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Abstract
We reduce the approximation factor for Vertex Cover to 2 — ©( \/13ﬂ) (instead of the previous
2 — 9(%), obtained by Bar-Yehuda and Even [2], and by Monien and Speckenmeyer [10]).

The improvement of the vanishing factor comes as an application of the recent results of Arora,
Rao, and Vazirani [1] that improved the approximation factor of the sparsest cut and balanced cut
problems. In particular, we use the existence of two big and well-separated sets of nodes in the
solution of the semidefinite relaxation for balanced cut, proven in [1]. We observe that a solution
of the semidefinite relaxation for vertex cover, when strengthened with the triangle inequalities,
can be transformed into a solution of a balanced cut problem, and therefore the existence of big
well-separated sets in the sense of [1] translates into the existence of a big independent set.

1 Introduction

One of the most well-studied problems in combinatorial optimization is the vertex cover (VC) problem:
given a graph G = (V, E), we look for a minimum size subset of vertices such that for every (u,v) € E,
at least one of u,v belongs to this subset. In the weighted version of VC, each vertex has an integral
weight, and we are looking for the minimum total weight subset of vertices with the property above.

Since the complexity of VC has been heavily studied since Karp’s original proof of its NP-
completeness [8], the related bibliography is vast and cannot be covered, of course, in this introductory
note. We mention here that VC is known to be APX-complete [11], and moreover it cannot be ap-
proximated within a factor of 1.36 [5], unless P=NP. A 2-approximation on the other hand can be
trivially obtained by taking all the vertices of a maximal matching in the graph.

Improving this simple 2-approximation algorithm has been a quite non-trivila task. The best ap-
proximation algorithms known before this work were published 20 years ago by Bar-Yehuda and
Even [2], and by Monien and Speckenmeyer [10]. They achieved an approximation factor of 2 — 15‘11;1“2,
where n is the number of vertices. If A is the maximum degree of the graph, Halperin [7] showed
that a factor of 2 — (1 — 0(1))% can be achieved by using the semidefinite programming (SPD)
relaxation of VC.

In this work we use a stronger SDP relaxation to improve the approximation factor achieved in
polynomial time to 2 — ©( \/lgﬁ) We observe that the introduction of all the so-called triangle
inequalities to the standard SDP relaxation of VC is, in fact, very similar to the balanced cut SDP
relaxation used by Arora, Rao, and Vazirani [1]. Then we use one of the main results of [1], which
asserts that in the solution of this SDP, there are two big and well-separated vertex subsets. At the
same time, we show that edges that were not covered by a trivial initial rounding are too big to have
both of their endpoints in either of these two sets. Hence, one of these two big subsets has to be a




big independent set, which can be excluded. We show this process first for the unweighted VC, and
then we show how it can be extended to the weighted case in a straight-forward manner. We end with
some open problems.

2 The unweighted case

The following is a semidefinite-programming relaxation of unweighted Vertex Cover (VC) for a graph

G = (V, E) with n nodes:

min z”: # s.t. (SDP)
i=1

(vo — vi)(vo — v5) =0, V(i,j) € F (1)

(vi —vj)(vi —vg) >0, Vi,j, ke Vu{o} (2)

v? =1, Vie Vu{o} (3)

where v; € R*™!. Constraints (2) are triangular inequalities, which must be satisfied by the vertex
cover. In an ‘integral’ solution of (SDP) (which would correspond to a vertex cover of (), vertices that
are picked coincide with vy, while vertices that are not picked coincide with —vg. In general though,
an optimal solution of (SDP) will not be ‘integral’.

In fact one can strengthen this SDP relaxation for VC by adding all so called triangle inequalities:

n
1 .
min Zwst

2
i=1
(vo — vi)(vo — vj) =0, V(i,j) € E
(vi —vj)(v; —vg) >0, Vi,j, ke VU{0}
(vi +vj)(v; —vg) >0, Vi, j, ke VU{0}
(vi +vj)(v; +v) >0, Vi, j, ke VU{0}
v =1, Vie Vu{o}

This relaxation is in fact equivalent to the following relaxation: We add n more ‘shadow’ points
to (SDP) so that for every unit vector v;, i = 1,...,n we add unit vector v, which is the antipodal of
v;, 1.e., v;v; = —1, Vi. Let V' be the set of shadow points. Note that in an integral solution of (SDP),
exactly half (n) of the points in VUV” coincide with vy and the other half coincide with —vy. Therefore
the following must hold

Z [v; — vj|? = 4n?

i,jeEVUV’

where every pair (i,j) appears only once in the sum. (Hence the set V UV’ is 1/2-spread in the
terminology of [1]). In addition, the triangular inequalities (2) must also hold when we extend V' with
V'. Hence we have the following strengthened SDP:



. - I+ Vo4 )
min Z —— s.t. (SDP?)

(vo — vi)(vg —vj) =0, V(i,j) e E (4)
(vi —vj)(v; —vg) >0, Vi,j, k€ VUV u{o} (5)
v =1, Vie VuV'u{o} (6)

vivh = —1, VieV (7)

Z lv; — v;]? = 4n? (8)

i, jEVUV/

where v;, v, € R? for some d > logn. Constraint (8) is in fact unnecessary since it is always satisfied

by a set of points and their antipodals, but we include it in order to point out that this relaxation

defines a spread metric as defined in [1]. Now we can use results of [1] to find an approximate VC.
For any ¢ > 0, we define the following two sets of graph vertices:

S1 = {veV:ivv>e}
Sy == {veVUuV': —e<wvw<e}
For now, we concentrate our attention on S5. Note that in S5 we have included also shadow points.

In fact, note that if v; € V' belongs to Sy then its shadow v, € V’ belongs to S as well, and vice-versa.
In other words, So contains both original points and their shadows.

Lemma 1

D o — v = 4|S)

iyje‘sZ
Proof: Note that for a particular pair 7,7 € Sy NV we have vivé- = vjv; = —vvj. So if we group the
summation terms according to pairs of vertices ¢, 5 € So NV, we get the lemma, due to cancellation of
terms. O

Let A, o > 0 be two parameters to be determined later. Let u be a random unit vector, and let

o
Sy = {veSy:uw>—

{ 2 \/g}
T, = {UEnguvg—i.}

Vd
Since v; = —v}, it is easy to prove the following

Lemma 2 If v; € S, for some v; € V, then v, € T, and vice-versa, if v, € T,, then v; € S,. The
same holds with the roles of Sy, T, interchanged.

As a result of Lemma 2, S, UT, contains only pairs of points in V' with their shadow points, and each

such pair is separated between Sy, Ty, and |S,| = |T,|. Moreover, the following easy fact also holds:
Lemma 3
v; € Su, vj € Ty, |vi — v <A v € Sy, v € Ty, |V} fv;,|2 <A
o U ESw vy el imulP <AL )€ Sy v € Ty o - 2 < A
v; € Sy, U} € Ty, |Ui 71}5_‘2 <A vj € Sus Uz{ € T, ‘U; _Uj|2 <A
”U,E € Su’ U.;' < Tu’ |’U7{ _U.;‘Q < A Uj € S’LH v; € Tu7 ‘Ui *U]‘|2 < A



Let ¢/ > 0 be another parameter which will be defined later. We modify the procedure SET-FIND of [1]
as follows:

o If |S,| < 2¢|Se| or |T,| < 2¢/|S2| then we HALT (just like in [1]).

e Otherwise, pick any = € S,,y € T, such that |z — y|*> < A. Then, because of Lemma 3, the
corresponding pair of antipodal points ¢/ € Sy, 2’ € T, also satisfy |2/ —3'|> < A. Delete
z,2’,y,y. Repeat until no such z,y can be found.

Note that initially T, contains the antipodal points of S, (Lemma 2), and every deletion eliminates
two points from each of Sy, T, and these four actually form two (a point in V, its shadow point in
V') pairs. Therefore, in the end, the remaining points in S,, are ezactly the antipodal points of T,, (or
both Sy, T, are empty). As in [1], |z —y|?> > A, Vo € S,y € T,,. One can define the parameters ¢, o
so that, initially, .S, T3, are big with high probability:

Lemma 4 [Lemma 4 in [1]] For every positive ¢ < 1/3, there are ¢/, o > 0 such that the probability
(over the choice of u) is at least ¢/8 that the initial sets S, T, defined above have size at least 2¢’|Sa|.

Proof: From Lemma 1 and application of Lemma 4 of [1]. O

In fact, since S, initially (and throughout the running of the algorithm) contains the antipodal points
of Ty, |Su| = |Tu| = |S2]/2 before the algorithm starts running no matter which u we choose, therefore
d=1/4

One of the main results of [1] is to show that, with high probability over u, not many points are
deleted before SET-FIND terminates. Note that the points removed form a matching (at every step, x
is matched to y, and 2’ is matched to y'). Theorem 5 in [1] shows that, with A = O(log™%/n), the
probability that SET-FIND removes a matching of size ¢/|S3] is o(1). Hence the final S,,, T, of SET-FIND
have size > ¢/|Sa| with probability (1), and |Sy| = |Ty|. In what follows, we assume that Sy, T, are
the big final sets we get with high probability from SET-FIND.

Lemma 5 Ife < A/4, then there is no edge (i,j) € E such that v;,v; € V belong both to S, or both
to T,,.

Proof: W.lo.g. suppose that there is (i, j) € E such that v;,v; € S,. Then their shadow (antipodal)

points belong to Ty, i.e., v}, v € T}. Since v;, v; € Sy and constraint (4) holds, we have that
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V;Vj = VoU; + VU — 1< *(1 — 26). (9)

Since v} € T,, and v; € S, are not deleted in SET-FIND, |[v} —v;|2 > A, or, equivalently, |v; +v;|*> > A.
This implies that

A
viv; > —1+ bR (10)
But (9) and (10) together imply that € > A/4 which contradicts the hypothesis.
O
From now on we set € := A/4 > 0. Since |S,| = |Ty| > ¢/|S2|, and the two sets contain antipodal

points, one of them (w.l.o.g. let’s assume that this is S, ), contains at least % points from V. Let I

be this set of points from V. Lemma 5 implies that I is an independent set of G of size at least cg|Sa],
where ¢ := ¢//2 > 0. We return the set S := S; U (S2 \ (I UV’)) as our vertex cover.

Lemma 6 S is a vertex cover of G.



Proof: If there is (i,7) € F with v;,v; € V'\ (S1 U S2), we have (by the definition of Si,S2) that
vov; < —¢ and vovj; < —e, which implies that vov; + vov; — 1 < —1 — 2e. Then constraint (4) implies
that v;v; < —1 — 2¢, a contradiction. Also, since I is an independent set, not both of v;, v; can belong
toit. If v; € I and v; € V' \ (51 U S2), then vov; < € and vov; < —¢, therefore constraint (4) implies
that v;v; < —1, a contradiction. We conclude that every edge must have at least one of its endpoints
in S.

O

Our main result is the following
Theorem 1 |S| < (2 — @(logg%n))VC(G).

Proof: We follow the analysis of Halperin [7]. From (SDP’) and the definition of S1, S2 we have that

1+e¢ 1—¢
Vo) > st s v
or, equivalently,
2-VC(G) ,1—e
S| < ———= — |5\ VI|——. 11
511 < 27D g\ s (1)
Hence
1S = 1S4+ 18\ V|~ 1] 'S 2=ve(@) + 15\ V(2 )
-t 2 ~ 1+4e 2 1+e O
Note that for A = @(logﬂ/?’ n), f—fg = @(10g72/3 n) < ¢, for big enough n. Therefore,
2 o —2/3
|S| < 1 +€VC’(G) = (2 — O(log n)) - VC(Q).
O

Very recently, J. Lee proved that the SET-FIND algorithm of [1] can also be used to obtain their
stronger result [9], i.e., A can be as big as ©(1/y/logn). Therefore we can get the following strength-
ening of Theorem 1:

Theorem 2 |S| < (2 — @(@))VC’(G).

Theorem 2 can be somewhat strengthened by noticing that in the proof of Theorem 1 we just need
to pick A so that 2 < ¢, and therefore [1] and [9] imply that if z := 1/A2, it is enough for 2 to be

14+e
the solution of equation

=clogn
log =

where ¢ > 0 is a constant (cf. [4] for more details on solving this equation through Lambert’s W
function).

3 The weighted case

The following is a semidefinite-programming relaxation of weighted Vertex Cover (VC) for a graph
G = (V, E) with n nodes:



min Zwi L vous s.t. (WSDP)

(Uo — Ui)(vo — Uj) =0, V(Z,j) ck
(vi —vj)(v; —vg) >0, Vi,j, ke VU{0}
v? =1, Vi e VU {0}

where w; is the integral weight of node i. Let W := """ | w;.

In order to apply the methods of Section 2, we solve (SDP’) with the weights incorporated in the
objective function, and replace every v; by w; copies of v; (v} is also replaced by w; copies of v}). In
fact we don’t need to do this replacement in practice, but this mental experiment is helpful in order
to see how the unweighted case applies here, too. Note that this new set of vectors still satisfies the
triangular inequalities, and Lemmata 4 through 6 in Section 2 apply here as well with n := W. Note
that SET-FIND can be made to run in polynomial time in this case (recall that we don’t really do the
replacement of v; with w;, all we need to do is to keep track of how much weight remains for each
node after each matching). Now Theorem 1 (and hence Theorem 2) can be proven in the same way
as before, if we replace the cardinality of sets | - | with their weights w(-).

4 Open problems

Obviously one of the biggest open problems in theoretical computer science is the exact determination
of the approximability of VC. There is a big gap between the hardness and the approximability results.
In particular, we point out that any improvement of the sparsest cut results of [1] that improves the
SET-FIND routine leads automatically to an improvement of the vanishing factor for VC. Maybe this
is an indication of the power of the techniques of [1], in the sense that whether one believes that these
techniques can lead to a constant factor approximation of the sparsest cut depends on his belief that
2 is the correct approximation factor for VC.

We couldn’t extend our techniques to other problems related to VC, for example the maximum
independent set problem (IS), and we don’t know whether this is possible (Halperin’s [7] techniques,
on the contrary, can be applied to IS). Another extension of VC is the vertex cover problem in
hypergraphs. We don’t know how to extend our techniques to this problem as well. Therefore we
leave the application of the results above to these and other problems as an open question.

Finally, we point out that we don’t know what the integrality gap of the strengthened SDP relax-
ation (SDP’) used above is. A weaker formulation, that doesn’t contain all the triangle inequalities
but is equivalent to Schrijver’s 6 function [6], was proven to have an integrality gap of 2 — ¢ for any
constant € > 0 by Charikar [3]. It would be interesting to show the same result for the stronger SDP.
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