies
x ∈ LR′ ⇒ f(x) ∈ LR) and x /∈ LR′ ⇒ f(x) /∈ LR. Note that this implies LR is an NP-complete
language in the usual sense. (This is essentially Levin’s notion of NP-completeness [Lev].) We say
R is NP-complete via invertible reductions if the above holds with f and g both being invertible. All
the classic NP-complete problems come with natural relations that are NP-complete via invertible
relations.

A relation R is an MA-relation if it is poly-balanced and there is a PPT A such that (x,w) ∈
R ⇒ Pr [A(x,w) = accept] ≥ 2/3 and x /∈ LR ⇒ Pr [A(x,w) = accept] ≤ 1/3. Note that this is
more general than requiring that R ∈ BPP, because when x ∈ LR, there may exist some w’s such
that 1/3 < Pr [A(x,w) = accept] < 2/3. MA is the class of languages of the form LR for some
MA-relation R. We note that under reasonable (but strong) complexity assumptions, it is known
that MA = NP [IW] (in fact, under Assumption 3.2 both are equal to the class AM [MV]).

A nondeterministic circuit of input length n is a standard boolean circuit C with n+m input
gates, where for every x ∈ {0, 1}n, we define C(x) to equal 1 if and only if there exists a y ∈ {0, 1}m

such that C(x; y) = 1. (We require that the partition of C’s input gates into the n standard input
gates and the m nondeterministic gates is explicit in the description of C.) Similarly, a Σ2-circuit
of input length n is a standard boolean circuit C with n + m + m′ input bits, where for every
x ∈ {0, 1}n, C(x) = 1 iff ∃y ∈ {0, 1}m∀z ∈ {0, 1}m

′
it holds that C(x; y; z) = 1.

2.2 Interactive Proofs and Arguments

An interactive protocol (A,B) consists of two algorithms that compute the next-message function
of the (honest) parties in the protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message
αk+1 sent by party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are
r, and the messages exchanged so far are α1, . . . , αk. There are two special messages, accept and
reject, which immediately halt the interaction. We say that party A (resp. B) is probabilistic
polynomial time (PPT) if its next-message function can be computed in polynomial time (in |x|+
|a|+ |α1|+ · · ·+ |αk|).

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random process
obtained by having A and B interact on common input x, (private) auxiliary inputs a and b to
A and B, respectively (if any), and independent random coin tosses for A and B. We call (A,B)
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polynomially bounded if there is a polynomial p such that for all x, a, b, the total length of all
messages exchanged in (A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B ∗ is any
interactive algorithm, then A will immediately halt and reject in (A(a), B ∗(b))(x) if the total length
of the messages ever exceeds p(|x|), and similarly for B interacting with any A∗.

The number of rounds in an execution of the protocol is the total number of messages exchanged
between A and B, not including the final accept/reject message. We call the protocol (A,B)
public coin if all of the messages sent by B are random strings independent of the history, and B’s
final output (typically accept or reject) is computed as a deterministic function of the transcript.
(Such protocols are also sometimes known as Arthur-Merlin games [BM].)

Definition 2.1. An interactive protocol (P, V ) is an interactive proof system for a language L if
there is a polynomially balanced relation R such that L = LR, and functions c, s : N→ [0, 1] such
that 1− c(n) > s(n) + 1/poly(n) and the following holds:

• (efficiency): (P, V ) is polynomially bounded, and V is computable in probabilistic polynomial
time.

• (completeness): If x ∈ L and w ∈ Rx, then V accepts in (P (w), V )(x) with probability at
least 1− c(|x|),

• (soundness): If x /∈ L, then for every P ∗, V accepts in (P ∗, V )(x) with probability at most
s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say that (P, V ) has negligible
error if both c and s are negligible. We say that it has perfect completeness if c = 0.

P is an efficient prover if P (w) is computable by a probabilistic polynomial-time algorithm
when w ∈ Rx. When we wish to specify the relation R, we call (P, V ) an interactive proof with
respect to R.

The purpose of the relation R is to have a meaningful notion of efficient provers. If the prover’s
complexity is unbounded, then without loss of generality the prover P (w) can ignore the witness
w, and thus we may as well set R to be R = {(x, λ) : x ∈ L}, where λ is the empty string (we
call this the trivial relation for L). We note that the class of languages having interactive proofs
with efficient provers equals MA. In cryptographic applications, we are typically interested in
interactive proofs for languages in NP with respect to their natural NP-relation.

Definition 2.2. An interactive argument system (P, V ) is defined in the same way as an interactive
proof system, with the following modification:4

• The soundness condition is replaced with: For every nonuniform PPT P ∗ and for all suffi-
ciently long x /∈ L, the verifier V accepts in (P ∗, V )(x) with probability at most s(|x|).

We note that if a language L = LR has an efficient-prover argument system wrt relation R,
then R is an MA-relation and thus L ∈MA. To see this, note that the algorithm A(x,w) which
simulates (P (w), V )(x) and outputs V ’s decision constitutes a witness-checking algorithm for R.
(The fact that P (x,w′) is a PPT algorithm together with the computational soundness condition
of arguments imply A rejects with high probability when x /∈ L.)

4Some definitions of argument systems require that the honest prover P is an efficient prover, but we choose to
decouple the two requirements and explicitly say “efficient prover” when we need it.
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2.3 Indistinguishability

Recall that the formulation of the “zero knowledge” property requires that there exists a PPT
simulator whose output distribution is “indistinguishable” from the verifier’s view of the interaction.
There are several choices for the notion of indistinguishable (which yield different variants of zero
knowledge), which we recall below.

Definition 2.3 (perfect and statistical indistinguishability). Two ensembles of probability
distributions {Ax}x∈I and {Bx}x∈I are statistically indistinguishable if there exists a negligible
function µ such that for every x ∈ I, Ax and Bx have statistical difference at most µ(|x|). That is,
there exists a negligible function µ such that for every function D : {0, 1}∗ → {0, 1} and for every
x ∈ I,

|Pr [D(Ax) = 1]− Pr [D(Bx) = 1] | ≤ µ(|x|).

{Ax}x∈I and {Bx}x∈I are perfectly indistinguishable if the above holds with µ = 0.

Definition 2.4 ((nonuniform) computational indistinguishability). Two ensembles of prob-
ability distributions {Ax}x∈I and {Bx}x∈I are computationally indistinguishable if for every nonuni-
form PPT algorithm D, there exists a negligible function µ such that for every x ∈ I,

|Pr [D(Ax) = 1]− Pr [D(Bx) = 1] | ≤ µ(|x|).

Even though the above definition does not explicitly say so, we note that the it implies in-
distinguishability even if the distinguisher D depends (arbitrarily) on the index x. That is, for
all families of circuits {Dx}x∈I such that |Dx| ≤ poly(|x|), there is a negligible µ such that
|Pr [Dx(Ax) = 1]− Pr [Dx(Bx) = 1] | ≤ µ(|x|) for all x ∈ I.

The standard definitions of zero knowledge in the literature typically work with nonuniform
indistinguishability as above. Goldreich [Gol1] has given a uniform treatment of zero knowledge.
Unfortunately, the uniform setting requires much more cumbersome definitions and notation, and
so we present uniform analogues of (some of) our results in Appendix A.

2.4 Zero Knowledge

We write 〈A(a), B(b)〉(x) to denote B’s view of the interaction, i.e. a transcript (γ1, γ2, . . . , γt; r),
where the γi’s are all the messages exchanged and r is B’s coin tosses.

There are various notions of zero knowledge, referring to how rich a class of verifier strategies
are considered. The weakest is to consider only the verifier that follows the specified protocol.

Definition 2.5 (honest-verifier zero knowledge). An interactive proof system (P, V ) with
respect to relation R is (perfect/statistical/computational) honest-verifier zero knowledge if there
exists a probabilistic polynomial-time simulator S such that the ensembles {〈P (w), V 〉(x)}(x,w)∈R

and {S(x)}(x,w)∈R are (perfectly/statistically/computationally) indistinguishable.
We will often drop the word “computational” in reference to computational zero knowledge.

Next we consider all polynomial-time verifier strategies.

Definition 2.6 (plain zero knowledge5). An interactive proof system (P, V ) with respect to
relation R is (perfect/statistical/computational) plain zero knowledge if for every PPT V ∗, there

5In the preliminary version of this paper [BLV], we referred to plain zero knowledge as “uniform zero knowledge.”
However, as argued in [Gol1], that terminology confuses two orthogonal issues — the uniformity of the verifier and
the uniformity of the distinguisher. In the main body of this paper, we always consider distinguishers that are
nonuniform algorithms. See Appendix A for discussion on the case of uniform indistinguishability.
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exists a probabilistic polynomial-time simulator S such that the ensembles {〈P (w), V ∗〉(x)}(x,w)∈R

and {S(x)}(x,w)∈R are (perfectly/statistically/computationally) indistinguishable.
We will often drop the word “computational” in reference to computational zero knowledge.

An equivalent formulation of computational zero knowledge is that for every PPT V ∗, there
exists a PPT simulator S such that for all families of circuits {Dx,w}(x,w)∈R such that |Dx,w| ≤
poly(|x|), we have

|Pr [Dx,w(〈P (w), V ∗〉(x))] − Pr [Dx,w(S(x)) = 1]| ≤ neg(|x|)

for all (x,w) ∈ R. That is, indistinguishability holds for poly-sized circuits that even can have
hardwired into them (a polynomial amount of) nonuniform advice that depends arbitrarily on the
input x and witness w. We stress that this nonuniformity refers only to the distinguishers; the
verifier V ∗ and simulator S are still restricted to uniform PPT algorithms. As discussed in [Gol2,
Sec 4.3.3], the “right” way to incorporate nonuniformity in the verifier is through an auxiliary input
given to both it and the simulator, as done below.

Definition 2.7 (auxiliary-input zero knowledge6). An interactive proof system (P, V ) with
respect to relation R is (perfect/statistical/computational) auxiliary-input zero knowledge if for
every PPT V ∗ and polynomial p, there exists a PPT S such that the ensembles

{〈P (w), V ∗(z)〉(x)}(x,w)∈R,z∈{0,1}p(|x|) and {S(x, z)}(x,w)∈R,z∈{0,1}p(|x|) (1)

are (perfectly/statistically/computationally) indistinguishable.

The auxiliary input z in the above definition models a priori information that the verifier may
possess before the interaction begins. Thus auxiliary-input zero knowledge is usually necessary
when zero-knowledge proofs are to be used as a subprotocol in a larger protocol, or even when
composing zero-knowledge proofs with themselves. Indeed, it is known that auxiliary-input zero
knowledge is closed under sequential composition [GO], but plain zero knowledge is not [GK2]. For
this reason, auxiliary-input zero knowledge is the definition typically used in the literature.

We note that, effectively, the indistinguishability is required even for distinguishers that have
additional a priori information beyond the auxiliary input of the verifier. This is because this
information can be hardwired into the nonuniform distinguisher.

We also note that for auxiliary-input zero-knowledge, there is a universal verifier V ∗uni(x, z) that
interprets its auxiliary input z as a Boolean circuit Cz and uses Cz as its strategy (i.e. next-message
function). If the zero-knowledge condition holds for V ∗uni, then it holds for all PPT verifier strategies
V ∗. However, we allow the simulator to depend not only on V ∗uni but also on the polynomial bound
p(n) on the size of circuit given to it as auxiliary input. Allowing this dependence makes our lower
bounds stronger.

Definition 2.8 (black-box zero knowledge). We say that (P, V ) is (perfect/statistical/computational)
black-box zero knowledge if there exists a single oracle PPT Sbb, that works for every V ∗, such that

6Our formulation of auxiliary-input zero knowledge is slightly different than, but equivalent to, the definition in
the text [Gol2]. We allow V ∗ to run in polynomial time in the lengths of both its the input x and its auxiliary input
z, but put a polynomial bound on the length of the auxiliary input. In [Gol2, Sec 4.3.3], V ∗ is restricted to run in
time that is polynomial in just the length of the input x, and no bound is imposed on the length of the auxiliary
input z (so V ∗ may only be able to read a prefix of z). The purpose of allowing the auxiliary input to be longer than
the running time of z is to provide additional nonuniformity to the distinguisher (beyond that which the verifier has);
we do this directly by allowing the distinguisher to be nonuniform in Definition 2.4.
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S(x, z) can be replaced in (1) by S
V ∗(x,z,·;·)
bb (x) (where V ∗(x, z, ·; ·) denotes the next message func-

tion of V ∗ with a fixed input x and auxiliary input z). That is, for every PPT V ∗ and polynomial
p, the ensembles

{〈P (w), V ∗(z)〉(x)}(x,w)∈R,z∈{0,1}p(|x|) and {S
V ∗(z,x,·)
bb (x)}(x,w)∈R,z∈{0,1}p(|x|)

are (perfectly/statistically/computationally) indistinguishable.

All known zero-knowledge protocols (based on standard assumptions) prior to the paper [Bar]
were black-box zero knowledge. However, in this paper, because our focus is obtaining lower bounds,
we will mainly be interested in general (i.e., not necessarily black box) zero knowledge.

In all the forms of zero knowledge above, we may assume without loss of generality that the sim-
ulator for a verifier V ∗ always outputs consistent transcripts, namely transcripts (γ1, γ2, . . . , γt; r)
such that each V ∗-message γi is computed correctly, in the sense that γi = V ∗(x, γ1, . . . , γi−1; r).
The reason is that inconsistent transcripts can easily be distinguished from the real interaction, so
instead of outputting an inconsistent transcript the simulator may as well output some trivial con-
sistent transcript (eg where all the prover messages are the empty string, and the verifier messages
are computed according to V ∗).

Zero knowledge and NP-completeness. As argued in [GMW], a zero-knowledge proof for an
NP-complete languages L implies zero-knowledge proofs for all languages L ′ ∈ NP: both parties
apply the reduction from L′ to L and execute the zero-knowledge proof for L. This transformation
clearly preserves most complexity parameters (constant round complexity, negligible error, etc.).7

Plain zero knowledge is preserved if L is NP-complete with respect to invertible reductions as
defined in Section 2.1 (cf., [GMW]). Invertibility is easily achieved in the reductions to most nat-
ural NP-complete languages, such as Hamiltonicity, Satisfiability, and Three-Coloring.
However, invertibility is not needed for auxiliary-input zero knowledge. We note that, if the zero-
knowledge proof for L is with respect to an NP-complete relation R (such that LR = L), then
the reduction of [GMW] yields a zero-knowledge proof for L′ = LR′ with respect to R′ for any
NP-relation R′. Furthermore, if the zero-knowledge proof for L has an efficient prover with respect
to R, then the zero-knowledge proof for L′ as an efficient prover with respect to R′.

Expected polynomial-time simulators. For simplicity, in this paper we restrict our attention
to simulators that run in strict polynomial time. However, all of our negative results hold for
expected polynomial-time simulators, and in fact even for weak zero knowledge, where the order of
quantifiers between the simulator and distinguishing probability is swapped: for every polynomial p,
there exists a strict poly-time simulator S such that the simulator’s output cannot be distinguished
from verifier’s view except with advantage 1/p(n) for sufficiently large n.

7Recall that we restrict to non-shrinking reductions.
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Part I

Negative Results (Lower Bounds)

In this part we present several impossibility results for non-black-box zero-knowledge. For some
of these results we have matching (or almost matching) positive results, showing either limitations
on extending the negative results, or the necessity of the computational assumptions that we use.
These positive results are presented in Part II.

3 Two-Round Zero Knowledge

As mentioned in the introduction, Goldreich and Oren [GO] gave the first impossibility result for
2-round zero knowledge:

Theorem 3.1 ([GO]). If a language L has a 2-round proof or argument system that is nonuniform
auxiliary-input zero knowledge, then L ∈ BPP.

In this section, we present results that replace “auxiliary-input zero knowledge” with the weaker
requirement of “plain zero knowledge,” at the expense of relying on complexity assumptions and
restricting to proof systems. Both of these costs are addressed in Part II of the paper (specifically,
Section 6).

3.1 Triviality of 2-round Public-Coin ZK Proofs

Our first result, for public-coin proof systems, is based on the following assumption:

Assumption 3.2. E = DTIME(2O(n)) has a function of nondeterministic circuit complexity
2Ω(n). That is, there exists a language L and constants c, ε > 0 such that L is decidable in time
2cn, and yet for every nondeterministic circuit family {Cn}n∈N that decides L, the size of Cn is at
least 2εn for all sufficiently large n.

Assumption 3.2 can be seen as a natural strengthening of the assumption that EXP * NP (by
considering nondeterministic algorithms that can use not only polynomial but even subexponential
time and advice). It has been used previously by works in the field of derandomization [AK,
KvM, MV, SU], who showed that it implies that AM = NP. The following lemma states that
Assumption 3.2 implies the existence of pseudorandom generators that fool even nondeterministic
distinguishers.

Lemma 3.3 ([SU]). Under Assumption 3.2, there exists a function G =
⋃

nGn : {0, 1}`(n) →
{0, 1}n such that for every n, Gn maps inputs of length `(n) = O(log n) to length n in time poly(n),
and for all nondeterministic circuits D of size n,

|Pr
[

D(Gn(U`(n)))) = 1
]

− Pr [D(Un) = 1] | ≤ 1/n.

Note that the distinguishers above have less running time than the generator; without this,
it would not be possible to fool nondeterministic distinguishers (as they could identify outputs of
the generator by guessing the seed and evaluating the generator). The pseudorandom generator in
Lemma 3.3 implies AM = NP (and also BPP = P). We can now state our first theorem.
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Theorem 3.4. Under Assumption 3.2, if a language L has a 2-round public-coin proof system that
is plain zero knowledge and has an efficient prover (or alternatively, has perfect completeness), then
L ∈ P.

Proof. The idea behind the proof is to use the pseudorandom generator from Lemma 3.3 to deran-
domize the verifier in the 2-round proof system and obtain a verifier that uses only a logarithmic
number of random bits. We then claim that a simulator for such a verifier must succeed for all
choices of the verifier’s random tape (because there are only polynomially many such choices). We
then show that using such a simulator one can decide the language.

Let (P, V ) be a 2-round public-coin zero-knowledge proof system for language L with an efficient
prover (wrt relation R). For simplicity, we assume that the completeness and soundness errors are at
most 1/3, but the proof can be extended to any error bounds (such that 1−c(n) > s(n)+1/poly(n)).
For any input x of length n, witness w, and fixed coin tosses r for the prover, the prover’s response
to a verifier message α can be computed by a circuit Px,w,r(α) of polynomial size (notice that we
use the assumption that P is an efficient prover here). In addition, there is a nondeterministic
circuit Cx(α) of polynomial size that decides whether there exists a prover message β such that
V (x, α, β) accepts. Let t(n) = poly(n) be an upper bound on the sizes of these two circuits. Note
that the generator Gt(n) given by Lemma 3.3 has seed length ` = O(log t(n)) = O(log n). Consider
the following cheating verifier strategy, on an input x of length n.

Verifier V
∗(x):

1. Choose a seed s← {0, 1}` and send α = Gt(n)(s) (truncated to the appropriate length)
to P .

2. Receive response β from P .

3. Accept iff V (x, α, β) = accept.

By the pseudorandomness property of G, (P, V ∗) is still a complete and sound proof system for L
(albeit with nonnegligible error). Specifically, completeness uses the fact that the prover response
to α is computed by the circuit Px,w,r of size at most t(n) (or the fact that (P, V ) has perfect
completeness), and soundness uses the fact that the existence of an accepting prover response is
computed by the nondeterministic circuits Cx of size at most t(n).

By the zero-knowledge property of P , there exists a probabilistic polynomial-time simulator S
such that for every (x,w) ∈ R, {S(x)} and {〈P (w), V ∗〉(x)} are computationally indistinguishable.
We use S to construct an RP algorithm for L as follows.

M(x): Run S(x) many times to obtain transcripts (Gt(n)(s1), β1; s1), (Gt(n)(s2), β2; s2), . . . , (Gt(n)(sq), βq ; sq),

where q = n · 2`. Accept if {s1, . . . , sq} = {0, 1}` and, for the majority of s ∈ {0, 1}`, there
exists an i such that si = s and V ∗(x,Gt(n)(si), βi; si) accepts.

Suppose x ∈ L. Then q independent samples of S(x) are computationally indistinguishable
from q independent samples of 〈P (w), V ∗〉(x) (because the indistinguishability holds with respect to
nonuniform distinguishers). Thus, if we replace the samples of S(x) with samples of 〈P (w), V ∗〉(x),
the probability that M(x) accepts only changes negligibly. When we sample (Gt(n)(si), βi; si) from

〈P, V ∗〉(x), then si is distributed uniformly in {0, 1}` and V ∗ accepts βi with high probability. Thus,
if we sample q = n ·2` such transcripts, then with probability at least 1−2` ·(1−2−`)q = 1−2−Ω(n),
the si’s will cover all of {0, 1}` and the majority of the transcripts will be accepting.

Suppose x /∈ L. Then, by the soundness of V ∗, for the majority of s ∈ {0, 1}`, there does not
exist an accepting response β to Gt(n)(s). Thus, M(x) never accepts.
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We conclude that L ∈ RP. Recalling that the hypothesis also implies RP = P [IW], we have
L ∈ P.

Remarks:

1. The efficient prover condition can be relaxed to saying that for every input x ∈ L and every
fixing of the prover’s coin tosses r, there is a nondeterministic polynomial-sized circuit Cx,r

such that Cx,r(α) = 1 iff P (x, α; r) makes the verifier accept. Under stronger complexity
assumptions (like Assumption 3.5 below), we can allow Cx,r to be even more powerful, e.g.
corresponding to a higher level of the polynomial-time hierarchy.

2. The only place we make use of the fact that computational indistinguishability is defined
with respect to nonuniform distinguishers (see Definition 2.4) is to argue that q samples of
S(x) are indistinguishable from q samples of 〈P (w), V ∗〉(x). Thus the result can be extended
to formulations of zero knowledge with respect to uniform distinguishers in which multiple-
sample indistinguishability is ensured. Indeed, in Appendix A, we present an analogue of the
above result for one formulation of “uniform zero knowledge” (essentially that of [Gol1]).

3. We say that a proof/argument system has a publicly verifiable transcript if the verifier’s
choice to accept is made by computing an efficient predicate to the execution’s transcript.
Most known proof systems possess this property and it is useful for some applications (e.g.,
[BL]). It can be shown that for 2-round proof systems with a publicly verifiably transcript,
the verifier has nothing to gain by not sending its random tape as its first message. Thus our
lower bound holds also for such systems.

4. Assumption 3.2 is not commonly used in cryptography. However, in Section 6.2, we show
that some sort of lower bound on nondeterministic algorithms is necessary for this result.

5. Unlike the Goldreich–Oren theorem (Theorem 3.1), this result (and the private-coin one be-
low) only apply to proof systems. In Section 6.3, we show that if a (variant of) the “Noninter-
active CS Proofs” conjecture of Micali [Mic] is true, then there do exist 2-round, public-coin
plain zero-knowledge arguments for NP. Thus, our result cannot be extended to argument
systems without refuting Micali’s conjecture.

6. In a concurrent work, the same derandomization technique was used to obtain a positive
result, namely the first construction of 1-round witness-indistinguishable proofs for all of
NP [BOV].

3.2 Limitations of 2-round Private-Coin ZK Proofs

For private-coin proof systems, we require a natural strengthening of Assumption 3.2, namely the
existence of a function that is hard for circuits with two quantifiers (i.e., Σ2-circuits).

Assumption 3.5. E = DTIME(2O(n)) has a function of Σ2-circuit complexity 2Ω(n).

Since the proof of Lemma 3.3 relativizes (cf., [KvM]), Assumption 3.5 implies the existence of
pseudorandom generators that fool Σ2-circuits.

Lemma 3.6. Under Assumption 3.5, there exists a function G =
⋃

nGn : {0, 1}`(n) → {0, 1}n such
that for every n, Gn maps inputs of length `(n) = O(log n) to length n in time poly(n), and for all
Σ2-circuits D of size n,

|Pr
[

D(Gn(U`(n))) = 1
]

− Pr [D(Un) = 1] | ≤ 1/n.
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Under this assumption, we obtain the following negative result about 2-round zero-knowledge
proofs.

Theorem 3.7. Under Assumption 3.5, if L is a language with a 2-round (possibly private-coin)
proof system with perfect completeness that is plain zero knowledge, then L ∈ coNP.

Note that, unlike Theorem 3.4, we only conclude L ∈ coNP rather than L ∈ P. Still, this
provides evidence that NP-complete languages do not have such proof systems. Moreover, in Sec-
tion 6.1, we show that under the (non-standard) “Knowledge-of-Exponent Assumption” suggested
by Damg̊ard [Dam], there does exist a promise problem outside of BPP (but in coNP) with a
2-round zero-knowledge proof system. Thus, extending our impossibility result to all nontrivial
problems would require disproving the KEA Assumption.

Also unlike Theorem 3.4, here we require perfect completeness and do not have an analogous
result for efficient provers, nor do we have a uniform analogue of this result in the appendix.

Proof. Let (P, V ) be the 2-round zero-knowledge proof system for L with perfect completeness and
soundness s(n) ≤ 1 − 1/poly(n). Analogous to the proof of Theorem 3.4, we use a pseudorandom
generator Gt(n) from Lemma 3.6 for a sufficiently large polynomial t(n) to obtain the following
cheating verifier strategy V ∗ that uses only ` = O(log t(n)) = O(log n) random bits:

Verifier V
∗(x): 1. Choose a seed s← {0, 1}`, and send α = V (x;Gt(n)(s)) to P .

2. Receive response β.

3. Output the view (α, β; s).

However, unlike the proof of Theorem 3.4, we can no longer argue that V ∗ is still a sound verifier
if we use the original acceptance predicate of V with coin tosses Gt(n)(s). (Intuitively, it may be the
case that all seeds s yield distinct messages α, in which case the “private coin” aspect of the proof
system is lost. More technically, the argument used in proving Theorem 3.4 fails because in the case
of non public-coin proofs, the problem of deciding whether or not there exists a convincing prover
response may not be in NP.) Thus, we instead consider the acceptance predicate with respect to
a random sequence of V ’s coin tosses that are consistent with α. That is, for a verifier message α
and prover message β, define Conα = {r : V (x; r) = α} to be the set of coin tosses consistent with
α, and Rejα,β = {r ∈ Conα : V (x, β; r) = reject} to be those that reject β.

If x ∈ L, then by perfect completeness, if we set β = P (x, α), then Rejα,β = ∅ with probability
1 (over P ’s coin tosses). If x /∈ L, then there is a polynomial p(n) such that with probability at
least 1/p(n) over α←R V (x), we have

|Rejα,β |

|Conα|
≥

1

p(n)
(2)

for all prover responses β. (Otherwise, the soundness error would be 1−neg(n).) We now claim that
this must also hold, with p(n) replaced by p′(n) = 2p(n), for α←R V

∗(x). This is follows from the
pseudorandomness of Gt(n) and the fact that approximate counting can be done in the polynomial

hierarchy [Sip, Sto]. More precisely, there is a BPPNP algorithm T (α, β) that accepts w.h.p. if
|Rejα,β|/|Conα| ≥ 1/p(n) and rejects w.h.p. if |Rejα,β|/|Conα| ≤ 1/2p(n). Using nonuniformity to
eliminate the randomness, and incorporating the ∀β quantifier, we end up with a polynomial-sized
Σ2-circuit that essentially tests Inequality (3.2). This circuit is fooled by Gt(n) when t(n) is a
sufficiently large polynomial.
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Public input: x

x
↓

M A

Step M1: Choose s ←R {0, 1}
`. Set α = V ∗(x; s). Choose r ←R

Conα.
s, α, r

−−−−−−−→

Step A1: Run S(x) for n·2` times and consider the first transcript of
the form (α, β; s) for some β. If no such transcript is obtained,
halt and accept. Otherwise, accept as specified below.

Accept if α = V ∗(x; s), V (x; r) = α, and V (x, α, β; r) = reject.

Protocol 3.8. MA proof system for L

By the zero-knowledge property of P , there exists a probabilistic polynomial-time simulator S
such that for every x ∈ L, S(x) and 〈P, V ∗〉(x) are computationally indistinguishable. We use S to
construct an MA proof system (M,A) for L as shown in Protocol 3.8.

We now analyze Protocol 3.8, beginning with completeness. Suppose x /∈ L and that M follows
the specified strategy. We will show that A accepts with probability at least 1/poly(n). We know
that with probability at least 1/p(n) over s, Inequality (3.2) holds for all prover responses β. In
particular, it holds for the prover response β computed in Step A1. Thus, the probability that
r ∈ Rejα,β is at least 1/p(n). (Note that β and r are computed from α independently of each
other.) Hence, with probability at least 1/p(n)2, we have V (x, α, β; r) = reject and A accepts.

For soundness, suppose that x ∈ L and fix any s, α = V ∗(x; s), and r ∈ Conα. We will show
that A accepts with negligible probability (over the executions of the simulator in Step A1). First
we note that transcripts of the form (α, β; s) occur with probability 1/2` ≥ 1/poly(n) in 〈P, V ∗〉(x),
and thus must occur in the simulator’s output with probability at least 1/2`−neg(n). So, with n ·2`

tries, A will obtain such a transcript with probability at least 1− 2−Ω(n). By perfect completeness,
for every α and r ∈ Conα, V (x, α, β; r) = reject with probability 0 over β ←R P (x, α). Since
this condition can be tested by a circuit Cx,r(α, β) of polynomial size, the simulator must produce
rejecting β’s with only negligible probability. Thus A accepts with negligible probability.

We conclude that L ∈ AM. Recalling that the hypothesis also implies AM = NP, we have
L ∈ NP.

4 Resettable Zero Knowledge

In this section, we consider the notion of resettable zero knowledge, as recently introduced by
Canetti, Goldreich, Goldwasser, and Micali [CGGM]. Here one allows a (cheating) verifier V ∗

to “reset” the prover so that it uses the same random tape in multiple executions. This is a
strengthening of the adversarial capability of the verifier, and the requirement is that even such a
verifier’s view can be simulated efficiently. (For a formal definition, see [CGGM].) As usual, the
basic definition of plain resettable zero knowledge can be strengthened to auxiliary-input resettable
zero knowledge and black-box resettable zero knowledge. Resettable zero knowledge is a strong
requirement, and is even stronger than concurrent zero knowledge.
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Public input: x

We denote the lengths of the P ’s messages by ` = poly(n), V ’s messages
by m = poly(n), and P ’s coin tosses by s.

x
↓

P V

Step P1: Choose coin tosses R←R {0, 1}
s. Compute α = P (x;R) ∈

{0, 1}`
α−−−→

Step V2: β ←R {0, 1}
m β

←−−−

Step P3: Compute γ = P (x, β;R) ∈ {0, 1}` γ
−−−→

The verifier accepts according to V (x, α, β, γ).

Protocol 4.2. A 3-round public-coin proof system

Under standard cryptographic assumptions, it is known how to construct (black-box) resettable
zero-knowledge proofs for NP with Õ(log n) rounds [RK, CGGM, KP, PRS]. There is an almost
matching lower bound, showing that Ω̃(log n) rounds are necessary for black-box resettable zero-
knowledge proofs or arguments [CKPR]. In this section, we obtain lower bounds that apply even
to non-black-box simulation, and show that a nonconstant number of rounds is necessary for public-
coin resettable zero-knowledge proof systems.

The central ingredient of our proof is the following lemma

Lemma 4.1. For any constant c and polynomial r(n) ≥ 2, if a language L has a c · r(n)-round
public-coin resettable zero-knowledge proof system (P, V ), then L has an r(n)-round public-coin
resettable zero-knowledge proof system (P ′, V ′).

The form of resettable zero knowledge (perfect, statistical, or computational; plain, auxiliary-
input, or black-box) is preserved. Moreover, if P is an efficient prover, then so is P ′. In addition,
there is a polynomial p (depending only on the constant c) such that if the total length of messages
sent by P is at most `(n) and (P, V ) is zero knowledge against verifiers that make at most p(`(n))
resets, then (P ′, V ′) is zero knowledge (for a single execution, with no resets).

Proof. The main idea behind the proof is that the Babai–Moran [BM] speedup theorem for public-
coin proof systems actually preserves resettable zero knowledge. We focus on the special case of
converting 3-round public-coin proof system to a 2-round proof system, as this already conveys the
main idea. Without loss of generality, we assume that the initial 3-round protocol is of the form in
Protocol 4.2.

We can convert it to a 2-round proof system via the transformation of [BM], obtaining Proto-
col 4.3.

It is shown in [BM] that this transformation from Protocol 4.2 to Protocol 4.3 preserves com-
pleteness and soundness. The preservation of prover efficiency is clear by inspection. We argue
that it also preserves resettable zero knowledge. The reason is that any interaction with prover P ′

can be simulated by a reset attack on prover P . This can be seen by inspecting the definition of
prover P ′: Any query to P ′ on coin tosses R can be simulated by t+1 = O(`) queries to P on coin
tosses R.
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Public input: x

We set t = O(`).

x
↓

P ′ V ′

Step V′1: β1, . . . , βt ← {0, 1}
m β1, . . . , βt

←−−−−−−−−−−

Step P′1: Choose coin tosses R ← {0, 1}s, Compute α = P (x;R),
γ1 = P (x, α, β1;R), . . . , γt = P (x, α, βt;R)

α, γ1, . . . , γt
−−−−−−−−−−−→

V ′ accepts according to the majority of
V (x, α, β1, γ1), . . . , V (x, α, βt, γt).

Protocol 4.3. Transformed 2-round public-coin proof system

To reduce the number of rounds in a protocol with more than three rounds involves repeated
application of this idea. For a constant-round protocol, the above transformation can be repeatedly
applied to the last 3 rounds, each time reducing the number of rounds by 1. For a nonconstant
number of rounds, a more efficient version of this idea is employed. The above transformation is
applied simultaneously to disjoint 3-round segments of the protocol, thereby reducing the number of
rounds by a constant factor. In order to avoid the multiplicative factor of t in the complexity from
accumulating with each segment, after each transformed segment ((β1, . . . , βt), (α, γ1, . . . , γt)), the
verifier (in its next message) chooses a random i← {1, . . . , t} and the protocol continues based on
history (α, βi, γi). A more detailed description can be found in [BM, GVW] (the latter specifically
analyzing the complexity of the transformation in terms of the length of the prover’s messages).
The many-round transformation preserves resettable zero knowledge for essentially the same reason
as given above for the basic three-to-two round transformation.

Combining this lemma with the impossibility of 2-round zero knowledge (Theorem 3.1 and
Theorem 3.4), we obtain the main result of this section.

Theorem 4.4.

1. If a language L has a constant-round public-coin proof system that is auxiliary-input resettable
zero knowledge, then L ∈ BPP.

2. Under Assumption 3.2, if a language L has a constant-round public-coin proof system that
is plain resettable zero knowledge and has an efficient prover (alternatively, perfect complete-
ness), then L ∈ P.

In both cases, the resettable zero-knowledge requirement can be weakened to zero knowledge against
verifiers that may reset the prover at most `(n)c times, where `(n) is the total length of the prover’s
messages and c can be any constant. We call a protocol that satisfies this property a bounded-
resettable zero-knowledge protocol.8

8Note that this is a somewhat stronger requirement than requiring zero knowledge against nc many resets (for
any fixed constant c). This is because under our definition the number of resets may be larger than the prover’s
communication complexity. Both our lower bound (Theorem 4.4) and our upper bound (Theorem 7.1) use this
stronger definition of bounded-resettable zero knowledge. This weakens the lower bound and strengthens the upper
bound.
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We remark that Lemma 4.1 and Theorem 4.4 also extend to private-coin proof systems in
which the verifier’s messages are computed in a history-independent manner, using independent
coin tosses for each round. (The acceptance predicate can, however, depend on all the coin tosses.)
However, Theorem 4.4 does not extend to arguments. That is, under standard assumptions, we
construct a constant-round public-coin argument system that is bounded -resettable zero knowledge.
Since previous such systems used both private coins and a non-constant number of rounds, this
construction, which is described in Section 7, is interesting in its own right.

Following Remark 2 after the proof of Theorem 3.4, the proof of Theorem 4.4 doesn’t make use
of any nonuniformity in the distinguisher (other than the input x); here even the multiple-sample
indistinguishability needed follows from the resettable zero knowledge property. Thus, the result
extends to uniform distinguishers, and indeed we present a uniform version of it in Appendix A.

5 Strong proofs of knowledge

In this section, we present lower bounds for achieving strong proofs and arguments of knowledge,
as defined by Goldreich [Gol2, Sec. 4.7.6]. We remark that this section is structured so that later
proofs rely on ideas from earlier proofs.

5.1 Definitions

Before presenting the definition of strong proofs and arguments of knowledge [Gol2, Sec. 4.7.6], we
informally recall the standard notion of proofs of knowledge. A proof of knowledge is an interactive
proof which convinces a verifier that the prover “knows” a witness to a certain statement. This is
in contrast to a regular interactive proof, where the verifier is just convinced of the validity of the
statement. The concept of “knowledge” for machines is formalized by saying that if a prover can
convince the verifier, then there exists an efficient procedure that can “extract” a witness from this
prover (thus the prover knows a witness because it could run the extraction procedure on itself).
More formally, a proof of knowledge has the property that for every machine P ∗ there exists a
knowledge extractor K, who “extracts” witnesses from the prover P ∗. The requirements on this K
come in two flavors, that are equivalent for NP-relations:

1. K runs in expected polynomial time and obtains a witness to the statement x with probability
that is negligibly close to the probability that P ∗ convinces V . More exactly, let p(x, y, r)
denote the probability that P ∗ convinces V upon common input x, and when P ∗ has auxiliary
input y and random tape r. Then, K obtains a witness with probability that is negligibly close
to p(x, y, r). We stress that here, K runs in expected time that is independent of p(x, y, r).

2. K runs in expected time that is inversely proportional to p(x, y, r), but must always output
a witness for x.

Informally speaking, a strong proof (or argument) of knowledge [Gol2] enjoys the best of both
worlds with respect to the above two definitions of proofs of knowledge. That is, on the one hand,
K runs in time that is independent of p(x, y, r), like in the first definition. On the other hand, K
always (or almost always), obtains a witness for x, like in the second definition. More specifically,
if the probability p(x, y, r) that P ∗ convinces V is greater than some negligible function s(|x|), then
K (running in time independent of P ∗’s actual success probability) obtains a witness for x with
high probability; the function s is called K’s (soundness) error function. The important point is
that neither K’s running time nor its success probability are dependent on p(x, y, r). For more
discussion on strong proofs of knowledge, see [Gol2, Sec. 4.7.6].
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We are now ready to present the formal definition:

Definition 5.1 (strong proofs of knowledge). An interactive protocol (P, V ) is system of strong
proofs of knowledge for a (poly-balanced) relation R if there are functions c, s, ε : N → [0, 1] such
that 1− c(n) > s(n) + 1/poly(n) and ε(n) ≤ 1− 1/poly(n) such that the following holds:

• (efficiency): (P, V ) is polynomially bounded, and V is computable in probabilistic polynomial
time.

• (nontriviality/completeness): If (x,w) ∈ R, then V accepts in (P (w), V )(x) with probability
at least 1− c(|x|),

• (strong validity/soundness): There exists a probabilistic polynomial-time oracle machine K
such that for every interactive function P ∗ and every x, y, r ∈ {0, 1}∗, machine K satisfies the
following condition:

p(x, y, r)
def
= Pr [V accepts in (P ∗(y; r), V )(x)] > s(|x|)

⇒ Pr
[

KP ∗(x,y,·;r)(x) = w s.t. (x,w) ∈ R
]

≥ 1− ε(|x|)

That is, if on input x, auxiliary input y, and coin tosses r, P ∗ makes V accept with probability
greater than s(n), then K will output a witness with probability at least 1−ε(n), given oracle
access to the next-message function of P ∗ (with x, y, and r hardwired in). K is called a strong
knowledge extractor.

We call c(·) the completeness error, s(·) the soundness error, and ε(·) the extraction error. We say
that (P, V ) has negligible error if c, s, and ε are negligible. We say that it has perfect completeness
if c = 0.

P is an efficient prover if P (w) is computable by a probabilistic polynomial-time algorithm
when w ∈ Rx.

If (P, V ) is a system of strong proofs of knowledge for relation R according to Definition 5.1, then
it is also an interactive proof system for LR (with the same completeness and soundness errors).
This is because if P ∗ convinces V with probability greater than s, then K must obtain a valid
witness with non-zero probability. However, when x 6∈ L, there are no valid witnesses that can be
obtained. Therefore, in such a case, V can be convinced with probability at most s.

We are primarily interested in strong proofs of knowledge with negligible error. Such proofs
guarantee that if P ∗ convinces with non-negligible probability, then K extracts with overwhelming
probability. This is the key property of strong proofs of knowledge which make them both interesting
and useful, but is also the source of the lower bound on round complexity that we will prove below.

The definition above is slightly more general than the one in [Gol2], which requires perfect
completeness and negligible soundness and extraction errors. For NP-relations R, a strong proof
of knowledge with even 1 − 1/poly(n) extraction error is also a strong proof of knowledge with
negligible extraction error (by running the extractor poly(n) times, and outputting the first valid
witness it outputs).

Feasibility of (1-round) strong proofs of knowledge with no secrecy. We note that if there
is no secrecy requirement (like, for example, zero knowledge), then constant-round strong proofs
of knowledge for NP can be easily constructed by having the prover just send an NP-witness w
to the verifier V . The verifier V then outputs 1 if and only if (x,w) ∈ R. The reason that this
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constitutes a strong proof of knowledge follows from the fact that the protocol is deterministic
and non-interactive. Thus, a prover P ∗(x, y; r) either always convinces V or never convinces V .
Therefore, if p(x, y, r) > s(|x|), this means that P ∗(x, y; r) always sends a valid witness and the
extractor K can just output this witness.

Feasibility of nonconstant-round zero-knowledge strong proofs of knowledge. If one-
way functions exist, then there exist f(n)-round zero-knowledge strong proofs of knowledge with
negligible error for any growing function f(n) = ω(1). This is achieved by a slight modification
of the protocol in [Gol2], specifically taking Ω(f(n)) sequential repetitions of a log n-fold parallel
repetition of Blum’s basic Hamiltonicity protocol [Blu2]. In this section, we will give evidence
that this is optimal.

Variants of Definition 5.1. Definition 5.1 is (a slight generalization of) the definition as pre-
sented in [Gol2]. However, we will also consider a number of variants. Specifically, we will consider
the case that K may run in expected, rather than strict, polynomial time. We will also consider
arguments, where the strong validity requirement will only need to hold for polynomial-time provers
P ∗. In such a case, the extractor is not limited to black-box access to P ∗, but rather can depend
on the specific cheating prover. This is a natural relaxation of the notion of proofs of knowledge.
(In fact, the only reason to consider black-box access in the first place, seems to be so that efficient
extraction from inefficient provers can also be considered.) Finally, we will consider a strengthening
of strong proofs of knowledge, which relates to how the “success probability” of P ∗ is computed.
Specifically, Definition 5.1 requires extraction when the deterministic prover P ∗(x, y; r) successfully
convinces V with probability greater than s(|x|). Another possibility, however, is to require extrac-
tion when the probabilistic prover P ∗(x, y) successfully convinces V with probability greater than
s(|x|). It turns out that this makes a very big difference.

Definition 5.2 (variants of strong proofs of knowledge).

1. Expected instead of strict polynomial time: Rather than restricting K to strict polynomial
time, it is allowed to run in expected polynomial time (we stress that this running time is
still independent of p(x, y, r)).

2. Arguments instead of proofs and non-black-box instead of black-box extraction: We modify the
strong validity/soundness requirement as follows. For every PPT P ∗ and every polynomial
q(n), there exists a PPT K such that for all inputs x ∈ {0, 1}∗, all auxiliary inputs y ∈
{0, 1}q(n), and all random tapes r ∈ {0, 1}q(n), we have

p(x, y, r)
def
= Pr [V accepts in (P ∗(y; r), V )(x)] > s(|x|)

⇒ Pr [K(x, y) = w s.t. (x,w) ∈ R] ≥ 1− ε(|x|)

If K fulfills this modified condition, then we call it a strong non-black-box knowledge ex-
tractor, and we call the protocol a system of strong arguments of knowledge.9

3. Fixed versus variable randomness for P ∗: Denote by p(x, y) the probability that V accepts on
input x, when interacting with the prover specified by P ∗(x, y). We stress that this probability

9It is possible to also consider arguments with black-box extractors and proofs with non-black-box extractors.
However, this combination seems to be the most reasonable.
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is also over the coins r that are used by P ∗. Then, require that if p(x, y) > s(|x|), machine
K must output a witness w such that (x,w) ∈ R with probability at least 1− ε(|x|). That is,

p(x, y)
def
= Pr [V accepts in (P ∗(y), V )(x)] > s(|x|)

⇒ Pr
[

KP ∗(x,y,·;·)(x) = w s.t. (x,w) ∈ R
]

≥ 1− ε(|x|)

We stress that in this case, K is allowed to set the random coins for P ∗(x, y) to be any value it
wishes (even if it has only black-box access). Thus, K asks queries of the form (α1, α2, . . . ; r),
which are answered according to P ∗(x, y, α1, α2, . . . ; r).

IfK fulfills this modified strong validity condition, then we call it an extra-strong knowledge
extractor. Furthermore, we call (P, V ) a system of extra-strong proofs of knowledge.

Analogous to auxiliary-input zero knowledge, for strong arguments of knowledge there is a universal
prover P ∗uni(x, z) that interprets its auxiliary input z as a circuit Cz and uses Cz as its next message
function. If the knowledge extraction condition holds for P ∗uni, then it holds for all PPT prover
strategies P ∗. Note, however, that the extractor K may depend on the polynomial bound q(n) on
the size of the circuit given as auxiliary input to P ∗uni, so this does give a “universal” extractor in
the usual sense; this makes our lower bound stronger.

Strict versus expected polynomial time. We show that, unlike for zero-knowledge simula-
tors and standard proof of knowledge extractors, strict polynomial-time strong and extra-strong
extractors can be constructed from expected polynomial-time strong and extra-strong extractors.
That is, allowing the more liberal notion of expected polynomial time does not add any power.
This means that in our lower bounds, it suffices to rule out the existence of strong and extra-strong
proofs and arguments of knowledge with strict polynomial-time extractors, respectively.

Proposition 5.3. Let (P, V ) be a system of strong proofs of knowledge for a relation R with
an expected polynomial-time strong knowledge extractor having extraction error ε. Then, (P, V )
is a system of strong proofs of knowledge for R with a strict polynomial-time strong knowledge
extractor having extraction error ε′ = O(ε). In particular if ε is negligible, so is ε′. The same holds
for extra-strong proofs of knowledge, and for strong and extra-strong arguments of knowledge.

Proof. We prove the proposition for strong proofs of knowledge; the other cases are proved in
exactly the same way. Let (P, V ) be a system of strong proofs of knowledge, and let K be a strong
knowledge extractor for (P, V ) that runs in expected-time q(n) and has soundness error s(·) and
extraction error ε(·).

We begin by constructing a strict polynomial-time machine K ′ who runs in time 2q(n) and,
when p(x, y, r) > s(|x|), extracts with probability at most 1/2 − ε(|x|). The machine K ′ simply
invokes K and if K exceeds 2q(n) steps, then it outputs time-out. By Markov’s inequality, K
outputs time-out with probability at most 1/2. Furthermore, conditioned on this not happening,
the probability that K does not obtain a valid witness at most doubles. Thus, by the strong
validity property, when p(x, y, r) > s(|x|), machine K ′ obtains a valid witness with probability at
least 1 − 2ε(|x|). In summary, K ′ runs in time that is (strictly) bound by 2q(|x|), and outputs
time-out with probability at most 1/2. Furthermore, conditioned on K ′ not outputting time-out, it
outputs a valid witness with probability 1− 2ε(|x|).

Given such a K ′, a strong knowledge extractor K ′′ is obtained by invoking K ′ independently n
times. The first time that K ′ outputs a string w and does not output time-out, the extractor K ′′
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outputs w and halts. IfK ′ outputs time-out in all iterations, thenK ′′ halts and outputs failure. Now,
the probability thatK ′′ outputs failure is at most 2−n. Furthermore, the probability thatK ′′ outputs
a valid witness, conditioned on it not outputting failure is at least 1−2ε(|x|). Putting this together,
we have that K ′′ outputs a valid witness with probability at least (1− 2−n)(1− 2ε(n)) = 1− ε′(n)
for ε′ = O(ε). K ′′ thus constitutes a strict polynomial-time strong knowledge extractor for (P, V )
with extraction error O(ε), as required.

Remark. This method of converting an expected polynomial-time extractor to a strict polynomial-
time extractor works for strong proofs of knowledge, but does not work for extractors for standard
(i.e., not strong) proofs of knowledge. The reason for this difference is that the running time and
success probability of strong knowledge extractors are both independent of the probability that P ∗

convinces V . This is not the case for standard proofs of knowledge. Indeed, an actual separation
between expected and strict polynomial-time black-box extraction for standard proofs of knowledge
has been shown in [BL].

5.2 Triviality

It is well-known that every language in BPP has a trivial zero-knowledge interactive proof system,
where the prover sends nothing to the verifier and the verifier simply decides membership on its
own. For proofs of knowledge, the corresponding notion of triviality does not refer to the complexity
of deciding membership in the language, but rather the complexity of finding witnesses for the given
relation. For example, if f is a one-way permutation, then the relation R = {(x,w) : f(w) = x}
defines a trivial language LR = {0, 1}∗, but giving a zero-knowledge proof of knowledge for R is
quite nontrivial. We note that zero-knowledge proofs of knowledge for relations of this type are
also often used in cryptographic construction. Thus we are led to define the following notion:

Definition 5.4. A (poly-balanced) relation R is easy to search if there exists a PPT T and a
function ε(n) ≤ 1− 1/poly(n) such that

∀ x ∈ LR Pr [T (x) ∈ Rx] ≥ 1− ε(|x|).

We call ε the error probability of the search algorithm A. We say that R is easy to search deter-
ministically if T is deterministic poly-time (and hence ε = 0).

Notice that according to our definition, a relation is easy to search if witnesses can be found
with any noticeable (i.e., inverse polynomial) probability. Below, we will show that if a relation
is easy to search in this weak sense, then witnesses can actually be found with all but negligible
probability. It therefore suffices to consider this weaker notion.

Before proceeding, we note that for NP-relations and MA-relations, this is a strengthening of
saying that deciding membership is easy. Thus, lower bounds for relations are stronger than lower
bounds for languages.

Lemma 5.5. If R is an NP-relation and R is easy to search, then LR is in RP. If R is an
MA-relation and R is easy to search, then LR is in BPP.

Proof. By error reduction on the MA proof system for R, there is a PPT algorithm A such that
if (x,w) ∈ R then A(x,w) accepts with probability at least 1 − 2−n and if x /∈ LR, then A(x,w)
accepts with probability at most 2−n. (If R is an NP relation, then R is deterministic.) Now
we can use A together with the search algorithm T to decide LR: given x, run A(x, T (x)) many
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(specifically, O(1/(1 − ε(|x|)))) times independently and accept if at least one of these executions
accepts. If x ∈ LR, then with high probability, at least one execution of T (x) will produce w such
that (x,w) ∈ R, and hence A will accept with high probability. If x /∈ LR, then A will reject on all
executions with high probability (regardless of what T outputs). (If R is an NP relation, then A
will reject x /∈ LR with probability one, hence we get an RP algorithm.)

Now we show that easy-to-search MA-relations have trivial proofs of knowledge. Thus, a lower
bound proving that strong proofs of knowledge exist only for easy-to-search MA-relations (as we
indeed prove below) is tight.

Proposition 5.6. If R is an MA-relation that is easy to search with error probability ε(·), then
R has a zero-round (perfect, auxiliary-input) zero-knowledge extra-strong proof of knowledge with
extraction error ε(·) and negligible completeness and soundness errors.

Proof. The verifier decides whether to accept or reject input x using the BPP algorithm given
by Lemma 5.5 (after reducing its error probability to negligible). The prover does nothing (which
implies the zero knowledge property). The knowledge extractor ignores the prover algorithm and
simply runs the search algorithm for R.

Since the error probability of the search algorithm translates into the extraction error of the
trivial proof of knowledge, it is desirable to be able to reduce the search error to negligible. This
is easy for NP-relations: run the search algorithm T polynomially many times and output the
first valid witness it finds (if any). For MA-relations, it is a bit more subtle. For the sake of
the intuition, consider a MA-relation for which (x,w) ∈ R if and only if Pr[A(x,w) = 1] ≥ 2/3
(the definition of MA-relations only requires that if (x,w) ∈ R then A(x,w) = 1 with probability
greater than 2/3). The problem is that when x ∈ LR, the search algorithm T may sometimes output
a value w with, say, Pr[A(x,w) = 1] = 2/3 − 2−|x| (so w /∈ Rx). However, it will be infeasible to
distinguish such w’s from w’s in the relation, and thus it seems we cannot reduce the search error
probability for R.

Due to the above difficulty, we define extensions of MA relations. Specifically, let R be an
MA-relation and let A be the PPT algorithm that checks witnesses (with error probability 1/3).
Consider the relation R̂ = {(x,w) : Pr [A(x,w) = accept] ≥ 1/2}. Then R ⊆ R̂, R̂ is an MA-
relation, and LR̂ = LR. (The constant 1/2 is arbitrary, and anything strictly between 1/3 and 2/3

would do.) We call a relation R̂ obtained in this way an extension of R. Notice that if an extension R̂
is easy to search, then this means that it is easy to find a value w such that Pr[A(x,w) = 1] ≥ 1/2.
Such a value may not be a witness in the classic sense because (x,w) is not necessarily in R;
however, it is a proof that x ∈ LR (because for x /∈ LR, Pr[A(x,w) = 1] < 1/3 for every w). Also
notice that if R is an NP-relation, then R is an extension of itself. We have the following.

Proposition 5.7. If an NP-relation R is easy to search, then R is easy to search with negligible
error probability. If an MA-relation R is easy to search, then every extension R̂ of R is easy to
search with negligible error probability.

Proof. We only deal with the MA case. Let A be a witness-checking algorithm for R and R̂ the
corresponding extension. Consider an algorithm A′(x,w) that runs A(x,w) for O(|x|) executions
and accepts if at least a .6 fraction of the executions accept. Then if (x,w) ∈ R, A ′(x,w) accepts
with all but exponentially small probability. If (x,w) /∈ R̂, then A′(x,w) rejects with all but
exponentially small probability. Now let T be the search algorithm for R with error probability
ε(n). We use T and A′ to construct a search algorithm T ′ for R̂ as follows. On input x of length
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n, T ′ runs T (x) many times to get witnesses w1, . . . , wk ←R T (x), where k = O(n/(1− ε(n))), and
outputs the first wi such that A′(x,wi) = accept. If there is no such wi, then T ′ outputs fail.

If x ∈ LR, then with probability at least 1 − (1 − ε(n))k ≥ 1 − 2−n, at least one wi will be in
Rx and thus will be accepted by A′ with probability at least 1 − 2−n. In addition, A′ will reject
any wi not in R̂x with all but exponentially small probability. Thus, when x ∈ LR, the output of
T ′(x) will be in R̂x with all but exponentially small probability.

Proposition 5.7 shows that in order to give a triviality result for zero-knowledge proofs of knowl-
edge for NP-relations (or MA-relations), it suffices to come up with a probabilistic polynomial-time
algorithm that finds witnesses with probability at least 1/poly(n).

Summary of triviality. In the setting of proofs of knowledge, triviality results on languages do
not necessarily capture what is required (because, as we have shown, there exist “hard” relations
that have trivial languages). We will therefore prove the results of this section for relations, and
specifically for MA-relations (which of course, includes all NP-relations).

In order to further clarify what our results mean, we explain the ramifications of the statement
that if a type of interactive proof exists for an MA-relation R, then every extension R̂ of R is easy
to search (our triviality results are based on such statements):

1. First, since every MA-relation is also an NP-relation and every NP-relation is an extension
of itself, we have that the NP-relation is easy to search. Furthermore, by Proposition 5.7,
it follows that the NP-relation is easy to search with negligible error probability (in other
words, witnesses can almost always be found).

2. Next, if R is an MA-relation then so is its extension R̂, and furthermore LR̂ = LR. Thus, by

Lemma 5.5, it follows that LR ∈ BPP. Therefore, a triviality result on the extension R̂ of an
MA-relation R implies a triviality result (in the usual “membership sense”) on the original
language LR as well.

The above justifies proving triviality with respect to extensions of MA-relations because this only
strengthens our results.

5.3 Tools: Strong Pseudorandomness

In order to prove some of our lower bounds, we need to use a very strong pseudorandom generator,
which can be constructed using the following exponential hardness assumption.

Assumption 5.8. There exists a constant δ and a length preserving polynomial-time computable10

regular11 one-way function f : {0, 1}∗ → {0, 1}∗ that is hard to invert for 2δn-sized circuits. That
is, for every circuit family A = {An}n∈N such that each An is of size at most 2δn, and for all
sufficiently large n’s,

Pr[An(f(Un)) ∈ f−1(f(Un))] ≤ 2−δn

As we will show in Section 8, strong assumptions of hardness are necessary for proving lower
bounds for strong proofs of knowledge; indeed, under assumptions of sub-exponential “easiness”,
the lower bounds do not hold. The following theorem is used for proving our non-black-box lower
bounds. Loosely speaking, it states that for every polynomial-time distinguisher, there exists a

10Actually, for our results it will suffice that f will be computed in 2o(n)-time.
11A function f : {0, 1}n → {0, 1}m is regular if |f−1(z)| has the same size for every z in the image of f .

25



pseudorandom generator that receives a very short O(log n)-length seed and outputs a string of
length n that cannot be distinguished from random by the distinguisher.

Theorem 5.9 (strong pseudorandomness [HILL, Lub]). Assuming Assumption 5.8, there is
a polynomial tG(n) such that for every polynomial q(n), there exists a constant d and a generator
G : {0, 1}d log n → {0, 1}n such that G can be computed in time tG(n), and for every nonuniform
probabilistic algorithm D running in time q(n) and all sufficiently large n’s,

|Pr[D(G(Ud log n)) = 1]− Pr[D(Un) = 1]| <
1

q(n)

The dependence of G on q(n) is only with respect to the constant d in the seed length. Furthermore,
the time it takes to compute G is independent of d and thus of q(n). That is, there exists a single
machine MG running in time tG(n), such that for all for s ∈ {0, 1}d log n , upon input (1n, d, s)
machine MG computes G(s) that “fools” all distinguishers running in time q(n).

We note that the pseudorandom generators above imply BPP = P, and even MA = NP. In
fact, they also imply that if R is an NP-relation that is easy to search, then R is easy to search
deterministically, and if R is an MA-relation that is easy to search, then every extension R̂ of R is
easy to search deterministically.

5.4 Extra-Strong Proofs and Arguments of Knowledge

We begin by showing that extra-strong proofs and arguments of knowledge cannot be obtained
for nontrivial languages, even when no secrecy requirements (such as zero knowledge or witness
indistinguishability) are imposed. This result holds for proofs and arguments with any (polynomial)
number of rounds. Note that by our definition, the impossibility result for proofs is black-box,
whereas the impossibility result for arguments holds even for non-black-box extractors. However,
any proof system is also an argument. Therefore, the non-black-box result holds also for proof
systems.

Theorem 5.10.

1. If a relation R has an extra-strong proof of knowledge with negligible soundness error, then R
is easy to search. In particular, if R is an NP-relation (resp., MA-relation), then LR ∈ RP
(resp., LR ∈ BPP).

2. Assuming Assumption 5.8, if an MA-relation R has an extra-strong argument of knowledge
with negligible soundness error and an efficient prover, then every extension R̂ of R is easy
to search (deterministically). In particular, LR ∈ P.

Proof. Intuitively, extra-strong proofs of knowledge cannot be obtained because a prover may
simply refuse to cooperate with the extractor. That is, assume that the extractor’s running time
is q(n). Then, consider a “cheating” prover P ∗ who with probability 1 − 1/2q(n) does nothing,
and with probability 1/2q(n) plays the honest prover strategy. Then, on the one hand, the prover
convinces V with probability 1/2q(n) > s(n). On the other hand, the probability that the extractor
will obtain a response from the prover in time q(n) is at most 1/2. Since it must extract with
probability 1 − ε(|x|), it must obtain the witness with no help from the prover in almost half the
cases. Thus, an efficient decision procedure can be built from this extractor. The above intuition
suffices for obtaining a black-box lower bound. However, if the extractor is given non-black-box
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access to the above prover P ∗, the following problem arises. In order to construct a P ∗ who
convinces V with probability 1/2q(n), we need to give it an explicit witness for the statement being
proved. Otherwise, it is not clear how it can convince V in the case that it is supposed to run the
honest prover strategy. However, if P ∗ holds a witness w, then the extractor who is given P ∗’s
code and auxiliary input can immediately obtain this witness. Thus, we must somehow “hide” the
witness from the extractor. This is achieved by having P ∗ hold an encryption of the witness, where
the “encryption scheme” has the following two properties. First, the extractor, who runs in time
q(n), will only be able to decrypt with probability that is noticeably less than 1. Second, it can
easily be decrypted with probability 1/poly(n), using a random “key”. Therefore, on the one hand,
P ∗’s random tape can be used to obtain the witness and convince V with high enough probability
(i.e., with probability greater than s(n)). On the other hand, the extractor will not be able to
obtain the witness with high enough probability. We now proceed to the formal proof.

We first prove the theorem for the case of extra-strong proofs of knowledge, and thus where the
extractor K is given only black-box access to P ∗ (as in Definition 5.1).

Triviality of extra-strong proofs. Assume that (P, V ) is an extra-strong proof of knowledge,
with extra-strong knowledge extractor K, negligible soundness error s(n), and completeness and
extraction errors c(n), ε(n) ≤ 1 − 1/poly(n). Let t(n) be the polynomial bounding K’s running
time, and let q(n) = 2t(n)/(1 − ε(n)).

We define a prover algorithm P ∗, from which K will have to successfully extract witnesses.
On input x ∈ LR of length n, we will give P ∗ an auxiliary input of the form y = (w, s), where
w is a witness valid witness for x and s is a (randomly chosen) string of length log q(n). Now
P ∗(x, (w, s); r) works as follows. It examines the first log q(|x|) bits of its random tape r. If they
do not equal s, then P ∗ aborts without sending any message. Otherwise, P ∗ correctly proves the
proof of knowledge, following P ’s strategy (using the remainder of its random tape for P ’s random
bits). Now, the probability p(x, (w, s)) that P ∗(x, (w, s)) convinces V equals (1/q(n)) · (1− c(n)) =
1/poly(n). Thus, p(x,w) > s(n), Therefore, by the strong validity/soundness property, K must
output a valid witness with probability at least 1− ε(n) ≥ 1/poly(n), while utilizing oracle access
to P ∗(x, (w, s), ·; ·).

Given such a K, we construct a search algorithm T for R. Upon input x of length n, machine
T chooses s ←R {0, 1}

log q(n). Machine T then invokes K(x), and plays the role of P ∗(x, (w, s)),
answering all of K’s oracle queries. Specifically, when K asks a query of the form (α1, α2, . . . ; r),
machine T first checks if the first log q(n) bits of r equal s. If yes, then T outputs fail. (In this case,
T cannot continue emulating P ∗(x, (w, s)) because it does not know a witness for x.) Otherwise, T
emulates P ∗(x, (w, s)) and hence emulates P ∗ sending abort. T continues this emulation until K
concludes. If K outputs a value w, then T outputs w.

It remains to prove that T constitutes a valid search algorithm for R. Suppose x ∈ LR. We
need to show that T outputs a valid witness with probability at least 1/poly(n). The probability
that this occurs is at least the probability that K fails to output a valid witness (when interacting
with P ∗(x, (w, s)) for random s) minus the probability that T outputs fail. The probability
that K outputs a valid witness is at least ε(n). Now, we analyze the probability that T outputs
fail. Since K runs in time that is bound by q(n), the maximum number of oracle queries that
it makes is t(n). For each of these oracle calls, the probability that the first log q(n) bits of r
equal s is at most 1/q(n). This is due to the fact that K ′ has only black-box access to P ∗ and so
knows nothing about s which is uniformly distributed in {0, 1}log q(n). By the union bound over
all t(n) oracle calls, we have that the probability of there being some oracle call for which the first
log q(n) bits match is at most t(n)/q(n) ≤ (1 − ε(n))/2. This means that T outputs fail with
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probability at most (1−ε(n))/2. Thus, the probability that T (x) outputs a valid witness is at least
1− ε(n)− (1− ε(n))/2 = (1− ε(n))/2 ≥ 1/poly(n), as desired.

Triviality of extra-strong arguments. The fact that the existence of extra-strong arguments
of knowledge for a relation R implies that R is easy to search is proven in a similar way to the
analogous claim for extra-strong proofs of knowledge. However, some essential changes must be
made. Specifically, the extractor K now has non-black-box access to the prover. Therefore, if we
were to use the same prover strategy P ∗(x, (w, s)), K would be able to see s and thus set r so
that its prefix equals s. Furthermore, K would also see the witness w that P ∗(x, (w, s)) uses to
prove when it does not abort. We must therefore construct a prover that works in a similar way
to P ∗(x, (w, s)), but also “hides” s and w from the extractor K. We do this by using the strong
pseudorandom generator of Theorem 5.9. Specifically, the generator is applied to s and the result
is used to “encrypt” w.

Formally, let (P, V ) be a system of extra-strong arguments of knowledge. Then, construct a
cheating prover P ∗ as follows: First, recall that by Theorem 5.9 (which follows from Assump-
tion 5.8), for every polynomial q′(n) there exists a pseudorandom generator G : {0, 1}d log n →
{0, 1}n, where d is a constant, such that G fools any distinguisher running in time q ′(n). Further-
more, there exists a single machine MG running in time tG(n), such that MG receives for input
(1n, d, s) where s ∈ {0, 1}d log n and computes the above mentioned generator G on seed s. Now,
let x ∈ LR be the statement being proven and let w be a witness such that (x,w) ∈ R. Without
loss of generality, assume that |w| = |x| = n. Then, the auxiliary input of P ∗ is a pair y = (d, u),
where u = G(s)⊕ w and s ∈ {0, 1}d log n (an appropriate encoding is used to differentiate between
d and u). Intuitively, P ∗ will agree to prove the statement if and only if the first d log n bits of
its random tape correctly “decrypt” y, revealing the witness w. Formally, when P ∗(x, (d, u)) is
invoked, it reads the value of d from its auxiliary input, takes the first d log n bits of its random
tape, denoted s′, and computes w′ = G(s′)⊕u (using the machine MG). Then P ∗ uses the witness
w′ and proves the proof, playing the honest prover strategy (using all but the first d log n bits of
its random tape for P ’s random bits). Before proceeding, notice that P ∗(x, (d, u)) runs in time
tG(n) + tP (n), where tP (n) is the polynomial bounding the running time of the honest prover P
upon inputs of length n. Now, by the assumption that (P, V ) is a system of extra-strong argu-
ments, there exists an extractor K running in some polynomial time t(n) for this prover P ∗. Let
q(n) = max{t(n) + tR(n), 2/(1 − ε(n))}, where tR(n) is the running time of the witness-checking
algorithm T that accepts (x,w) ∈ R with probability at least 1− 2−n and accepts (x,w) /∈ R̂ with
probability at most 2−n.

Consider now the case that P ∗(x, (d, u)) has auxiliary input y = (d, u), where d defines a
generator that fools all distinguishers running in time q(n) (this choice of d will become apparent
below) and u = G(s) ⊕ w for some s ∈ {0, 1}d log n. The probability that P ∗(x, (d, u)) convinces V
to accept is at least the probability that s′ = s times the probability that P (x,w) convinces V to
accept. By the uniformity of s′ (coming from P ∗’s random tape) and the completeness/nontriviality
property, this equals (1/nd) · (1 − c(n)) ≥ 1/poly(n). (The probability that P ∗ convinces V may
actually be greater if there are numerous witnesses because a number of different strings s ′ may
“decrypt” u to valid witnesses.) This is greater than all negligible functions, and in particular
greater than soundness error s(n). Therefore, by the soundness/strong validity property, for u = w⊕
G(s), K(x, (d, u)) succeeds in obtaining a valid witness w ′ ∈ Rx with probability at least 1− ε(|x|).
Intuitively, we will obtain a search algorithm for R because when s is random, the extractor K,
who runs in time q(n), cannot distinguish G(s) from Un, and thus we can run K(x, (d, Un)) and
still obtain a witness.

28



Formally, we claim that when x ∈ LR, K(x, (d, Un)) obtains a witness w ∈ R̂x with probability at
least (1−2−n)·(1−ε(n))/2 ≥ 1/poly(n). This holds due to the pseudorandomness of G. Specifically,
let D be a distinguisher, given auxiliary input (x,w) ∈ R, who receives z ∈ {0, 1}n and must
distinguish the case that z ← Un from the case that z ← G(Ud log n). Distinguisher D simply runs
K(x, (d, z ⊕ w)) to obtain a string w′, and then runs the witness-checking algorithm T (x,w ′) that
distinguishes the case (x,w′) ∈ R from (x,w′) /∈ R̂. D has running time t(n)+t′(n) ≤ q(n). We have
already argued that for every z ← G(Ud log n), K(x, (d, z⊕w)) obtains a witness w′ ∈ Rx and thus D
accepts with probability at least 1−ε(n). By the pseudorandomness of G against algorithms running
in time q(n), D(Un) must accept with probability at least 1−ε(n)−q(n) ≥ (1−ε(n))/2 ≥ 1/poly(n).
That is, K(x, (d, Un)) outputs a w′ ∈ R̂x with probability at least 1/poly(n), as desired.

5.5 Constant-Round ZK Strong Proofs and Arguments of Knowledge

In this section, we present our main result regarding strong proofs of knowledge. Specifically,
we show that under Assumption 5.8, there do not exist constant-round zero-knowledge strong
proofs and arguments of knowledge. In fact, the lower bound holds even for honest-verifier zero
knowledge. We note that the difference between the first and second items in the theorem with
respect to LR ∈ BPP or LR ∈ P is due simply to the fact that under Assumption 5.8, BPP = P.

Theorem 5.11. Let R be an MA-relation.

1. If R has a constant-round honest-verifier zero-knowledge strong proof of knowledge with negli-
gible completeness and soundness errors, then R is easy to search. In particular, LR ∈ BPP.

2. Assuming Assumption 5.8, if R has a constant-round honest-verifier zero-knowledge strong
argument of knowledge with negligible completeness and soundness errors and an efficient
prover, then every extension R̂ of R is easy to search (deterministically). In particular,
LR ∈ P.

Proof. The idea behind the lower bound is as follows. Assume that there exists a constant-round
zero-knowledge strong proof of knowledge (P, V ). Then, there must be a round in which V sends
a message with entropy ω(log n). Otherwise, all of V ’s messages can be guessed with nonnegligible
probability, and V is “close” to being deterministic. This is a contradiction because zero-knowledge
verifiers must be probabilistic [GO]. Now, this message of V that has “high” entropy can be used
in a similar way to the string s that is used in the proof of Theorem 5.11. That is, it can be used
to reduce the probability that P ∗ convinces V , so that K does not have enough time to obtain
any information from P ∗. The rest of the proof then continues in the same way. (There are some
additional technical details that arise from the fact that this high-entropy message sent by V is
not actually uniformly distributed. However, this is solved by hashing the message to extract its
randomness.)

As in the proof of Theorem 5.10, we first prove the case of strong proofs of knowledge, and thus
where K is a black-box extractor.

Triviality of strong proofs. Let (P, V ) be a 2k-round honest-verifier zero-knowledge strong
proof of knowledge. We will denote verifier messages by α and prover messages by β. For each
x ∈ L of length n, fix a witness wx ∈ Rx. Call a sequence r of the prover’s coin tosses accepting for
x if the probability that V (x) accepts when interacting with P (x,wx; r) is at least 1− 4c(n), where
c is the completeness error. By Markov’s inequality, all but 1/4 fraction of the r’s are accepting.

29



Let p1(n), . . . , pk(n) be polynomials to be specified later, and let p(n) =
∏

i pi(n). For a setting
r of the prover’s coin tosses, we call a transcript h = (α1, β1, . . . , αk, βk) heavy with respect to r
and x if

Pr [(P (wx; r), V )(x) exchange precisely the messages in h] ≥ 1/p(n).

Let L′ be the set of x ∈ L such that for at least 1/2 of the prover’s coin tosses r, there exists a
heavy transcript with respect to x and r.

We will deal separately with inputs x ∈ L′ and x ∈ L \ L′. For instances x ∈ L′, we will show
how to use the zero-knowledge simulator to construct a successful prover strategy and thereby
extract a witness. For instances x /∈ L′, we will show that there is a high-entropy verifier message
and follow the intuitive argument outlined above.

Claim 5.12. There is a PPT T1 such that for every x ∈ L′, T1(x) outputs an element of Rx with
probability at least 1/poly(|x|).

Proof of Claim. Let x ∈ L′. Then at least a 1/2 − 1/4 = 1/4 fraction of the r’s have a heavy
transcript h and are accepting. First, we show how given a heavy transcript h for any accepting r,
we can construct a successful prover strategy. Consider P ∗(x, h) that on input x and auxiliary input
h: P ∗ simply sends the verifier the messages in h, and aborts if the verifier ever sends a message
inconsistent with h. We now claim that if h is heavy for an accepting r, then P ∗(x, h) convinces
V to accept with probability at least 1/p(n) − 4c(n). The reason is that P ∗ behaves exactly the
same as P (x,wx; r) unless V sends something inconsistent with h and V remains consistent with
probability at least 1/p(n).

Now, if we choose r uniformly at random and generate h according to 〈P (w; r), V 〉(x), then
r will be accepting and h will be heavy wrt r with probability at least (1/4) · (1/p(n)). Thus,
for h ←R 〈P (w), V 〉(x), we see that P ∗(x, h) convinces V (x) to accept with probability at least
(1/4) · (1/p(n)) · (1/p(n) − 4c(n)) ≥ 1/poly(n). By honest-verifier zero knowledge, the same must
hold (up to a negligible difference in probability) when we generate h according to the honest-
verifier simulator S(x). (Formally, consider the distinguisher Dx(h) that simulates the interaction
between P ∗(x, h) and V (x) and outputs 1 iff V accepts.)

Therefore, the prover strategy P ∗∗(x) = P ∗(x, S(x)) convinces V (x) to accept with probability
at least 1/poly(n) > s(n) when x ∈ L′. By the strong validity/soundness property, the strong
knowledge extractor K(x) for P ∗∗ outputs a witness w ∈ Rx with probability at least 1 − ε(n) ≥
1/poly(n). Setting T1 = K completes the proof of the claim.

Claim 5.13. There is a PPT T2 such that for every x ∈ L \ L′, T2(x) outputs an element of R̂x

with probability at least 1/poly(|x|).

Proof of Claim. Let x ∈ L′. Then greater than a 1/2 − 1/4 = 1/4 fraction of the prover’s coin
tosses r have no heavy transcript and are accepting. For each such r, we claim that there exists a
partial transcript h = (α1, β1, . . . , αi, βi) such that in the interaction between P (x,w; r) and V (x),

• h occurs with probability at least pi(n)
def
=

∏i
j=1(1/pj(n)). (The probability here is over V ’s

coin tosses.)

• For every αi+1, the probability that αi+1 will be V ’s next message given that h has occurred
is less than 1/pi+1(n). That is, conditioned on h, the (i+1)’st message of V has min-entropy
greater than log pi+1(n)
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We call such an h a good history for r.
To prove the existence of good histories, consider a r for which the above does not hold. Since

the claim doesn’t hold, there exists a first verifier message α1 that occurs with probability least
1/p1(n). Set β1 to be P (x,w, α1; r). Since β1 is deterministically computed, the partial transcript
(α1, β1) still has probability at least 1/p1(n). Thus, if the above does not hold for (α1, β1), it must be
due to the second condition. This means that there exists a second verifier message α2 (in response
to (α1, β1)) whose conditional probability is at least 1/p2(n). Set β2 to be P (x,w; r)’s response.
We obtain that the prefix (α1, β1, α2, β2) appears with probability at least (1/p1(n)) · (1/p2(n)),
and so we can continue. Ultimately, we end up with a complete transcript of probability mass at
least

∏k
i=1(1/pi(n)) = p(n), contradicting the assumption that r has no heavy transcript.

So fix an accepting r and a good history h = (α1, β1, . . . , αi, βi) for r. Let Vi+1 be the distribution
of the (i + 1)th verifier message given history h, and let m(n) = log pi+1(n) be the min-entropy of
Vi+1. We will convert this high-entropy message into an almost-uniform string by hashing (actually,
any “strong randomness extractor” [NZ] would do): By the Leftover Hash Lemma [HILL], if we
choose g :{0, 1}poly(n) → {0, 1}m(n)/4 from a pairwise independent family, then with high probability
g(Vi+1) has statistical difference at most 2−m(n)/3 from uniform. Fix such a g.

Now, let K be the strong knowledge extractor for (P, V ) and let t(n) be a bound on the running
time of K. Then, similarly to the proof of Theorem 5.10, we construct a cheating prover P ∗(x, y)
to which we give an auxiliary input y = (wx, r, h, g, s), where wx is a witness, r are an accepting
sequence of coin tosses for P , h a good transcript for r, g the hash function as above, and s a string
of length m(n)/4 = (log pi+1(n))/4. For the first i messages, P ∗(x, (wx, r, h, g, s)) just sends the
prover messages in the history h. If V replies with a message that is not consistent with h, then
P ∗ aborts. Otherwise, if the transcript so far is consistent with h, then P ∗ obtains the (i + 1)th

verifier message αi+1 and checks if g(αi+1) = s. If yes, then P ∗ completes the proof, following the
instructions of the honest prover P (x,wx; r). Otherwise, P ∗ halts and outputs nothing.

We argue that for every (r, h, g) as above and every s, the probability that P ∗ convinces an
honest verifier V is at least 1/poly(n). First, recall that h is chosen in such a way that V gives
consistent responses with probability at least pi(n). Second, recall that g(Vi+1) has statistical differ-
ence at most 2−m(n)/3 from the uniform distribution on {0, 1}m(n)/4 , so it equals s with probability
at least

2−m(n)/4 − 2−m(n)/3 = Ω(2−m(n)/4) = Ω(1/pi+1(n)1/4).

Thus P ∗ behaves exactly as P (x,wx; r) with probability at least 1/poly(n). Since P (x,wx; r) causes
V (x) to reject with probability at most 4c(n), which is negligible, we conclude that P ∗ convinces
V to accept with probability at least 1/poly(n)− 4c(n) = 1/poly(n).

Now we construct a search algorithm T2 for R, similar to the proof of Theorem 5.10. Upon
input x of length n, machine T2 chooses i←R {0, . . . , k− 1}, generates a simulated random history
h = (α1, α2, . . . , αi, βi) ←R S(x), chooses s ←R {0, 1}

log(pi+1(n))/4, and chooses a random hash
function g. Machine T2 then invokes K(x), and plays the role of P ∗(x, (wx, r, h, g, s)), answering
all of K’s oracle queries. However, when K asks a query containing an (i + 1)th verifier message
αi+1, it checks if g(αi+1) = s and if so, outputs fail. (In this case, T2 cannot continue emulating
P ∗ because it does not know the witness wx for x nor the coin tosses r.) Otherwise, T2 emulates
P ∗ and hence aborts. T2 continues this emulation until K concludes. If K outputs a value w, then
T2 outputs w.

It remains to prove that T2 constitutes a valid search algorithm for R. Suppose x ∈ LR. We
need to show that T2 outputs a valid witness w ∈ R̂x with probability at least 1/poly(n). This is at
least the probability that K outputs a valid witness (when interacting with P ∗(x, (wx, r, i, h, g, s)))
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minus the probability that T2 outputs fail. For each choice of i, the latter probability is at most

t(n)/p
1/4
i+1(n) (analogous to the bound t(n)/q(n) in the proof of Theorem 5.10).

For the probability that K fails to output a valid witness w ∈ R̂x, we note that it suffices to
bound the probability that K fails to output a witness w ∈ Rx (in the original relation) under
the assumption that h is generated according to the real interaction 〈P (wx), V 〉(x) rather than by
the simulator S(x). This is because pairs (x,w) ∈ R can be distinguished from pairs (x,w) /∈ R̂x

in probabilistic polynomial time. Recall that at least 1/4 of all r’s are accepting and have no
heavy transcript. For each such r, there is an i and a good history h for r of length 2i. This
implies that there is a fixed value of i such that at least 1/4k fraction of all r’s are accepting
and have a good history h of length 2i. For each such r and h, the probability that the real
interaction 〈P (wx; r), V 〉(x) yields h is at least pi(n). Thus, if we generate a length 2i partial
transcript h ←R 〈P (wx), V 〉(x), then h is good history for some accepting r with probability at
least (1/4k) ·pi(n) = Ω(pi(n)). In such a case, we have shown that P ∗(x, (wx, r, i, h, g, s)) convinces
V (x) to accept with probability at least 1/poly(n) > s(n), and hence K(x) must output a valid
witness w ∈ Rx with probability at least 1 − ε(n). Thus, there is a setting of i such that K(x)
outputs a witness (when interacting with P ∗) with probability at least Ω(1/pi(n)) · (1− ε(n)).

Putting the above together, there is a setting of i such that T2(x) will output a witness w ∈

R̂x with probability at least Ω(1/pi(n)) · (1 − ε(n)) − t(n)/p
1/4
i+1(n). Thus, recursively defining

pi+1(n) = (n · pi(n) · t(n)/(1 − ε(n)))4 ensures that T2 will output a witness with probability at
least 1/poly(n).

To complete the proof, we obtain a single search algorithm by running one of the two search
algorithms T1, T2 at random.

Triviality for strong arguments. As in the proof of Theorem 5.10, the only difference here is
that the witness used by P ∗ must be “hidden”. This is done in the same way. That is, given a
parameter d and a generator that takes a seed of length d log n, we give P ∗(x, y) the auxiliary input
y = (r, h, g, du, e), where u = G(s) ⊕ w and s ∈ {0, 1}d log n. Then, upon receiving the ith verifier
message αi+1, P

∗ computes g(αi+1), and completes the proof using the witness w′ = G(g(αi+1))⊕u.
The rest of the proof is the same.

Remark 5.14 (witness-indistinguishable strong proofs of knowledge). We note that The-
orem 5.11 can also be used to rule out the possibility of obtaining witness-indistinguishable strong
proofs of knowledge for any NP-complete language. This follows from the Feige–Shamir [FS1]
construction of zero-knowledge arguments of knowledge. Specifically, [FS1] show that assuming the
existence of one-way functions, any witness-indistinguishable proof (or argument) of knowledge for
an NP-complete language can be used to obtain a system of zero-knowledge arguments of knowl-
edge for NP. It can be verified that if the given witness-indistinguishable proof is a strong proof
of knowledge, then the resulting zero-knowledge proof is also a strong proof of knowledge.
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Part II

Protocols

In this part, we present several protocols that under some assumptions satisfy various forms of
zero-knowledge. We wish to stress that not all of these assumptions are standard or even likely to
be true; indeed, some of them are even conjectured to be false. Our use of such assumptions is
therefore to demonstrate the kind of assumption one needs to make, and the kind of obstacles one
faces, when trying to prove a negative result.

6 Two Round Zero Knowledge

In this section we present several positive results regarding 2-round plain zero-knowledge systems.
Two of these results are proven under assumptions that, although used in previous works, are highly
non-standard, and one of the results relies on an assumption that is widely believed to be false.
Thus, we consider these results not so much as positive results, but rather as “negative results on
negative results”, showing what must be tackled in order to extend the results of Section 3. These
results also give additional motivation to investigating the validity of these assumptions.

In Section 6.1 we present a two-round (private-coin) plain zero-knowledge proof system for
a promise problem outside of BPP under the “Knowledge of Exponent Assumption” suggested
by Damg̊ard [Dam]. Thus, in order to extend Theorem 3.7 to hold for all problems outside of
BPP (and not just for NP-complete languages), one must refute the Knowledge of Exponent
Assumption.

In Section 6.2 we construct a two-round public-coin plain zero-knowledge proof system for
NP, under the assumption that one can use nondeterminism to yield a super-polynomial saving
in running time.12 This assumption is a strengthening of the negation of Assumption 3.2 and is
mostly believed to be false. Thus, we do not view this result as a “true” positive result but rather
as showing that assumptions similar to Assumptions 3.2 and 3.5 are necessary for proving results
such as Theorem 3.4 and Theorem 3.7.

In Section 6.3 we present a two-round public-coin plain zero-knowledge argument system for NP
under a variant of the “Noninteractive CS Proofs Conjecture” suggested by Micali [Mic]. Thus,
in order to extend Theorem 3.4 (which currently holds only for proof systems) to hold also for
argument systems, one would have to disprove Micali’s conjecture.

6.1 A Non-trivial 2-Round (Private-Coin) ZK Proof?

Theorem 3.7 gives evidence that 2-round zero-knowledge proofs (with perfect completeness) do
not exist for NP-complete problems, but does not rule out the possibility that such proof systems
exist for some nontrivial languages (i.e. ones outside of BPP). In this section, we show that the
“Knowledge of Exponent Assumption” of Damg̊ard [Dam] implies that indeed there does exist a
nontrivial promise problem with a 2-round ZK proof.

Roughly speaking, the Knowledge of Exponent Assumption says that the only way to generate
a Diffie-Hellman tuple is to “know” the corresponding exponent. To make this formal, we require
a family of computational groups G =

⋃

k Gk of prime order. For simplicity, Gk can be thought of
as consisting of all groups of the form QR2q+1, where QR2q+1 is the group of quadratic residues
in Z∗2q+1 for a k-bit prime q such that 2q + 1 is prime. More generally, we will only require

12See Section 6.2 for a fuller description of the assumption.
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basic computational properties of the group, e.g. it is possible to do all the following in time
poly(k): given security parameter k, generate the description of a random group G ←R Gk; given
the description of G, compute the order of G; given the description of G, carry out operations in
G; etc. A full list of properties which suffice for our purposes can be found in the definition of a
“computational group scheme” in [CS].

We consider the problem of distinguishing Diffie-Hellman non-tuples from Diffie-Hellman from
tuples.

Definition 6.1 ((Complement of) the Decisional Diffie-Hellman problem).

DDHY = {(G, g0, g1, h0, h1) : G ∈ G, g0, g1, h0, h1 ∈ G \ {1},DLogg0
(h0) 6= DLogg1

(h1)}

DDHN = {(G, g0, g1, h0, h1) : G ∈ G, g0, g1, h0, h1 ∈ G \ {1},DLogg0
(h0) = DLogg1

(h1)}

For each k, we let DDHY,k = {(G, g0, g1, h0, h1) ∈ DDHY : G ∈ Gk}.

We require two assumptions about this problem. The first is (even weaker than) the standard
DDH Assumption.

Assumption 6.2 ((Weak) DDH Assumption). The promise problem DDH is not in BPP.
Moreover, if A is any PPT that rejects all elements of DDHN with probability at least 2/3 (over
A’s coin tosses), then A rejects a random element of DDHY,k with probability at least 1/2 for all
sufficiently large k.

The second is a nonstandard assumption, which intuitively says that, given random (G, g0, g1),
the only way to generate (g1, h1) so that (G, g0, g1, h0, h1) is a Diffie-Hellman tuple is by raising g0

and g1 to some known exponent. That is, for any efficient A that generates Diffie-Hellman tuples,
there is an efficient Â that generates the corresponding exponent when given the coin tosses of A.

Assumption 6.3 (Knowledge-of-Exponent Assumption). For every PPT A, there exists a
PPT Â such that

Pr
G←RGk

g0,g1←RG\{1},r

[

A(G, g0, g1; r) = (gx
0 , g

x
1 ) for some x ∈ Z∗|G| and Â(G, g0, g1; r) 6= x

]

= neg(k).

We do not regard this to be a “reasonable” assumption, but to date it has not been proven false,
and our result below shows that proving triviality of 2-round ZK will require such a falsification.13

Already when introducing this assumption, Damg̊ard [Dam] hinted at the possibility that it can
be used to construct 2-round zero-knowledge protocols (but the protocol suggested there is an
Identification Scheme rather than a proof of membership, and thus automatically involves a common
reference string). More recently, in [HT, BP], this assumption and some variants of it were used
to construct 3-round zero-knowledge arguments for NP. We use it to construct a 2-round plain
zero-knowledge proof system for a nontrivial promise problem.

Theorem 6.4. If Assumption 6.3 holds, then there is a 2-round plain zero-knowledge proof for
a promise problem not in BPP. Specifically, this promise problem is of the form DDH

′
=

(DDH
′
Y ,DDH

′
N ), where DDH

′
Y ⊂ DDHY and DDH

′
N = DDHN .

13See [Nao2] for a discussion of why such assumptions are difficult to falsify. Nevertheless, some related assumptions,
suggested in [HT], have been falsified in [BP].
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Public input: (C0, C1), both circuits with n input gates and m out-
put gates

(C0, C1)
↓

P V

Step V1: Choose b←R {0, 1}, r ←R {0, 1}
n. Set α = Cb(r) α←−−−

Step P1: If α ∈ Image(C0), set c = 0, else set c = 1. c−−−→

V accepts if c = b and rejects otherwise.

Protocol 6.6. Interactive Proof for Disjoint Images

We actually abstract away the number theory by reducing it to the following more general
problem:

Definition 6.5 (Disjoint Images). Disjoint Images is the promise problem DI = (DIY ,DIN )
whose instances consist of pairs of circuits C0, C1 : {0, 1}k → {0, 1}` and

DIY = {(C0, C1) : Image(C0) ∩ Image(C1) = ∅}

DIN = {(C0, C1) : C0(Uk) and C1(Uk) have the same distribution}

Disjoint Images is a restriction of Statistical Difference, the complete problem for
statistical zero knowledge [SV], and is a generalization of many well-known computational problems
such as Graph Nonisomorphism and Quadratic Nonresiduosity. Note that DDH reduces
to Disjoint Images under the reduction ψ(G, g0, g1, h0, h1) = (C0, C1) where the circuits C0, C1 :
Z∗|G| → G2 are defined by Cb(x) = (gx

b , h
x
b ). Notice that if (G, g0, g1, h0, h1) ∈ DDHN then C0(x) and

C1(x) have the same distribution. (Specifically, for some r, we have C0(x) = (gx
0 , h

x
0) = (gx

0 , g
rx
0 )

and C1(x) = (gx
1 , h

x
1) = (gx

1 , g
rx
1 ). Thus, for a random x, the distributions are identical.) In

contrast, if (G, g0, g1, h0, h1) ∈ DDHY , then the discrete logs of h0 and h1 are different and so the
distributions are disjoint. Note also that by encoding the input instance into the description of
the circuits, we can ensure that ψ is injective and can be inverted in polynomial time (i.e. is an
invertible reduction).

Protocol 6.6 is the interactive proof system for Disjoint Images from [SV]. This proof system
is easily seen to be honest-verifier perfect zero knowledge, but is unlikely to be zero knowledge for
cheating verifiers. Intuitively, the verifier can learn something by sending the prover an α for which it
does not know if α ∈ Image(C0) (e.g. when the verifier can determine whether C0 : {0, 1}k → {0, 1}
is satisfiable by sending α = 1 to the prover). However, there might be YES instances of Disjoint

Images for which it is infeasible to generate α ∈ Image(C0) without “knowing” that this is the
case. The following assumption formalizes this intuition.

Assumption 6.7. There exists a subset DI′Y ⊂ DIY such that

1. The promise problem DI′ = (DI′Y ,DIN ) is not in BPP.

2. For every PPT A, there exists a PPT Â such that for every (C0, C1) ∈ DI′Y

Pr
r

[A(C0, C1; r) ∈ Image(C0) ⇐⇒ Â(C0, C1; r) = 0] ≥ 1− neg(n),
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where n = |(C0, C1)|.

Note that, unlike the Knowledge-of-Exponent Assumption, here we require the “extractor” Â to
work with high probability for every instance (C0, C1) ∈ DI′Y , rather than just a random instance.
Nevertheless, we can still prove that this assumption follows from the Knowledge-of-Exponent
Assumption:

Lemma 6.8. Assumptions 6.2 and 6.3 imply Assumption 6.7.

Proof. We use the probabilistic method to choose random subset DDH
′
Y of DDHY , and apply the

reduction ψ to Disjoint Images to obtain DI′Y = ψ(DDH
′
Y ) which will almost surely satisfy the

requirements of Assumption 6.7. Specifically, for each k, we choose x1, . . . , xk ←R DDHY,k and set

DDH
′
Y,k = {x1, . . . , xk}, and DDH

′
Y =

⋃

k DDH
′
Y,k. The intuition is that the DDH Assumption

ensures that the random instances xi are “hard” (so even the restricted problem DDH
′
will not

be in BPP w.h.p.), and that the DDH Assumption ensures that we can do “extraction” on the
random instances xi with probability 1− neg(k) (so we will be able to do extraction on all the xi’s
by a union bound).

To show that (DI′Y ,DIN ) is not in BPP, it suffices to show that (DDH
′
Y ,DDHN ) is not

in BPP. Fix any probabilistic polynomial-time Turing machine A which rejects all elements of
DDHN . By the DDH Assumption, A rejects with probability at least 1/2 on a random instance of
DDHY,k for all sufficiently large k. Thus, for at least .1 fraction of the DDHY,k instances, A rejects
with probability at least .4 over its coin tosses. Thus, when we choose k random instances, with
probability at least 1− exp(−Ω(k)), A will reject at least one element of DDH

′
Y,k with probability

at least .4. Taking k → ∞, we see that A fails to be a BPP algorithm for (DDH
′
Y ,DDHN )

with probability 1. Since there are only countably many PPT algorithms A, we conclude that
(DI′Y ,DIN ) is not in BPP with probability 1.

We now show that the extraction condition (Item 2) in Assumption 6.7 holds with probability 1,
using the Knowledge-of-Exponent Assumption. Given any PPT A, we wish to show that A satisfies
the second condition (i.e. the “extraction condition”) of Assumption 6.7 with high probability. We
will do this by construct a related PPT A′ to which we will apply the Knowledge-of-Exponent
assumption. Intuitively, since the extraction condition Knowledge-of-Exponent holds on random
instances with high probability, we will be able to argue that we can extract from A with high
probability on all k instances of DI′Y .

Specifically, we construct A′ as follows: On input (G, g0, h0) and coin tosses (r, g1, h1) (where
g1, h1 ∈ G \ {1}), A′ computes (C0, C1) = ψ(G, g0, g1, h0, h1), and outputs A(C0, C1; r). By the
definition of ψ, A′ outputs a pair of the form (gx

0 , h
x
0) iff A outputs an element of Image(C0).

Using the Knowledge-of-Exponent Assumption, we obtain a PPT Â′(G, g0, h0; r, g1, h1) such
that

Pr
G←RGk

g0,h0,g1,h1←RG\{1},r

[

A′(G, g0, h0; r, g1, h1) = (gx
0 , h

x
0) for some x ∈ Z∗|G|

and Â′(G, g0, h0; r, g1, h1) 6= x

]

= neg(k).

Note that, in the above probability, the distribution on (G, g0, h0, g1, h1) is statistically close
to uniform on DDHY,k. (The only difference is that the above probability allows the possibility
that DLogg0

(h0) = DLogg1
(h1), but this only occurs with probability 1/|G| = neg(k).) Thus, with

probability at least 1− 1/k3 over (G, g0, h0, g1, h1)←R DDHY,k, we have

Pr
r

[

A′(G, g0, h0; r, g1, h1) = (gx
0 , h

x
0) for some x ∈ Z∗|G|

and Â′(G, g0, h0; r, g1, h1) 6= x

]

≤ k3 · neg(k) = neg(k).
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Since we define DDH
′
Y,k to consist of k random elements of DDHY,k, the following holds with

probability at least 1− 1/k2 over the choice of DDH
′
Y,k:

∀(G, g0, h0, g1, h1) ∈ DDH
′
Y,k Pr

r

[

A′(G, g0, h0; r, g1, h1) = (gx
0 , h

x
0) for some x ∈ Z∗|G|

and Â′(G, g0, h0; r, g1, h1) 6= x

]

= neg(k).

(3)

The probability (over the choice of DDH
′
Y ) that Equation (3) does not hold for some k ≥ k0 is

at most
∑∞

k=k0
(1/k2), which tends to 0 as k0 → ∞. Thus, Equation (3) for all PPT A and all

sufficiently large k with probability 1 over the choice of DDH
′
Y .

Now we translate this into showing that DI′ satisfies Assumption 6.7. Recall that A′(G, g0, h0; r, g1, h1) =
(gx

0 , h
x
0) iff A(C0, C1; r) ∈ Image(C0), where (C0, C1) = ψ(G, g0, h0, g1, h1). So we need only

convert Â′ into an extractor Â for A. We define Â(C0, C1; r) as follows: compute the instance
(G, g0, g1, h0, h1) = ψ−1(C0, C1), run Â′(G, g0, h0; r, g1, h1) to obtain x ∈ Z∗|G|, and output 0 iff

A′(G, g0, h0; r, g1, h1) = (gx
0 , h

x
0).

With this definition, Equation (3) becomes:

∀(C0, C1) ∈ DI′Y Pr
r

[A(C0, C1; r) ∈ Image(C0) ⇐⇒ Â(C0, C1; r) = 0] ≥ 1− neg(n),

for all sufficiently large n = |(C0, C1)|, as desired.

To complete the proof, we show that Assumption 6.7 suffices for a nontrivial 2-round zero-
knowledge proof.

Theorem 6.9. If Assumption 6.7 holds, then Protocol 6.6 is a 2-round proof system for a nontrivial
promise problem (specifically, DI′ /∈ BPP) that is statistical plain zero knowledge. The protocol
has perfect completeness and soundness error 1/2. Moreover, the n-fold parallel repetition of the
proof system is also statistical plain zero knowledge (and has negligible soundness error).

Proof. We obtain (perfect) completeness and soundness because these properties hold for all in-
stances of Disjoint Images. Thus we need only establish the zero knowledge property on the
subproblem DI′. Given a uniform PPT verifier V ∗, we apply Item 2 of Assumption 6.7 to A = V ∗

and obtain PPT Â. Then our simulator S for V ∗ operates as follows on input (C0, C1): Generate
random coin tosses r for V ∗, let α = V ∗(C0, C1; r), let b = Â(C0, C1; r), and output the transcript
(α, b; r). It follows from the definition of Â and the prover P that this simulation has negligible
statistical difference from 〈P, V ∗〉(C0, C1) whenever (C0, C1) ∈ DI′Y .

For the parallel repetition of the protocol, we must consider verifiers V ∗ whose first message
consists of an n-tuple (α1, . . . , αn), so we define A to output one of these components at random.
That is, we define A(C0, C1; r, i) = V ∗(C0, C1; r)i, and apply Assumption 6.7 to obtain a corre-
sponding extractor Â. Now, the simulator works as follows on input (C0, C1): Generate random
coin tosses r for V ∗, let (α1, . . . , αn) = V ∗(C0, C1; r), let bi = Â(C0, C1; r, i) for i = 1, . . . , n, and
output the transcript ((α1, . . . , αn), (b1, . . . , bn); r).

6.2 Zero Knowledge from the Power of Nondeterminism

In this section we construct a 2-round public-coin proof system that is plain zero knowledge under
the hypothesis that trapdoor permutations exist and (a slight strengthening of) the assumption
that Dtime(f(n)) ⊆ NP for some super-polynomial function f(·). Note that this means that
every language that can be recognized in deterministic time f(n) can be solved in nondeterministic
polynomial time. We prove the following theorem:
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

Steps V1 (Send long random string): Verifier sends r ←R

{0, 1}10n.
r ←R {0, 1}

10n

←−−−−−−−−−−−−−−

Step P2 (WI Proof): Prover proves to verifier using its input w
via a witness-indistinguishable (WI) proof/argument system
that either x ∈ L or r ∈ Λ, where r ∈ Λ iff there exists a
Turing machine M of description length at most |r|2 such that,
on the empty input,M outputs r within f(n) steps. The verifier
accepts if the proof is completed successfully.

w
↓

x, r
↓

WI Proof
x ∈ L
or r ∈ Λ

↓

0/1

The right column contains a schematic description of the protocol as defined in the left column.

Protocol 6.11. Generic bounded auxiliary-input zero-knowledge protocol.

Theorem 6.10. Suppose that there exist enhanced trapdoor permutations14 and that there is a
super-polynomial function f : N→ N (i.e., f(n) = nω(1)) such that Dtime(f(n)) ⊆ NP. Further-
more, suppose that this inclusion is constructive in the following sense: given a Turing machine M
and input x ∈ {0, 1}n, if M(x) = 1 within at most t steps for t ≤ f(n), then it is possible to obtain
a short (i.e., poly(n)-sized) NP witness for this fact within poly(t) steps.
Then, there exists a 2-round public-coin proof system for L that is plain zero knowledge, with perfect
completeness, negligible soundness error, and an efficient prover.15 In fact, it is bounded-resettable
zero knowledge (in the sense of Theorem 4.4).

Proof. Let L ∈ NP. Our 2-round proof system for L will be an implementation of Protocol 6.11,
which is suggested in the full version of [Bar].

The results of [Bar] imply that any implementation of Protocol 6.11 (satisfying a certain prover
efficiency condition) will be plain zero knowledge (and even zero knowledge to verifiers who have at
most n bits of auxiliary input). The prover efficiency condition mentioned above is that given r ∈ Λ
and a machine M that outputs r within t ≤ f(n) steps, it should be possible to carry out the prover
strategy of the WI Proof (Step P2) in time poly(t). (This is what the simulator does, taking M to
be the verifier strategy V ∗, with coin tosses reduced to n via a pseudorandom generator.) In [Bar],
the WI Proof is implemented by a protocol that has several rounds and is only computationally
sound. Thus a constant-round zero-knowledge argument, rather than a 2-round zero-knowledge
proof, is obtained.

The crucial observation in the proof is that under our assumptions, the language Λ is in fact
in NP. Therefore, for the second stage we can use a ZAP [DN], which is a 2-round, public-coin
witness-indistinguishable (statistically sound) proof system for NP. The resulting protocol has 2
rounds because Step V1 of our protocol can be sent along with the verifier message of the ZAP.
ZAPs are known to exist if (enhanced) trapdoor permutations exist [DN]. Because a random string
r will have Kolmogorov complexity higher than |r|/2 with very high probability, and because ZAPS

14Informally, an enhanced trapdoor permutation family [Gol4] is trapdoor permutation family where it is hard to
find a preimage of a point y in the domain even if the adversary is given the coin tosses used to generate y. We
assume the existence of such families in order to have the existence of non-interactive zero-knowledge proofs (and
hence ZAPs [DN]). See discussion in Goldreich [Gol4, Apdx C.1,C.4.1]

15Actually, zero knowledge is obtained even with respect to verifiers with “bounded auxiliary input”; i.e., verifiers
who have an a priori polynomial bound on the length of the auxiliary input that they receive.
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are proof systems (i.e. are statistically sound), our protocol will be also be statistically sound.
The requirement that the inclusion of Dtime(f(n)) in NP be constructive is used to satisfy the

prover efficiency condition mentioned above. (The ZAP prover is efficient given an NP witness.)
To obtain bounded-resettable zero knowledge, we have the prover use a pseudorandom function

for its randomness; the proof that the modified protocol is bounded-resettable zero knowledge is a
simpler version of the proof of Theorem 7.1 and hence is omitted here.

6.3 A Two-Round Zero-Knowledge Argument for NP?

The technique used above in the proof of Theorem 6.10 can also be used to show a connection
between the existence of 2-round plain zero-knowledge arguments and a conjecture of Micali [Mic]
regarding the existence of noninteractive (or two-round16) CS proofs (or universal arguments [BG]).
Specifically, we show that if two-round universal arguments exist (i.e. if Micali’s conjecture is true),
then NP has 2-round plain zero-knowledge argument systems.17 In other words, in order to extend
the impossibility of results of Section 3 to argument systems, one must refute Micali’s conjecture.

For our purposes we can use the following somewhat simplified and ad-hoc definition of universal
arguments:

Definition 6.12 (Universal Arguments). Let f : N → N be a (polynomial-time computable)
super-polynomial function, and let Rf be the following Ntime(f(n))-hard relation: (M ◦x,w) ∈ Rf

(where x ∈ {0, 1}∗, M is a description of a Turing machine, and ◦ denotes concatenation) if
|w| ≤ f(|x|) and on input x,w, the machine M halts within |w| steps and outputs 1.

A universal argument system is a computationally sound argument system for the language
Lf = LRf

satisfying the following requirements:

Efficient verification The protocol is polynomially bounded and the verifier runs in probabilistic
polynomial time. That is, there is a polynomial p(·) such that the total running time of the
verifier (and hence also the total communication complexity of both parties) when interacting
in a proof for M ◦ x is bounded by p(|M ◦ x|).

Efficient prover On input (M ◦x,w) ∈ Rf the honest prover algorithm P runs in time polynomial
in |M ◦ x| + |w| (even if this is shorter than f(|x|)) and causes the honest verifier to accept
with probability 1.

Computational soundness against 2nε
-sized circuits There exists some ε > 0 such that if

M ◦ x 6∈ Lf then for every 2nε
-sized circuit P ∗ (where n = |M ◦ x|), the probability that V

outputs 1 after interacting with P ∗ on input M ◦ x is negligible.

Public verifiability The verifier decides whether to accept or reject the proof by applying a
public linear-time algorithm to the protocol’s transcript of messages exchanged (which need
not include the verifier’s coin tosses nor the input statement).18

16Micali’s conjecture refers to CS Proofs that are noninteractive in Common Random String Model; this is equivalent
to considering two-round, public-coin protocols.

17Micali himself had observed that his conjecture implies 3-round zero-knowledge arguments for NP (personal
communication, June 2003).

18Note that the algorithm’s running time is linear in the length of the transcript and so if the communication
complexity of the protocol is shorter than the length of the statement then so will be running time. This property is
not important in this section but will be important in Section 7. The requirement of linear time is not essential, and
any fixed polynomial would do.
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A constant-round public-coin protocol satisfying Definition 6.12 (with respect to any function
f(·) such that f(n) < 2n) can be constructed under standard assumptions (namely, the existence
of hash functions that are collision resistant with respect to subexponential-sized circuits [Kil, Mic,
BG]). Micali [Mic] suggested a two-round public-coin protocol that may satisfy Definition 6.12 (in
this protocol the verifier’s first message consists of sending a hash function, which is then used to
make the constant-round protocol non-interactive by following the Fiat-Shamir heuristic). We now
prove the following theorem:

Theorem 6.13. Suppose that there exist two-round universal argument systems for Ntime(f(n))
for some super-polynomial f : N → N and that there exist enhanced trapdoor permutations secure
against 2nε

-sized circuits for some constant ε > 0. Then, there exists a 2-round plain zero-knowledge
argument system for NP, with perfect completeness, negligible soundness error, and an efficient
prover. Furthermore, if the universal argument system is public coin, then so is the obtained zero
knowledge system.

Proof. Under the assumed trapdoor permutation family, we can construct a commitment scheme
Com

w (where the superscript w stands for “weak”) that can be broken in time 2nε/2
where the

universal argument system is secure against 2nε
-sized circuits. (When reducing the soundness of

our protocol to that of the universal argument, we will need to break the commitment scheme. This
“complexity leveraging technique” was first introduced in [CGGM].) We will assume for simplicity
that we have a one-round WI system (as the one of [BOV], that requires an additional assumption),
even though we can use also the ZAP system of [DN] in its place and hence the result does hold
under the stated assumptions.19 Our two-round zero-knowledge protocol for NP is Protocol 6.14.
It is a variant of Protocol 6.11 and hence is zero-knowledge for similar reasons.

The completeness property of this protocol is fairly straightforward. To prove computational
soundness, we note that if there is a polynomial-time cheating prover P ∗ that causes the honest
verifier to accept x 6∈ L with non-negligible probability then we can convert it to a 2O(nε/2)-time
cheating prover P ∗∗ for the universal argument system. Indeed, with extremely high probability
the random string r chosen by the verifier is not a member of Λ, but by using brute force to extract
the message committed to by P ∗, the prover P ∗∗ can obtain a convincing UA proof that r ∈ Λ (note
that the commitment must contain such a message since x 6∈ L and the WI system is statistically
(or even perfectly) sound).

The proof of plain zero knowledge is almost identical to the proof in [Bar]. Given a PPT verifier
strategy V ∗, the simulator uses a pseudorandom generator to reduce the number of coins V ∗ uses
to n. Since V ∗ is a uniform algorithm, and hence can be assumed to have description length of at
most n, we see that this code, along with x and the random coins, can be used as a witness that
r ∈ Λ by the simulator. The simulator uses this witness to compute a commitment to the honest
prover message of the universal argument system in Step P2a. In Step P2b it then uses the honest
prover algorithm of the WI system to prove that either x ∈ L or z is a commitment to an accepting
message. Indistinguishability follows from indistinguishability of the commitment scheme and the
WI property of the proof system used in Step P2b.

19Simply plugging in the ZAP system instead of the one-round system in Step P2b seems to yield a three-round

protocol, as the ZAP system takes two rounds. However, because ZAPs are public coin, the verifier’s first message
in the ZAP is independent of the statement proven, and so the verifier can send this message as Step V1c.
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

Steps V1a (Send long random string): Verifier sends r ←R

{0, 1}10n.
r ←R {0, 1}

10n

←−−−−−−−−−−−−−−

Steps V1b (Send first message of UA): Verifier sends its first
message v of a universal argument proof that r ∈ Λ. As in
Protocol 6.11, r ∈ Λ iff there exists a Turing machine M of
description length at most |r|2 such that, on the empty input,
M outputs r within f(n) steps. Note that Λ is easily reducible
to Lf .

v←−−−

Step P2a (“Encrypted” UA): Prover sends z = Com
w(0m)

where m is the length of the prover’s message in a universal
argument proof for r. Com

w is a commitment that can be com-
pletely broken in time 2nε/2

.

z = Com
w(0m)

−−−−−−−−−−−−−−→

Step P2b (WI Proof): Prover proves to verifier using its in-
put w via a one-message witness-indistinguishable (WI)
proof/argument system that either x ∈ L or z is a commit-
ment to a message p such that (v, p) is an accepting transcript
in the universal argument system for the statement r ∈ Λ.

w
↓

x, r
↓

WI Proof
x ∈ L
or r ∈ Λ

↓

0/1

Protocol 6.14. Uniform zero-knowledge using two-round universal arguments.
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7 A Constant-Round Public-Coin Bounded-Resettable ZK Argu-

ment

In this section, we show that under a strong but standard assumption (namely the existence of
strongly collision-resistant hash function and trapdoor permutations) there does exist a constant-
round public-coin bounded-resettable zero-knowledge argument system for NP. Namely, we prove
the following theorem:

Theorem 7.1. Assume that there exist families of hash functions that are collision resistant against
2nε

-sized circuits (for some constant ε > 0) and that there exist enhanced trapdoor permutations.
Then there exists a constant-round, public-coin bounded-resettable auxiliary-input zero-knowledge
argument for NP. Moreover, the protocol has perfect completeness, negligible soundness error, and
an efficient prover.

This result is interesting for two reasons:

1. This is the first construction of a constant-round argument system that is bounded-resettable
zero knowledge in the plain model. This is also the first construction of a bounded-resettable
zero-knowledge argument that is public-coin (regardless of the number of rounds).

2. This construction demonstrates that the lower bound of Section 4 for resettable proofs cannot
be extended to argument systems.

7.1 Proof of Theorem 7.1

The proof is based on using a ZAP (i.e., a 2-round, public-coin resettable-WI proof system) [DN] as a
component in the concurrent zero-knowledge protocol of [Bar]. To prove Theorem 7.1, we construct
a constant-round public-coin zero-knowledge argument that remains zero knowledge even under
attack by a verifier that is allowed to reset the prover (as in the model of [CGGM]) a fixed polynomial
number of times. Our construction is Protocol 7.2, which is a variant of a concurrent zero-knowledge
argument of Barak [Bar]. Let c be some constant, the protocol will be zero knowledge against a
verifier that can reset the prover at most nc times, where n is the length of the statement to be
proven. We will also ensure that the prover communication complexity of the protocol is at most
O(n).

Remarks on implementation of Protocol 7.2.

• We note that under our the assumed hash functions, there exists a constant-round public-coin
universal argument system (as per Definition 6.12) for the language Λ [Kil, Mic, Bar, BG].

• We will use the fact that under our assumptions, for every constant δ > 0 we can obtain a
universal argument system in which the total communication complexity is of size at most mδ,
where m is the size of the statement proven, and hence the verifier decides its acceptance also
by applying a O(mδ)-time algorithm. Since the communication complexity of the rWI proof
is a fixed polynomial in n and the acceptance time of the universal argument, by choosing
a small enough δ > 0, we can ensure that the total prover communication of the entire
Protocol 7.2 is O(n). (In fact, all messages of the protocol except for the verifier message of
Step V3 will be of size O(n).)
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)

c is an arbitrary given constant. (The protocol will be zero knowledge
against nc resets where n is the length of the input.) Given c, δ > 0 is set
to be a sufficiently small constant so that the prover’s communication
complexity is at most O(n).)

Step V1 (Send hash function): Verifier sends h which is a de-
scription of random hash function chosen from a collision-
resistant hash function collection H. We assume that h :
{0, 1}∗ → {0, 1}n

δ
.

h←R H←−−−−−−−−−

Step P2 (Commitment to “junk”): Prover sends z = Com(0nδ
). z = Com(0nδ

)
−−−−−−−−−−−−−→

Step V3 (Send long random string): Verifier sends r ←R

{0, 1}n
2+c

.
r ←R {0, 1}

n2+c

←−−−−−−−−−−−−−−

Steps P,V4–7 (“Encrypted” universal argument): The fol-
lowing is repeated twice: the Verifier sends a random string of
length nδ to prover, and prover sends a commitment to a 0nδ

.
We denote the transcript of this stage by 〈α, β, γ, δ〉.

α←R {0, 1}
nδ

←−−−−−−−−−−−−−

β = Com(0nδ
)

−−−−−−−−−−−−−→

γ ←R {0, 1}
nδ

←−−−−−−−−−−−−−

δ = Com(0nδ
)

−−−−−−−−−−−−−→

Step P8 (rWI Proof): Prover proves to verifier using its input w
via a resettable-witness-indistinguishable (rWI) proof system
that either x ∈ L or the decommitted messages of the transcript
〈α, β, γ, δ〉 in Steps P,V4–7 form an accepting transcript in a
universal argument system for the statement 〈h, z, r〉 ∈ Λ. The
language Λ is defined as follows: 〈h, z, r〉 ∈ Λ iff there exists

a Turing machine M and strings s and y such that |y| ≤ |r|
2 ,

z = Com(h(M); s) and M(z, y) outputs r within nlog n steps.

w
↓

x, r
↓

rWI-proof
x ∈ L
or
〈α, β, γ, δ〉
proves that
〈z, h, r〉 ∈ Λ

↓

0/1

Protocol 7.2. bounded-rZK public-coin argument
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• The commitments used in this protocol are perfectly (or statistically) binding and computa-
tionally hiding. For simplicity we assume that these commitments are noninteractive; such
commitments can be constructed based on one-to-one one-way functions [Blu1] or based on
one-way functions and Assumption 3.2 [BOV]. However, our protocol will be secure if the
noninteractive commitments are replaced with the two-round scheme of Naor [Nao1], which
can be based on any one-way function. Also, for simplicity, we will assume that the WI proof
used in Step P8 consists of a single message. Such a system can be constructed based on the
existence of trapdoor permutations and Assumption 3.2 [BOV]. However, our construction
will remain secure even if we use the two-round WI proof of [DN], which is based only on
trapdoor permutations.20

• The subexponentially hard hash functions imply subexponentially hard one-way functions,
and hence a subexponentially hard commitment scheme via [Nao1]. We set the security
parameter of the commitment scheme in such a way that for all the commitments used in the
protocol, recovering the plaintext by brute force can be done in time 2o(nε). (As in the proof
of Theorem 6.13, this is used in proving soundness via the “complexity leveraging technique”
of [CGGM].)

• To obtain the bounded-resettable zero-knowledge condition, the prover should choose a pseu-
dorandom function, and in each step obtain the random coins needed by applying the pseu-
dorandom function on the message history of the protocol.

7.2 Analyzing Protocol 7.2

In this section we prove that Protocol 7.2 is a bounded-rZK argument. As in [Bar], completeness
follows immediately from the definition of the protocol. The soundness condition also follows as in
[Bar], with one variant. There, the WI system used in Step P8 is a proof of knowledge, and the
knowledge extractor for this proof is used to obtain from a cheating prover an accepting transcript
for the universal arguments. Later, a collision for the hash function is obtained from this transcript.
Here we use only a proof of membership in Step P8. However, we can still recover an accepting
transcript in time 2o(nε), by using brute force on the commitment scheme. This implies that we
can treat the WI system as a proof of knowledge (albeit with a 2o(nε)-time extractor) and hence
soundness is obtained by the analysis of [Bar] (since the hash function we use is collision-resistant
even against 2o(nε)-time adversaries).

Bounded rZK. We now show why Protocol 7.2 remains zero knowledge against a verifier that
is allowed to reset the prover at most nc times. Let V ∗ be such a resetting verifier. Our simulator
will compute the V ∗’s view by executing the verifier, giving it access to a modified version of the
honest prover strategy. Specifically, it will deviate from this strategy in the following way:

• In Step P2 it will compute z = Com(h(desc(V ∗))), where desc(V ∗) denotes the description of
the verifier’s strategy, with its auxiliary input and coin tosses hardwired in.

• In the first time that the simulator receives a string r as verifier message of Step V3 of some
session, the simulator will record the history γr = (p1, . . . , pk) of all messages the verifier

20We can replace the noninteractive commitments and WI proofs with the schemes of [Nao1] and [DN] by simply
having the receiver/verifier send the first messages of these schemes (which are independent of the input) as the first
message of Protocol 7.2.
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has received so far across all executions (where k ≤ O(nc), since the protocol has a constant
number of rounds). Note that since each prover message in the protocol is of size at most

O(n), |γr| = O(nc+1) = o(n2+c) (and hence we can assume |γr| ≤
n2+c

2 ). (Note that even if
the simulator receives r again as a verifier message of a later session, it still keeps the original
recorded sequence γr.)

• When computing the messages of Steps P,V4–7, the simulator will run the honest prover
of the universal argument scheme to prove the (true) statement that 〈h, z, r〉 ∈ Λ. It uses
the recorded sequence of messages γr as auxiliary input to the universal-argument prover
algorithm.

We note that the simulator will also use a random function for randomness in each step, that is
applied to the message history (of the current session) so far. The simulator can use a truly random
function, by choosing the function incrementally, tossing fresh coins whenever it needs to compute
the function on a new input.

Proving that the simulator’s output is indistinguishable from the verifier’s view. The
proof that the simulator’s output is indistinguishable from the verifier’s view uses the hybrid argu-
ment. We consider the following sequence of hybrids, and claim that each one of them is compu-
tationally indistinguishable from the preceding one.

Hybrid H0 Hybrid H0 denotes the verifier’s view when mounting a bounded reset attack on the
honest prover.

Hybrid H1 This hybrid denotes the verifier’s view when the honest prover uses a truly random
function. Indistinguishability from H0 follows from the security of the pseudorandom function
ensemble.

Hybrid H2 We modify H1 by having the prover use a commitment to h(V ∗) instead of to 0n

in Step P2 of all sessions. Indistinguishability from H1 follows from the security of the
commitment scheme. Note that a commitment of Step P2 of some session in Hybrid H1 is
either identical to a commitment of some previous session (if the history up to that point
is identical in both session) or uses completely independent coins from the ones used in all
previous sessions. For commitments that use completely independent coins, security follows
in a straightforward way from the hiding property of the commitment scheme. However, we
need to show that if a commitment in Step P2 in some session i is identical to a commitment
in Step P2 for some previous session j in Hybrid H1, then these commitments would remain
identical also in Hybrid H2 (where we commit to h(V ∗) instead of 0nδ

). However, this
will indeed be the case since the history includes the hash function h that is used in the
commitment (and the verifier’s code V ∗ is identical across all sessions).

Hybrid H3 We modify H2 by having the prover use commitments to messages computed by the
honest universal argument prover in Steps P,V4–7. Indistinguishability from H2 follows from
the security of the commitment scheme. Once again we need to verify that identical com-
mitments in Hybrid H2 remain identical in Hybrid H3. However, commitments in Hybrid H2
can be identical only if the history of messages up to the point where the commitment was
made was identical. However, in this case the simulator will use exactly the same prover
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strategy to compute its messages in the two sessions21 and hence the commitments to the
prover messages will remain identical.

Hybrid H4 We modify H3 by having the prover use the second case in the WI proof of Step P8.
Indistinguishability follows from the WI property. Note that in this case, because we assume
the rWI proof consists only of a single message (as in the system of [BOV]), which is the last
message of the session, we can assume that every two different sessions differ in the history
up to this point (as otherwise they are completely identical and hence redundant). We note
that H4 is identical to the simulator’s output.22

8 Zero Knowledge from a Circuit SAT Algorithm

In this section we construct a constant-round public-coin zero-knowledge strong proof of knowledge
for NP, under the assumption that there exist one-way functions23 and that there is a nontrivial
algorithm for the Circuit Satisfiability problem (CSAT). By nontrivial we mean an algorithm
for CSAT that on input a circuit C : {0, 1}k → {0, 1}, runs in time 2o(k) ·poly(|C|). Again, this as-
sumption is a strengthening of the negation of Assumption 5.8 and seems likely to be false. However,
we note that it seems compatible with the assumption that factoring is hard for sub-exponential
sized circuits, and thus does not directly contradict most known cryptographic construction. Thus,
this result shows that assuming some sort of exponential (and not just sub-exponential) lower bound
is necessary to rule out zero-knowledge strong proofs of knowledge (as we indeed do). Also, the
protocol that we construct is in fact the parallel version of Blum’s protocol for Hamiltonicity.
The question of whether or not this protocol is zero-knowledge or not has been a long-standing
open question, and this result shows that to resolve it negatively will require making some strong
assumptions. See Section 9 for more discussion on this and related questions.

In the course of the proof, we prove that if such a non-trivial CSAT algorithm exists, then it
is possible to generate in polynomial time an (almost) uniformly distributed witness for every NP
problem that has at least a µ(n)-fraction of witnesses, where µ(·) is some fixed negligible function
(i.e., µ(n) = 2−ω(log n)). This result may be of independent interest.

Notations:

Circuit satisfiability problem. We use the standard definitions for boolean circuits. We will
identify a boolean circuit C with its representation as a string in {0, 1}∗. We define |C| to be
the length of this representation. The language CSAT consists of all the circuits C that have
a satisfying assignment (i.e., an input x, such that C(x) = 1). The trivial exhaustive-search
algorithm decides if C is in CSAT in time 2k · poly(|C|), where k is the input length of C.
We say that CSAT has a nontrivial algorithm if there’s a (possibly probabilistic) algorithm
that decides CSAT in time T (k) · poly(|C|), where T (k) = 2o(k) and T (k) is computable in
time 2o(k). By the usual reduction from search to decision, this implies that it is possible to
find a satisfying assignment to C in time T (k) · poly(|C|). We note that the existence of such

21This is the reason we insisted that the simulator uses the first sequence γr = (p1, . . . , pk) of prover messages that
yields r, so that this sequence, which is used as auxiliary input to the prover strategy, will be identical in the two
sessions.

22The same reasoning works also if the rWI system consists of two messages, as in the case of the ZAP system of
[DN].

23Actually, we will need to use a “nice” one-way function; i.e., a one-way function that cannot be inverted in time
h(·), where h(n) is a super-polynomial function that is computable in poly(n) time (e.g., h(n) = nlog log n).
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an algorithm is inconsistent with Assumption 5.8 (used in our lower bound for strong proofs
of knowledge): for any poly(n)-time computable function f : {0, 1}n → {0, 1}∗ and string y,
we can find a preimage of y under f in time 2o(n) by finding a satisfying assignment of the
circuit Cy defined by Cy(x) = 1 iff f(x) = y.

An equivalent formulation to the hypothesis that CSAT has a nontrivial algorithm is that
there is a PPTA such that A(1n, C) outputs a satisfying assignment for C (in time poly(n, |C|))
provided that C has at most k(n) variables. Another formulation is that it is possible to sim-
ulate Turing machines with k(n)-bounded nondeterminism (i.e., polynomial-time Turing ma-
chines that can have access to at most k(n) nondeterministic bits) in probabilistic polynomial
time.

Nice one-way functions. A function f : {0, 1}∗ → {0, 1}∗ is one-way if for nonuniform polynomial-
time algorithm C (i.e. family of polynomial-sized circuits), there is a negligible function µ
such that

Pr
y←Rf(Un)

[C(y) ∈ f−1(y)] = µ(n)

where µ : N → [0, 1] is some negligible function. An equivalent condition (cf., [Bel]) is that
there exists some function h : N → N such that h(·) is super-polynomial (i.e., h(n) = nω(1))
and such that for every circuit C of size at most h(n), it holds that

Pr
y←Rf(Un)

[C(f(y)) ∈ f−1(y)] < 1
h(n)

We say that f(·) is a nice one-way function if this condition holds for some super-polynomial
function h(·) such that h(n) is computable in poly(n) time (e.g., h(n) = nlog log n).

The main theorem of this section is Theorem 8.1, whose proof is given in the next subsection
(Section 8.1).

Theorem 8.1. Suppose that Circuit Satisfiability has a nontrivial algorithm and that there
exists a nice one-to-one one-way function Then, for every NP relation R, there exists a zero-
knowledge proof for LR with the following properties:

1. It has 3 rounds.

2. It is a (statistically sound) proof with negligible soundness error.

3. It is a public-coin protocol.

4. It is a strong proof of knowledge for R (with a non-black-box knowledge extractor).

5. It is auxiliary-input zero knowledge (with a non-black-box simulator).

Before describing the protocol, we first state the main implications of our assumptions that will
be used the proof.

Lemma 8.2 (noninteractive commitments [Blu1]). If there exists a nice one-to-one one-way
function, then there exists a nice noninteractive commitment scheme Com. That is, there is a
poly(n)-time computable function h(n) = nω(1) such that for every n, circuit C of size at most
h(n), and every two messages m0,m1 ∈ {0, 1}

n,24

|Pr [C(Com(m0)) = 1]− Pr [C(Com(m1)) = 1]| ≤
1

h(n)
.

We call h(n) the security of the commitment scheme.

24To commit to shorter messages, simply pad them to length n.
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The “one-to-one” constraint on the one-way function is only needed to ensure that the commit-
ment scheme is noninteractive, which is needed for our final zero-knowledge proof system to have 3
rounds. We can also obtain a 3-round proof system using the noninteractive commitment scheme
of Barak et al. [BOV], which is based on incomparable assumptions. Assuming just the existence of
a (nice) one-way function, it is possible to obtain a 4-round proof system with the same properties,
using the commitment scheme of Naor [Nao1].

The other implication of our assumptions is given the following lemma, which may be of in-
dependent interest. Loosely speaking, this lemma says that if we can solve CSAT for k-variable
circuits, then we can sample a random satisfying assignment for any circuit whose fraction of
satisfying assignments is larger than 2−k.

Lemma 8.3 (witness generation from a CSAT algorithm). Suppose there exists a nontrivial
algorithm for CSAT. Then there exists a poly(n)-time computable function k(n) = ω(log n) and a
PPT algorithm A such that the following holds. For every n and every circuit C that accepts more
than a 2−k(n) fraction of inputs, the random variable A(1n, C) has statistical difference at most
2−Ω(n) from the uniform distribution on C’s satisfying assignments.

Lemma 8.3 is proven in Section 8.1.1.

8.1 The protocol and its analysis

The idea behind the proof is to use the k-times parallel composition of Blum’s zero-knowledge
protocol for proving Hamiltonicity [Blu2], for k = ω(log n). The resulting protocol is well known
to be a 3-round public-coin proof system for Hamiltonicity, with negligible soundness error.
However, this protocol is not known to be zero knowledge, or to be a strong proof of knowledge.
Nonetheless, we show that under the assumptions of Theorem 8.1, it is in fact a zero-knowledge
strong proof of knowledge.

We prove Theorem 8.1 by fully describing the zero-knowledge protocol that we use and analyzing
its properties. First, we note that the assumed existence of a nice one-way function

Given input length n, we choose k = k(n) such that:

• It is possible to find satisfying assignments to circuits C that have at most 2k inputs in time
poly(n, |C|).

• It is possible to almost-uniformly generate satisfying assignments for circuits C that accept
at least a 2−2k fraction of inputs in time poly(n, |C|).

• There exists a nice noninteractive commitment scheme (for messages of length up to n) with
security 22k.

By our assumptions and Lemmas 8.2 and 8.3, it is possible to choose such a k(n) so that k(n)
can be computed in poly(n)-time and k(n) = ω(log n).

Blum’s Hamiltonicity protocol. We let HAM denote the NP-complete language of all Hamil-
tonian graphs (i.e., n vertex graphs that contain the n-cycle as a subgraph). Blum’s basic protocol
for proving membership in HAM is Protocol 8.4. It is a 3-round public-coin proof for HAM with
soundness error equal to 1

2 .
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Public input: x = (xi,j), the adjacency matrix of an undirected
graph on n vertices.

Prover’s auxiliary input: w, a hamiltonian cycle in the graph x

w
↓

x
↓

P V

Step P1 (Commitment to permuted graph): Prover selects a
random permutation ϕ on the vertices, and computes a commit-
ment to the permuted graph. That is, prover sends the matrix
of commitments C = (Ci,j) where Ci,j = Com(xϕ(i),ϕ(j)).

C =
(

Com(xϕ(i),ϕ(j))
)

i,j∈[n]
−−−−−−−−−−−−−−−−−−−−−−−→

Step V2 (Send random query): The verifier selects a random bit
b←R {0, 1} and sends it.

b←R {0, 1}
←−−−−−−−−−−−

Step P3 (Open commitments): If b = 0 then the prover sends
decommitments for all the commitments sent in Step P1 and
in addition sends the permutation ϕ chosen in that step. Oth-
erwise (if b = 1) the prover sends decommitments only for the
commitments that correspond to the edges of ϕ(w) (i.e., the
edges of the permuted Hamiltonian cycle).

decommitments−−−−−−−−−−−−−−−→

If b = 0 then the verifier accepts iff all decommitments are valid and
form a graph x′ such that x′ = ϕ(x) (i.e., x′i,j = xϕ(i),ϕ(j) for all i, j ∈
[n]).
If b = 1 then the verifier accepts iff the decommitments sent are for a
Hamiltonian cycle and all the opened commitments are to the value 1.

Protocol 8.4. Blum’s basic protocol [Blu2]
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Our protocol. Our protocol is the k = k(n)-times parallel composition of Protocol 8.4. That is,
to prove that x ∈ HAM, the verifier and prover run k independent copies of Protocol 8.4 in parallel,
where in each copy x is the common input. The verifier accepts iff all the copies are accepting. The
combined protocol is clearly a 3-round public-coin proof system for HAM with soundness error
2−k(n) (which is negligible since k = ω(log n)). Thus, all that remains is to prove that it is zero
knowledge and a strong proof of knowledge. This is proven in Claims 8.5 and 8.8.

Claim 8.5. Under the assumptions of Theorem 8.1, the k(n)-times parallel composition of Proto-
col 8.4 is zero knowledge.

Proof. We prove the claim in two stages. First, we show a “slow” simulator (i.e., a simulator than
runs in roughly 2k steps) for this protocol whose output is computationally indistinguishable from
the verifier’s view; this simulator will use the fact that the commitment scheme is secure against
25k-sized circuits. We will then show that using the almost-uniform generation (via Lemma 8.3), it
is possible to “speed up” this simulator and obtain a new simulator that runs in polynomial time,
and whose output is statistically indistinguishable from the output of the original simulator.

The “slow” simulator. Our 2k-time simulator is the natural extension of the simulator of the
basic protocol (Protocol 8.4) to the parallel composed protocol. Loosely speaking, the simulator
works by choosing b1, . . . , bk ←R {0, 1}, and simulating the protocol under the assumption that
the verifier’s query in the lth copy will be bl. If this guess was correct, the simulator manages to
simulate the entire transcript. Otherwise, the simulator fails (or tries again). We now give a more
precise description of the simulator’s operation:

Algorithm 8.6 (A “slow” simulator).

Input:

• x : a graph over n vertices.

• Description V ∗ of verifier’s strategy, with its auxiliary input and coin tosses hardwired in.
(Actually, this “slow” simulator only requires black-box access to V ∗).

1. Choose b1, . . . , bk ←R {0, 1}

2. For every 1 ≤ l ≤ k do the following:

• If bl = 0 then choose ϕl to be a random permutation over [n] and let C l = Com(ϕl(x))
(i.e., C l is a matrix of commitments such that C l

i,j = Com(xϕ(i),ϕ(j))).

• If bl = 1 then choose cl to be a random cycle on n vertices and compute C l to be a
commitment to the cycle cl (i.e., C l

i,j = Com(1) iff (i, j) is an edge in cl).

3. Feed C1, . . . , Ck to the verifier V ∗ and obtain its response β1, . . . , βk.

4. If βl 6= bl for some 1 ≤ l ≤ k, halt and output fail. (In this case, we say that the simulator
has failed, and otherwise the simulator has succeeded.)

5. For every 1 ≤ l ≤ k compute Dl as follows:

• If bl = βl = 0 then Dl is a string that contains ϕl and all the decommitments of the
matrix C l.
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• If bl = βl = 1 then let Dl be a string that contain only the decommitments of C l that
correspond to edges in the cycle cl. (That is, decommit to all the 1’s in C l.)

6. The output of the simulator is the view (〈C1, . . . , Ck〉, 〈D1, . . . , Dk〉).

The properties of this simulator are given in the following claim:

Claim 8.6.1. For every polynomial-sized verifier V ∗ and x ∈ HAM, on input (x, V ∗) Algorithm 8.6
succeeds with probability at least 2−2k. Furthermore, conditioned on success, the output of Algo-
rithm 8.6 is computationally indistinguishable from the view of V ∗ in an interaction with the honest
prover on input x.

Thus, we can obtain a simulator that succeeds with high probability by running Algorithm 8.6 up
to n · 22k and taking its first successful output. But, since k = ω(log n), this takes superpolynomial
time. (This is why we call it a “slow” simulator.) However, we will now show how we can use
it to construct a polynomial-time simulator (and give the proof of Claim 8.6.1 afterwards.) Our
polynomial-time simulator is the following algorithm:

Algorithm 8.7 (A “fast” simulator).

Input:

• x : a graph over n vertices.

• Description V ∗ of verifier’s strategy.

1. Using the procedure of Lemma 8.3, generate an almost-uniformly distributed random tape r
such that Algorithm 8.6 on input (x, V ∗) and random tape r is successful.

2. Output the output of Algorithm 8.6 on input (x, V ∗) and random tape r.

By Claim 8.6.1, a fraction of at least 2−2k of the random tapes for Algorithm 8.6 result in a
successful iteration. Thus the procedure of Lemma 8.3 will indeed work, and the output of Algo-
rithm 8.7 will be statistically indistinguishable from the output of Algorithm 8.6. By Claim 8.6.1,
this means that this output is computationally indistinguishable from the verifier’s view.

We see that all that is left to do is to prove Claim 8.6.1

Proof of Claim 8.6.1. Let x ∈ HAM and let w be a hamiltonian cycle in the graph x. We let
Shyb denote the following “hybrid simulator”: Shyb gets as auxiliary input x, V ∗ and the witness
w, and follows the strategy of Algorithm 8.6 on input V ∗, x with one modification: In Step 2, it
computes C l for each 1 ≤ l ≤ k, to be a commitment of a random permutation of the input graph
x, regardless of the value of bl. However, if bl = 1 then let cl denote the image of the cycle w under
the permutation. Note that w is a random n-cycle.

We now make several claims involving this hybrid simulator.

• The output of Shyb, conditioned on success, is identical to the view of the verifier in a real
execution. This can be verified by inspection.

• Shyb succeeds with probability exactly 2−k. This is because the hybrid simulator generates the
message 〈C1, . . . , Ck〉 independently of the choice of b1, . . . , bk, and so this message contains
no information on this choice.
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• The output of Shyb cannot be distinguished (by a poly-sized distinguisher) from the output of
S with advantage greater than poly(n) · 2−2k. (Here we do not condition on success.) This is
because the commitment scheme has security 22k. Specifically, note that the only difference
between the output of the “hybrid simulator” and the output of the real simulator is that
in the real simulator’s output, some of the C l’s contain commitments to a random n-cycle
(instead of to a random permutation of the input x). The commitments which differ (namely
those for edges outside of ϕl(w)) are never opened. Thus any distinguisher between the output
of these simulators can be converted into a distinguisher for the commitment scheme.

• The original simulator S has a success probability of 2−k ± 2−2k. This follows from the
previous two items.

• The output of Shyb conditioned on success, is computationally indistinguishable from the
output of S conditioned on success. This follows from the previous three items. When we
condition on success, the advantage of any distinguisher can increase by a factor of at most
1/(2−k − 2−2k). Therefore, any poly-sized distinguisher has advantage at most poly(n) ·
2−2k/(2−k − 2−2k) < 2 · poly(n) · 2−k, which is negligible.

Combining the first item and the last item, we conclude that the output of S conditioned on
success is computationally indistinguishable from the V ∗’s view of the interaction, completing the
proof of the claim.

This concludes the proof of zero-knowledge; we now proceed to show that Protocol 8.4 is also
a strong argument of knowledge.

Claim 8.8. Under the assumptions of Theorem 8.1, the k(n)-times parallel composition of Proto-
col 8.4 is a strong argument of knowledge, with soundness error s(n) = 2−k(n).

Proof. Let P ∗ be any polynomial-time prover strategy, with its coin tosses and auxiliary input
hardwired in. Suppose that for some x, P ∗ manages to cause the honest verifier in all k iterations
of Protocol 8.4 to accept with probability larger than 2−k. Because the prover P ∗ is deterministic,
so is its first message 〈C1, . . . , Ck〉. This means that there exist at least two different choices of
verifier messages β 6= β ′ ∈ {0, 1}k , such that if P ∗ is given either β and β ′, then its response is
valid. Finding β and β ′ can be formulated as a CSAT problem for a poly(n)-sized circuit with 2k
variables, and thus can be solved under our assumptions in polynomial time. Once we find such β
and β′, we let l be a coordinate in which they differ. From the prover’s response in the l th instance
of the protocol we can obtain a Hamiltonian cycle in the graph x (because we obtain both the
permutation and the permuted cycle).

8.1.1 Proof of Lemma 8.3

Our starting point is the fact that it is possible to almost-uniformly generate satisfying assignments
to a circuit in probabilistic polynomial time with an NP oracle [JVV, BGP]. The key observation
is that if the circuit accepts at least a 2−k fraction of inputs, then all the oracle queries can be
made instances of CSAT on O(k) variables.

Specifically, we start with the algorithm by Bellare, Goldreich and Petrank [BGP] (see also
[Gol3, Lec. 6]), which actually achieves perfect uniform generation. We modify the algorithm and
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implement some steps in a different way, in order to ensure that all the queries are on circuits of a
small number of variables.

Given a CSAT algorithm A(1n, C) that finds satisfying assignments when C has at most
k = k(n) variables, we will construct a sampler B(1n, C) that generates almost-uniform satisfying
assignments when C has at most k/2 variables.

Let n and C be given, and let m be the number of variables in C. By adding dummy variables,
we may assume that m ≥ max{k, n}. We denote by SC the set C−1(1) (i.e., the set of satisfying
assignments for C). We assume that Pr[Um ∈ SC ] ≥ 2−k/2, or in other words that |SC | ≥ 2m−k/2.

t-wise independent hash functions. Recall that a t-wise independent hash function collection
is a collection H of functions from {0, 1}m to {0, 1}i such that for every t distinct values x1, . . . , xt ∈
{0, 1}m, the random variables h(x1), . . . , h(xt) (for a random choice of h ∈ H) are independently
and uniformly distributed over {0, 1}i. The standard construction of such a family H consists of all
polynomials of degree at most t− 1 over the field GF(2m), truncated to the first i bits. We will use
not only the fact that the functions in this family can be evaluated efficiently (as in [BGP]), but
also that it can be inverted efficiently. Specifically, given a polynomial p of degree at most t−1 over
GF(2m) and a point γ ∈ GF(2m), all the elements of p−1(β) can be found in time poly(m, t) [Ber].

We now give an outline of the [BGP] algorithm:

Algorithm 8.9 (Uniform generation with an NP oracle [BGP]).

1. Test if |SC | ≤ 10m5. If so, uniformly generate an element out of SC .

2. Find i ∈ {0, . . . ,m} such that |SC | ∈ (2im5, 2i+2m5).

3. Choose h : {0, 1}m → {0, 1}i at random from an m-wise independent hash function collection.

4. If there exists α ∈ {0, 1}i such that |h−1(α) ∩ SC | > 6m5 then abort.

5. Choose α←R {0, 1}
i.

6. Find all the (at most 6n5) elements of h−1(α)∩SC . Output each such element with probability
1

6m5 . Otherwise abort (i.e.,abort with probability 1− |h
−1(α)∩SC |

6m5 ).

Bellare et al. [BGP] show how to implement Algorithm 8.9 using an NP-oracle and show that
this algorithm does not abort with high probability. Furthermore, they show that conditioned on
the algorithm not aborting, the algorithm’s output is exactly the uniform distribution over SC .
Note that this algorithm works for every circuit C (and not just circuits with |SC | ≥ 2m−k/2).
We will show that a variant of this algorithm can be implemented for circuits C such that |SC | ≥
2m−k/2 using only an oracle for CSAT for k-variable poly(m)-sized circuits. We now show how we
implement (and sometimes modify) each step of Algorithm 8.9:

Step 1 Note that we assume that k ≤ m. Thus |SC | ≥ 2m/2 and we can skip this step.

Step 2 We will try to run the algorithm with all possible choices for i. We start with i = m −
k/2− 6 logm (as |SC | ≥ 2m−k/2 > 2m−k/2−6 log n · n5) and try to run the algorithm described
below (i.e., in Steps 3 to 6). We will see below (in Step 6), that if the chosen value i fails
some check then we let i← i+1 and try again. Note that since k = ω(logm) we always have
that i ≥ m− 2k/3.
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Step 3 This step can be done without using any oracle. We will choose h to be a random polyno-
mial of degree m− 1 over the field F2m , where we truncate the output of this polynomial to
its first i bits.

Step 4 We skip this step and do not check h for this condition.

Step 5 This step can be done without using any oracle.

Step 6 We first show that we can find a single element of the set S
def
= h−1(α)∩SC using an oracle

for CSAT for k-variable poly(n)-sized circuits. We then show how to find all of S’s elements.

Finding a single element of S Recall that we used for the hash function h the i-bit trun-
cation of a degree n − 1 polynomial. Let p denote the untruncated polynomial. Then,
each element x of h−1(α) satisfies that p(x) = αβ for some β ∈ {0, 1}m−i. As mentioned
earlier, given αβ, it is possible to find all the (at most m−1) elements in p−1(αβ). Given
h and α, we construct a circuit C ′ that on input β computes all elements of p−1(αβ)
and outputs 1 if one of these elements is a satisfying assignment for C. Note that since
i ≥ m− 2k/3, the number of inputs of C ′ is at most 2k/3 < k. Thus, we can find a sat-
isfying assignment β for C ′ using our presumed CSAT algorithm. Given such β we can
check all elements of p−1(αβ) and at least one of these will be a element of h−1(α)∩SC .

Finding all the elements of S Once we found one element x of S we can apply the same
process to the set h−1(α) ∩ (SC \ {x}) and find another element x′. Note that the set
SC \ {x} can also be decided by a polynomial-sized circuit. We continue this process for
at most 6m5 steps. If after 6m5 steps we are still not finished then we abort.

Additional check We perform the above procedure for the set SC ∩h
−1(0i) and verify that

it is of size at most 4m5. Otherwise, we let i← i+ 1 and go back to Step 3.

Analysis. The analysis of [BGP] shows that if |SC | > 2im5 then with 1 − 2−Ω(m) probability it

will hold that |h−1(α)∩SC | ∈ (1± 1
5 ) |SC |

2i for all α ∈ {0, 1}i. Note that as i gets larger, the quantity
|SC |
2i gets smaller, and for the first value of i we try in the algorithm (i.e., i = m−k/2−6 logm), this

quantity is at least m6 (since |SC | ≥ 2m−k/2). From this it can be shown that very high probability,
the first i for which we pass the check |h−1(0i)∩ SC | ≤ 4m5 will also satisfy m5 ≤ |h−1(α) ∩ SC | ≤
6m5 for all α. 25 Thus, we will assume that this event always happens (this assumption can cause
a statistical difference of at most 2−Ω(m) in the algorithm’s output). This means that our algorithm

outputs an element with probability at least 1
6 (since it aborts with probability 1 − |h

−1(α)∩SC |
6m5 ).

If an element is output then it is distributed exactly according to the uniform distribution on SC ,
since each x ∈ SC has the same probability (i.e. 1

6m5 ) of being output. Using repetition, we can

ensure that we output an element with 1− 2Ω(m) probability. Thus, we see that the output of the
algorithm is of statistical distance at most 2−Ω(m) from the uniform distribution over SC .

25Consider the first i for which we pass the check. Then we have 4m5 ≥ |h−1(0i)∩SC | ≥ (4/5)|SC |/2i, so for all α,
|h−1(α)∩SC | ≤ (6/5)|SC |/2i ≤ 6m5. Also, since we didn’t pass the check at i−1, we have 4m5 < |h−1(0i−1)∩SC | ≤
(6/5)|SC |/2i−1, which implies that at stage i we have |h−1(α) ∩ SC | ≥ (4/5)|SC |/2i > (20/12)m5 > m5.
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Part III

Conclusions and Open Problems

9 Constant-Round Public-Coin Zero-Knowledge Proofs

A long-standing open problem is whether there exist constant-round public-coin zero-knowledge
proof systems. (Recall that [GK1] has constructed constant-round private-coin zero-knowledge
proof systems, and [Bar] has constructed constant-round public-coin zero-knowledge argument sys-
tems.) It is not even known whether the 3-round proof systems obtained by parallel repetition
of classic protocols, such as the ones for Quadratic Residuosity [GMR], Graph Isomor-

phism [GMW], Three-Coloring [GMW], and Hamiltonicity [Blu2], are zero knowledge.
Dwork, Naor, Reingold, and Stockmeyer [DNRS] have shown that the above open problem

is closely related to the soundness of the Fiat-Shamir heuristic [FS2]. The latter is a popular
heuristic for eliminating interaction in (public-coin) protocols, whereby the verifier’s messages are
replaced by a cryptographic hash of the conversation history. In particular, it is used to convert
identification schemes (typically based on zero-knowledge proofs) into digital signature schemes,
and many practical digital signature schemes have been obtained in this way (e.g. [Sch, GQ, Oka]).
This technique can be proven sound in the random oracle model [PS], but it has no known proof of
security in the standard model, where the hash function is implemented by an efficiently computable
(and publicly known) algorithm.

The work of Dwork et al. [DNRS] shows that proving that a protocol is not zero-knowledge
(at least in some weak sense) is essentially equivalent to exhibiting a family of efficiently com-
putable hash functions (“magic functions”) with which the Fiat-Shamir heuristic is sound when
applied to that protocol. Thus by constructing constant-round public-coin zero knowledge argu-
ment, Barak [Bar] gave an example of a protocol under which the Fiat-Shamir heuristic is completely
unsound (for any family of efficiently computable hash functions). Goldwasser and Taumann [GT]
subsequently gave a 3-round computationally-sound identification scheme for which the Fiat-Shamir
heuristic is completely unsound. These results still leave open the possibility that the Fiat-Shamir
heuristic is sound for any proof system (for an appropriate family of “magic functions”). Not only
would this be significant for the Fiat-Shamir heuristic itself (which is typically applied to proof sys-
tems), it would imply that no constant-round public-coin proof system (e.g. the parallel versions
of [GMR, GMW, Blu2]) is zero knowledge.

In this section, we observe that there is a very clean and plausible property of a family of
hash functions which implies the soundness of the Fiat-Shamir heuristic when applied to any proof
system. We do not, however, know how to construct such hash functions based on more standard
complexity assumptions, and leave this as an intriguing open problem.

We begin by formalizing the syntactic properties of a family of hash functions.

Definition 9.1. For functions k(n),m(n) ≤ poly(n), a family of hash functions with input length
m(n) and output length k(n) is a collection H =

⋃

n{hi : {0, 1}m(n) → {0, 1}k(n)}i∈In , such that

• There is a probabilistic polynomial-time algorithm that given 1n, outputs i ←R In. (This
distribution need not be uniform.) We require |i| ≥ n.

• There is a deterministic polynomial-time algorithm that given i ∈ In and x ∈ {0, 1}m(n) ,
outputs hi(x).
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The security property we will formulate is based on the notion of conditional entropy. Recall
that the entropy of a random variable X is defined as H(X) = Ex←RX [log(1/Pr[X = x])]. For
jointly distributed random variables (X,Y ), the conditional entropy of Y given X is defined to be
Ey←RY [H(X|Y =y], where X|Y =y denotes the conditional distribution of X given that Y = y.

Definition 9.2. Let E be a collection of functions e : N→ N. We say that a family of hash function
H =

⋃

n{hi : {0, 1}m(n) → {0, 1}k(n)}i∈In ensures conditional entropy (greater than) E if for every
nonuniform probabilistic polynomial-time algorithm A, there exists an e ∈ E such that

H(hI(A(I))|A(I)) > e(n),

where the probabilities are taken over I ←R In and the coin tosses of A, and A(I) denotes the first
m(n) bits of the output of A on input I.

Examples of entropy bounds we will consider below are E = {0}, E = {1/nc : c ∈ N}
def
=

1/poly(n), and E = {k(n) − c log n : c ∈ N}
def
= k(n) − O(log n). (The reason for working with

families instead of a single function e(n) is to allow the constant c in the latter two cases to depend
on the choice of the algorithm A.)

Why is it plausible that such function families exist? Note that the length of the function-index
i can be a larger polynomial than m(n). Thus, even conditioned on A(I), I still has a lot of entropy,
and hence we can hope that hI(A(I)) contains some of this entropy. This would be trivial if k(n)
were larger than the length of the function-index, because we could just define hi(x) = i for all i.
However, we are typically interested in the case that k(n) is much smaller than m(n), which must
be smaller than the length of the function-index. (Note that if m(n) is larger than the length of the
function-index, then A(i) = i makes the conditional entropy H(hI(A(I))|A(I)) zero.) We observe
that the largest conditional entropy we can hope for is k(n) − O(log n): if all the hi’s are regular
functions (i.e. hi(Um(n)) = Uk(n)), then by evaluating hi(x) on poly(n) random inputs, a PPT A
can with high probability find an input x such that the first c log n bits of hi(x) are zero, making
H(hI(A(I))|A(I))) ≤ H(hI(A(I))) ≤ n− c log n+O(1), where c is any constant. Our (strongest)
conjecture in this section is that there are hash functions for which this attack is essentially the
best possible.

Conjecture 9.3. For every two functions m(n), k(n) ≤ poly(n), there exists a family of hash
functions with input length m(n) and output length k(n) that ensures conditional entropy k(n) −
O(log n).

Before seeing the implications of this conjecture, we establish the following useful lemma.

Lemma 9.4. If there exists a family of hash functions H =
⋃

n{hi : {0, 1}m(n) → {0, 1}k(n)}i∈In

that ensures conditional entropy E, then there exists such a family where for every α ∈ {0, 1}m(n),
hI(α) is distributed uniformly in {0, 1}k(n) when I ←R In.

Proof. Define h′(i,z)(x) = hi(x) ⊕ z. Then, since α is fixed before I is chosen, we immediately

obtain that h′(i,z)(α) is uniformly distributed. It remains to show that h′ still ensures conditional

entropy E . Now, for every nonuniform PPT A′(i, z), we can define a collection of nonuniform PPT
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Az(i) = A(i, z) so that when I and Z are uniform, we have

H(h′I,Z(A′(I, Z))|A′(I, Z)) ≥ H(h′I,Z(A′(I, Z))|A′(I, Z), Z)

= Ez←RZ [H(h′I,z(A
′(I, z))|A′(I, z))]

= Ez←RZ [H(hI(Az(I))⊕ z|Az(I))]

= Ez←RZ [H(hI(Az(I))|Az(I))]

≥ e(n)

Now we show that the above conjecture implies that there do not exist constant-round public-
coin zero-knowledge proof systems.

Theorem 9.5. Assuming Conjecture 9.3, if a language L has a constant-round public-coin auxiliary-
input zero-knowledge proof system, then L ∈ BPP.

More generally, assuming Conjecture 9.3 only for input length m(n) and output length k(n), if
L has a constant-round public-coin auxiliary-input zero-knowledge proof system in which the total
communication is at most m(n) bits and the verifier’s messages are of length at most k(n) on inputs
of length n, then L ∈ BPP.

Proof. We begin with the special case of 3-message protocols. Let (P, V ) be a 3-round public-coin
auxiliary-input zero-knowledge proof for a language L. We denote the three messages by α, β, γ,
and consider a family of hash functions H which has input length m = m(n) ≥ |α| and output
length k = k(n) ≥ |β|, and ensures entropy k(n) − O(log n). By Lemma 9.4, we may assume
that hI(α) is uniformly distributed for every α. Intuitively, if the verifier chooses its message β
by applying hI to the prover message α then we are guaranteed two properties: (1) the verifier’s
message is uniformly distributed and so is a valid message (recall that this is a public-coin proof
system); (2) even given I, whatever message α = A(I) a cheating prover (or simulator) generates,
the entropy of the verifier’s reply hI(α) is still high. In such a case, it is “hard” to simulate. We
now formally prove the theorem.

Consider a cheating verifier V ∗(x, i, α) that on input x, auxiliary input i, and prover message
α, sends message β = hi(α). By auxiliary-input zero knowledge, there is a PPT simulator S such
that for every x and i, S(x, i) is computationally indistinguishable from V ∗’s view. We consider
the output distribution of S(x, I) where I and the coin tosses of S are chosen uniformly.

When x ∈ L, we claim that S(x, I) outputs an accepting transcript (i.e. (α, β, γ) such that
V (x, α, β, γ) = accept) with probability at least 1 − neg(n). The reason is that when I is cho-
sen uniformly, then, for every α, hI(α) is uniformly distributed, so 〈P, V ∗(I)〉(x) is distributed
identically to 〈P, V 〉(x), which is accepting with probability 1− neg(n) by completeness.

When x /∈ L, we claim that S(x, I) outputs an accepting transcript with probability at most 1/2.
Consider a nonuniform algorithm Ax(i) that runs S(x, i) and outputs the first message α. Then, by
the magic function property, H(hI(Ax(I))|Ax(I)) ≥ k− c log n for some constant c. In other words,
when (A,B,C)←R S(x, I), we have H(B|A) ≥ k−c log n. This implies that with probability at least
3/4 over α←R A, H(B|A=α) ≥ k−4c log n. For each α, let Accα be the set of β ∈ {0, 1}k for which
there exists γ such that (α, β, γ) is an accepting transcript. By soundness, for every α ∈ {0, 1}m,
|Accα| ≤ s(n) · 2k, where s(n) is the (negligible) soundness error, k is the length of the verifier
message β. Thus, if H(B|A=α) has entropy at least k − O(log n), then Pr [B|A=α ∈ Accα] ≤ 1/4.
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(Otherwise B|A=α has entropy at most (1/4) · log2 |Accα| + (3/4) · k + 1 = k − ω(log n).)26 To
conclude, we can upper bound the probability that S(x, I) outputs an accepting transcript by

Pr [B ∈ AccA]

≤ Pr [B ∈ Accα|H(B|A=α) ≥ k − 4c log n] + Pr [H(B|A=α) < k − 4c log n]

≤ 1/4 + 1/4 = 1/2.

Thus, we can decide L in BPP by choosing I uniformly, running S(x, I), and deciding according
to whether S outputs an accepting transcript.

For general constant-round proof systems, we use a different hash function for each verifier
message. Replace Accα with sets Acct for each partial transcript t ending in a prover message. If
t ends before the i’th verifier message, define Acct to be the set of verifier messages for which the
maximum conditional acceptance probability is at least s1/2i

, where s = s(n) is the soundness error.
Refining the above analysis, it can be argued that if the conditional acceptance probability given
t is smaller than s1/2i−1

, then with probability 1 − ε over the history generated by the simulator,
the next verifier message (computed by the i’th magic function) lands in Acct with probability at
most ε, where ε is an arbitrarily small constant. Choosing ε to be smaller than 1/(4 ·#rounds), we
obtain an accepting transcript with probability at most 1/2.

Following [DNRS], the above proof actually gives a positive result for the Fiat-Shamir heuristic
under Conjecture 9.3. Specifically, it shows that for any polynomial-time P ∗ and any x /∈ L,
the probability that P ∗(x, i) produces an accepting transcript (α, hi(α), γ) is at most 1/2 when
i is chosen randomly: simply replace the simulator S with P ∗ in the above proof. This success
probability (of 1/2) can probably be made negligible by requiring the prover generate accepting
transcripts for polynomially many hash functions chosen randomly from the family (rather that
just a single hash function). Also, in typical applications of the Fiat–Shamir heuristic, the prover
is typically allowed to choose the instance x; in such a case one should include x in the input to
the hash function as well.

The above theorem rules out all constant-round public-coin zero-knowledge proofs (under the
conjecture), but many protocols of interest (from the perspective of both zero knowledge itself and
the Fiat-Shamir heuristic) possess additional properties that may make ruling out zero knowledge
easier (e.g. we may use a weaker conjecture). For example, many popular protocols have 3 rounds,
perfect completeness, and soundness that is optimal in the following sense.27

Definition 9.6. A 3-round public-coin proof system (P, V ) for a language L has optimal soundness
if for every x /∈ L and every first prover message α, there is at most one verifier message β such
that V (x, α, β, γ) = accept for some second prover message γ.

Examples of protocols with optimal soundness are the classic proof systems for Quadratic

Residuosity [GMR], Graph Isomorphism [GMW], and Hamiltonicity [Blu2] and the parallel
versions of these protocols. (The Three-Coloring protocol of [GMW] does not have optimal
soundness.)

For protocols with this property, a weaker version of the conjecture suffices.

26Let C = B|A=α and let I be the indicator for the event C ∈ Accα. Then H(C) ≤ H(I) + H(C|I) ≤ 1 + H(C|I),
where H(·|·) denotes conditional entropy. By definition, H(C|I) = Pr[I = 1] · H(C|I = 1) + Pr[I = 0] · H(C|I = 0) ≤
Pr[I = 1] · (log2 |Accα|) + (1 − Pr[I = 1]) · k. The above calculation then follows by noting that this last expression
is decreasing in Pr[I = 1].

27Our definition of optimal soundness is weaker than the notion of special soundness, introduced in [CSD], which
requires that one can actually recover the witness from accepting responses to any two different verifier messages.
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Conjecture 9.7. For every two functions m(n), k(n) ≤ poly(n) such that k(n) = ω(n), there exists
a family of hash functions with input length m(n) and output length k(n) that ensures conditional
entropy 1/poly(n).

Theorem 9.8. Assuming Conjecture 9.7, if a language L has a 3-round public-coin auxiliary-input
zero-knowledge proof system with optimal soundness, then L ∈ BPP.

More generally, assuming Conjecture 9.7 only for input length m(n) and output length k(n),
if L has a 3-round public-coin auxiliary-input zero-knowledge proof system with optimal soundness
where the prover’s first message is length at most m(n) and the verifier’s message is of length at
most k(n), then L ∈ BPP.

Proof. The proof proceeds as above, with the only modifications being in the case x /∈ L. Here, we
observe that optimal soundness means that for every α, |Accα| = 1. We denote the unique element
of Accα by f(α). We will use this and the magic function property to argue that S outputs a
rejecting transcript with probability at least 1/poly(n). Using the same notation as above, we have
H(B|A) ≥ 1/p(n) for some polynomial p. This implies that with probability at least 1/(2k·p(n)) over
α←R A, H(B|A=α) ≥ 1/2p(n). If this occurs, we have Pr [B|A=α 6= f(α)] = Ω(1/[p(n) ·(k+log n)]).
Thus, the probability that S(x, I) outputs an rejecting transcript is at least

Pr [B 6= f(A)] ≥ (1/2p(n)) · Ω(1/[p(n) · (k + log n)]) ≥ 1/poly(n),

as desired.

The “ultimate” weakening of the conjecture is to require that the hash function only ensure
conditional entropy greater than zero. It turns out that this has the following equivalent formula-
tion:

Conjecture 9.9. For every two functions m(n), k(n) ≤ poly(n) such that k(n) = ω(n), there exists
a polynomial p such that the following holds. For every nonuniform deterministic polynomial-time
algorithm A and all sufficiently large n, there exist circuits C1, C2 : {0, 1}m(n) → {0, 1}k(n) of size
at most p(n) such that A(C1) = A(C2) but C1(A(C1)) 6= C2(A(C2)).

To see how this conjecture follows from the existence of hash functions with input length m(n)
and output length k(n) that ensure conditional entropy greater than 0, note that the condition
H(hI(A(I))|A(I)) > 0 is equivalent to the existence of i, j such that A(i) = A(j) but hi(A(i)) 6=
hj(A(j)), and that giving A the index i is equivalent to giving A the circuit that computes hi.
For the converse, consider Hn which is the uniform distribution on all circuits of size at most p(n)
mapping {0, 1}m(n) to {0, 1}k(n).

We find Conjecture 9.9 to be very plausible: When p(n) � m(n), many different circuits C
must map to the same input z = A(C). When the range {0, 1}k(n) is of superpolynomial size, it is
difficult to imagine how a polynomial-time algorithm A can ensure that all such circuits have the
same value on z. Moreover, we note that this conjecture only refers to worst-case complexity, and
thus has hope of being related to other conjectures in complexity theory. Still, even this weak form
of the conjecture implies a negative result for zero-knowledge proofs.

Theorem 9.10. Assuming Conjecture 9.9, if a language L has a 3-round public-coin auxiliary-input
zero-knowledge proof system with optimal soundness and perfect completeness, then the complement
of L is in AM.

More generally, assuming Conjecture 9.9 only for input length m(n) and output length k(n), if L
has a 3-round public-coin auxiliary-input zero-knowledge proof system with optimal soundness and
perfect completeness in which the prover’s first message is length at most m(n) and the verifier’s
message is of length at most k(n), then the complement of L is in AM.
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Public input: x

x
↓

M A

Step A1: Choose r ←R {0, 1}
s. r←−−−

Step M1: Find C of size at most p(n) such that S(x,C; r) is a re-
jecting transcript.

C−−−−→

Accept if C is of size at most p(n) and S(x,C; r) is a rejecting transcript.

Protocol 9.12. AM proof system for L

Corollary 9.11. If Conjecture 9.9 holds only for output length k(n) and input length m(n) = nc

for a sufficiently large constant c and NP * coAM, then the k(n)-fold parallel repetition of Blum’s
Hamiltonicity protocol is not auxiliary-input zero knowledge.

Proof. Let (P, V ) be a 3-round public-coin auxiliary-input zero-knowledge proof system with op-
timal soundness and perfect completeness in which the prover’s first message is length at most
m = m(n) and the verifier’s message is of length at most k = k(n). Let p(n) be the polynomial
guaranteed by Conjecture 9.9. Analogously to the above proofs, we consider the cheating verifier
V ∗(x,C, α) that on input x, auxiliary input C (interpreted as a circuit mapping {0, 1}m → {0, 1}k),
and first prover message α, sends message β = C(α). Let S(x,C) be the simulator for V ∗. We
may assume wlog that S(x,C) always outputs transcripts of the form (α,C(α), γ). We call such a
transcript accepting if it would make the honest verifier V accept.

By perfect completeness, for every x ∈ L and every circuit C, S(x,C) outputs an accepting
transcript with probability 1 − neg(n). By taking polynomially many trials, we can increase this
probability to be at least 1 − 2−p(n)−n. Let s = s(n) be the number of random bits used by the
resulting simulator.

Protocol 9.12 contains the AM proof system for the complement of L. We now analyze this
proof system, beginning with soundness. When x ∈ L, then for every fixed C, the simulator
S(x,C; r) outputs a rejecting transcript with probability at most 2−p(n)−n when r ←R {0, 1}

s.
Thus, by a union bound, the probability over r that there exists a C of size at most p(n) such that
S(x,C; r) is rejecting is at most 2p(n) · 2−p(n)−n = 2−n.

For completeness, let x ∈ L, fix any r ∈ {0, 1}s, and consider the (deterministic) polynomial-
sized circuit A(·) which outputs the first message in S(x, ·; r). By Conjecture 9.9, there exist C1, C2

of size at most p(n) such that A(C1) = A(C2) = α but C1(α) 6= C2(α). By optimal soundness, there
exists at most one verifier message β ∈ {0, 1}k such that (α, β) can be completed to an accepting
transcript. At least one of C1(α) or C2(α) is not equal to β, and thus the prover M can send a
circuit C such that S(x,C; r) is rejecting.

10 Conclusions

New results on zero knowledge put in question the usefulness of black-box lower bounds for under-
standing the power of general (non-black-box) zero knowledge. Thus, non-black-box lower bounds
and upper bounds are required to close the gaps in our understanding of this field. In this work, we
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have shown several such lower bounds. Beyond the lower bounds themselves, our work implies new
differences between the power of zero-knowledge proofs versus arguments. It also implies that in
some cases complexity assumptions can and should be used to obtain zero-knowledge lower bounds.
Sometimes we will need to use assumptions, such as Assumption 3.2, that are not commonly used
in cryptography.

In our opinion, one of the most important open questions is whether there exists a constant-
round public-coin zero-knowledge proof system for NP and the special case of 3-round proof sys-
tems obtained by parallel repetition of [GMW, Blu2]. In Section 9, we provided several plausible
conjectures that would imply that the answer is no. It is an open problem to establish one of these
conjectures based on more standard complexity-theoretic assumptions.
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Part IV

Appendices

A Uniform Zero Knowledge

The standard definition of zero knowledge, as presented in Section 2, refers to computational indis-
tinguishability with respect to nonuniform distinguishers. Goldreich [Gol1] has given a treatment
of zero knowledge that makes sense for uniform distinguishers. In this section, we give analogues
of some of our results in this uniform setting.

A.1 Definition

Following [Gol1], for uniform indistinguishability, we incorporate a distribution on the input x. We
call an ensemble {Xn}n∈N of probability distributions polynomial-time samplable if there is a PPT
algorithm M such that M(1n) is distributed according to Xn for all n.

Definition A.1 (uniform computational indistinguishability). For an index set I ⊆ {0, 1}∗,
two ensembles of random variables {Ax}x∈I and {Bx}x∈I are uniformly indistinguishable if for every
(uniform) PPT algorithm D and every polynomial-time samplable {Zn = (Xn, Yn)}, there exists a
negligible function µ such that for all n,

|Pr [D(Xn, Yn, AXn) = 1 & Xn ∈ I ∩ {0, 1}
n]−Pr [D(Xn, Yn, BXn) = 1 & Xn ∈ I ∩ {0, 1}

n] | ≤ µ(n)

Intuitively, this definition says that it is infeasible to generate x ∈ I such that Ax and Bx

are distinguishable (by a uniform algorithm D, even it is given additional information y that is
correlated with x).

The definition (implicit) in [Gol1] restricts to distributions (Xn, Yn) such that the support of
Xn is contained I (and thus omits the Xn ∈ I condition in the probabilities). The definition above
is stronger, but we believe it to be more natural.

For reasons that will become clear shortly, in this section, we will work with relations that are
strongly poly-balanced in the sense that there is a polynomial p with nonnegative integer coefficients
such that (x,w) ∈ R ⇒ |w| = p(|x|) (instead of just |w| ≤ p(|x|)). The point is that the length of
x can be determined from the length of the pair (x,w).

Definition A.2 (uniform plain zero knowledge). An interactive proof system (P, V ) with
respect to a strongly poly-balanced relation R is uniform plain zero knowledge if for every PPT V ∗,
there exists a probabilistic polynomial-time simulator S such that the ensembles {〈P (w), V ∗〉(x)}(x,w)∈R

and {S(x)}(x,w)∈R are uniformly indistinguishable.

The above definition says that for every PPT V ∗, there exists a PPT simulator S such that for
all PPT D and all samplable distributions (X ′n, Y

′
n) = ((Xn,Wn), Yn), we have

|Pr [D(Xn,Wn, Yn, 〈P (Wn), V ∗〉(Xn)) = 1 & (Xn,Wn) ∈ R ∩ ({0, 1}n × {0, 1}∗)]

− Pr [D(Xn,Wn, Yn, S(Xn)) = 1 & (Xn,Wn) ∈ R ∩ ({0, 1}n × {0, 1}∗)]| ≤ neg(n).

Note that a direct application of the definition of uniform indistinguishability would give the con-
dition X ′n = (Xn,Wn) ∈ R ∩ {0, 1}n rather than (Xn,Wn) ∈ R ∩ ({0, 1}n × {0, 1}∗). The two
definitions are equivalent due to the fact that R is strongly poly-balanced.
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Observe that the distinguisher is given not only the input Xn, but also the witness Wn and
some additional auxiliary information Yn that may be correlated with Xn and Wn, but the verifier
and the simulator are only given the input Xn. Intuitively, this models a situation where verifier
starts with no a priori information other than the input Xn, but we want to ensure that receiving
the zero-knowledge proof would not help the verifier attack a system whose behavior depends not
just on Xn but also on the witness Wn and possibly some other correlated information Yn.

We note that the relation R has greater significance for uniform zero knowledge than the other
forms, because uniform zero knowledge only requires the simulation to be indistinguishable from
the verifier’s view on inputs x that can be efficiently sampled together with a witness w. In case
R is the trivial relation for some language L (i.e. R = L × {λ}), then uniform zero knowledge
simply says that the simulator’s output is indistinguishable from the verifier’s view for all samplable
distributions on the input x.

Definition A.3 (uniform auxiliary-input zero knowledge). An interactive proof system
(P, V ) with respect to relation R is uniform auxiliary-input zero knowledge if for every PPT V ∗ and
polynomial p with nonnegative integer coefficients, there exists a PPT S such that the ensembles

{〈P (w), V ∗(z)〉(x)}(x,w)∈R,z∈{0,1}p(|x|) and {S(x, z)}(x,w)∈R,z∈{0,1}p(|x|)

are uniformly indistinguishable.

It is known that uniform auxiliary-input zero knowledge with an efficient prover is closed under
sequential composition [Gol1].

As with the nonuniform version, here the indistinguishability is required even for distinguishers
that have additional a priori information beyond the auxiliary input of the verifier. In this case, it
is because we consider efficiently samplable distributions (Xn,Wn, Zn, Yn), where Xn is the input,
Wn the witness, Zn the verifier’s auxiliary input, and Yn the distinguisher’s additional auxiliary
input, and the entire 4-tuple (Xn,Wn, Zn, Yn) is provided to the distinguisher.

Also as in the nonuniform case, there is a universal verifier V ∗uni(x, z) that interprets its auxiliary
input z as a Boolean circuit Cz and uses Cz as its strategy (i.e. next-message function); if the zero-
knowledge condition holds for V ∗uni, then it holds for all PPT verifier strategies V ∗.

A.2 Triviality

It is well-known that every language in BPP have trivial zero-knowledge proofs (where the verifier
decides the language on its own, and the prover sends nothing). For uniform zero knowledge, this
triviality can be extended to a larger class of languages.

Definition A.4. For a language L and a poly-balanced relation R such that L = LR, we say that
L is uniformly trivial with respect to R if there is a PPT algorithm A such that the following two
conditions hold:

• For every samplable distribution {Dn = (Xn,Wn)}n∈N, there exists a negligible function µ(n)
such that Pr [A(Xn) 6= accept & (Xn,Wn) ∈ R ∩ ({0, 1}n × {0, 1}∗)] ≤ neg(n).

• For all x /∈ L, Pr [A(x) 6= reject] ≤ neg(n).

In other words, the algorithm A is correct with high probability on all no instances, and it
is hard to generate yes instances (together with witnesses) on which A errs with nonnegligible
probability. An equivalent formulation is to require that for all x /∈ L, A(x) rejects with probability
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at least 2/3, and with probability 1− neg(n) over (x,w)←R Dn, A(x) accepts with probability at
least 2/3 or (x,w) /∈ R ∩ ({0, 1}n × {0, 1}∗). (Equivalence is seen by amplifying via independent
repetitions and majority vote.)

Proposition A.5. If a language L is uniformly trivial wrt R and L ∈ IP, then L has a uniform
auxiliary-input zero-knowledge proof wrt R. Moreover, if R is an NP-relation (or even an MA
relation), then the prover is efficient.

Proof. Uniform triviality guarantees that the verifier can decide L on its own on “most” instances
(just by running the algorithm A in the definition). However, the completeness and soundness
conditions of zero-knowledge proofs are universally quantified over all instances x. Thus, we have
the prover check whether x is an instance where the algorithm A would fail to decide correctly,
and in such a case, provide V with a (non-zero-knowledge) proof. These rare instances won’t hurt
the uniform zero knowledge property because, by definition of uniformly trivial, they are hard to
generate.

Let A be the PPT algorithm given by the definition of uniformly trivial. Consider the following
interactive proof:

(P (w), V )(x):

1. P runs A(x) for n executions, where n = |x|. If less than 3/4 of these executions are accepting,
then P initiates the (non-ZK) interactive proof for L on input x. (If R is an NP or MA
relation, the non-ZK proof simply amounts to sending w.)

2. V runs A(x) for n executions. If A(x) accepts in a majority of these executions, then V halts
and accepts. Otherwise, V accepts according the (non-ZK) interactive proof for L (rejecting
if P does not initiate it).

Negligible soundness follows from the definition of trivial and the soundness of the non-ZK proof.
For completeness, let B = {x ∈ L : Pr [A(x) = accept] ≤ 2/3}. If x ∈ B, then with probability
1 − 2−Ω(n), P will initiate the non-ZK proof for L, and thus A will accept by completeness of the
non-ZK proof. If x /∈ B, then with probability 1− 2−Ω(n), the majority of V ’s executions of A will
be accepting, and thus V will accept.

For uniform auxiliary-input zero knowledge, let V ∗(x, z) be any verifier and let S(x, z) be the
simulator that simply simulates V ∗’s view as if the prover sends nothing. We argue that the
simulation produced by S is good on any samplable distribution (Xn,Wn, Zn, Yn). Let B′ = {x :
Pr [A(x) = accept] ≤ 7/8}. From the definition of uniformly trivial, it follows that

Pr
[

Xn ∈ B
′ & (Xn,Wn) ∈ R ∩ ({0, 1}n × {0, 1}∗)

]

≤ neg(n).

Now consider any fixed (x,w, z, y) such that x /∈ B ′. With probability 1 − 2−Ω(n), at least 3/4 of
P ’s executions of A(x) will accept, and P sends nothing to V .

It turns out that one-way functions imply non-trivial languages in NP.

Proposition A.6. If one-way functions exist, then there exists an NP-relation R such that LR is
not uniformly trivial wrt R.

Proof. Assume one-way functions exist. By [HILL], there exists an pseudorandom generator [HILL]
G : {0, 1}n → {0, 1}2n (ie the analogue of a pseudorandom generator where the indistinguishability
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condition only holds for infinitely many n’s). Consider the NP-relation R = {(x,w) : G(w) = x},
so LR = Image(G). Suppose LR were uniformly trivial wrt R. Let W2n be a random variable dis-
tributed uniformly over {0, 1}n and letX2n = G(W2n). Since Pr

[

(X2n,W2n) ∈ R ∩ ({0, 1}2n × {0, 1}∗)
]

=
1, we have

Pr [A(X2n) = accept] ≥ 1− neg(n).

On the other hand, since LR contains at most a 2−n fraction of {0, 1}n, we have

Pr [A(U2n) = accept] ≤ 2−n + neg(n) = neg(n).

This contradicts the fact that G is an pseudorandom generator.

In fact, the above proposition only needs the existence of one-way functions which are hard to
invert for infinitely many input lengths, referred to as io-OWF. In fact, if we modify the definition of
trivial so that the PPT A may depend on the distribution (Xn,Wn), then the existence of nontrivial
NP-relations becomes equivalent to the existence of io-OWF. (However, with this modification, then
the proof of Proposition A.5 fails.)

A.3 Two-round Zero Knowledge

We begin by presenting an analogue of the Goldreich–Oren result (Theorem 3.1).

Theorem A.7. If a language L has a 2-round proof or argument system wrt relation R that is
uniform auxiliary-input zero knowledge, then L is trivial wrt R. In particular, if one-way functions
exist, then for every NP-complete relation R, LR does not have a 2-round uniform auxiliary-input
zero-knowledge argument system wrt R.

Proof. Suppose (P, V ) is a 2-round zero-knowledge argument for L = LR wrt relation R. Consider
the verifier V ∗(x, z) that sends its auxiliary input z as its first message, and let S be the simulator
for V ∗. Define a PPT algorithm A as follows.

A(x), for |x| = n:

1. Choose y ←R {0, 1}
m, where m = m(n) is the number of coin tosses used by V .

2. Let z = V (x; y).

3. Run S(x, z) and let m be the prover message in the simulated transcript.

4. Accept if V (x; y) would accept prover message m.

We now prove that A satisfies the conditions of uniform triviality. When x /∈ L, then we can
view S defining a PPT prover strategy, and thus A(x) accepts with probability at most 1/3 by
the soundness of (P, V ). Now, let (Xn,Wn) be any samplable distribution, and consider the PPT
distinguisher D defined by D(x, y, t) = 1 iff t = (x, z,m) such that V (x; y) would accept prover
message m. Let Yn be distributed uniformly in {0, 1}m and Zn = V (Xn;Yn). Then,

Pr [A(Xn) 6= accept & (Xn,Wn) ∈ R]

= Pr [D(Xn, Yn, S(Xn, Zn)) = 0 & (Xn,Wn) ∈ R]

≤ Pr [D(Xn, Yn, 〈P, V
∗(Zn)〉(Xn)) = 0 & (Xn,Wn) ∈ R] + neg(n)

≤ neg(n),

where the second-to-last inequality follows from uniform auxiliary-input zero knowledge, and the
last inequality from completeness of (P, V ).
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Now we present uniform analogues of some of our lower bounds.

Theorem A.8. Under Assumption 3.2, if a language L has a 2-round public-coin proof system that
is uniform plain zero knowledge wrt a relation R and has an efficient prover, then L is uniformly
trivial wrt to R.

Proof. Most of the proof is the same as that of Theorem A.8. Given the 2-round proof (P, V ),
we use a pseudorandom generator G against nondeterministic circuits to obtain a derandomized
verifier V ∗, we let S be its simulator, and construct an algorithm M based on S and V ∗ in the
same way:

M(x): Run S(x) many times to obtain transcripts (G(s1), β1; s1), (G(s2), β2; s2), . . . , (G(sq), βq; sq),
where q = n · 2`. Accept if {s1, . . . , sq} = {0, 1}` and, for the majority of s ∈ {0, 1}`, there
exists an i such that si = s and V ∗(x,G(si), βi; si) accepts.

The proof that M rejects all x /∈ L with probability at least 2/3 is the same as in the nonuniform
case. The only difference in the proof is in analyzing M ’s behavior on x ∈ L. Specifically, we
want to show that for any samplable distribution (Xn,Wn), with probability 1 − neg(n) over
(x,w)←R (Xn,Wn), M(x) accepts with probability at least 2/3 or (x,w) /∈ R.

First, we argue that it suffices to prove this if we replace the runs of S(x) in the definition of
M with samples of 〈P (w), V ∗〉(x). If M only used one sample of S(x), this would follow from the
uniform indistinguishability of the ensembles {〈P (w), V ∗〉(x)}(x,w)∈R and {S(x)}(x,w)∈R. However,
since M uses many samples of S(x), it is also important that both ensembles are polynomial-
time samplable given (x,w) (for the single-sample indistinguishability to imply multiple-sample
indistinguishability, cf. [Gol2, Thm 3.2.6]). This holds because P is an efficient prover.

Now, once we replace the runs of S(x) with samples of 〈P (w), V ∗〉(x), it follows that M(x)
accepts with probability 1− 2−Ω(n), just as in the proof of Theorem 3.4.

Theorem A.9.

1. If a language L has a constant-round public-coin proof system wrt relation R that is uniform
auxiliary-input resettable zero knowledge, then L is uniformly trivial wrt R.

2. Under Assumption 3.2, if a language L has a constant-round public-coin proof system wrt
relation R that is uniform plain resettable zero knowledge, then L is uniformly trivial wrt R.

Proof sketch. The proof is identical to that of Theorem A.9, noting that the reduction from a
constant-round public-coin proof system to a 2-round public-coin proof system preserves uniform
resettable zero knowledge, and appealing to Theorems A.7 and A.8 at the end. We can drop the
efficient-prover condition because the multiple-sample indistinguishability of 〈P (w), V ∗〉(x) and
S(x) holds by virtue of the resettable zero knowledge property.
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