
Selection from Structured Data Sets

Erez Petrank∗ Guy N. Rothblum†

Abstract

A large body of work studies the complexity of selecting the j-th largest element
in an arbitrary set of n elements (a.k.a. the select(j) operation). In this work,
we study the complexity of select in data that is partially structured by an initial
preprocessing stage and in a data structure that is dynamically maintained. We provide
lower and upper bounds in the comparison based model. For preprocessing, we show
that making at most α(n) · n comparisons during preprocessing (before the rank j is
provided) implies that select(j) must make at least (2 + ε)(n/e2α(n)) comparisons in
the worst case, where ε > 2−40.

For dynamically maintained data structures, we show that if the amortized number
of comparisons executed with each insert operation is bounded by i(n), then select(j)
must make at least (2 + ε)(n/e2i(n)) comparisons in the worst case, no matter how
costly the other data structure operations are. When only insert is used, we provide a
lower bound on the complexity of findmedian. This lower bound is much higher than
the complexity of maintaining the minimum, thus formalizing the intuitive difference
between findmin and findmedian.

Finally, we present a new explicit adversary for comparison based algorithms and use
it to show adversary lower bounds for selection problems. We demonstrate the power of
this adversary by improving the best known lower bound for the findany operation in
a data structure and by slightly improving the best adversary lower bound for sorting.

1 Introduction

The selection problem—finding the i-th largest element from a set of n distinct values,
where 1 ≤ i ≤ n, has received extensive attention over the past three decades. This is
a fundamental problem in algorithms and data structures. Selection is used as a tool in
the solution of several important problems—sorting, optimizations and finding convex hulls,
among others. The best known instances of the selection problem are selecting the minimum,
the maximum and the median from a set. In 1973 Blum et al. [4] showed that select(i)
(the operation that finds the i-th largest element in a set) can be executed by a comparison
based algorithm making Θ(n) comparisons. The gap between the upper and lower bounds
for this problem, especially for finding the median, has been the focus of several research

∗Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel. E-mail:
erez@cs.technion.ac.il. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant no.
36/03)

†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. E-mail: guy.rothblum@weizmann.ac.il. Part of this work was done while the author was at the
Technion – Israel Institute of Technology.

1

Electronic Colloquium on Computational Complexity, Report No. 85 (2004)

ISSN 1433-8092

papers over the past years, culminating in the results of Dor and Zwick [9, 10] which give
an upper bound of ≈ 2.95n + o(n) and a lower bound of (2 + ε)n for some small constant
ε > 2−40. For the more general problem of selecting the i-th, or αn-th, largest element, an
upper bound of 3n + o(n) comparisons is implied by Schönhage et al. [21]. For small values
of α Dor and Zwick [8] give an improved upper bound of {1 + [1 + o(1)]H(α)} · n, where H
is the binary entropy function. This is almost tight, as a lower bound of [1 + H(α)] · n is
given by Bent and John [3].

While the problem of finding the i-th largest element in an arbitrary set has received
much attention, far less attention has been given to selection from more structured data
sets—data sets that have been previously maintained or preprocessed. One natural ap-
proach is applying preprocessing to the data in order to reduce the subsequent work needed
to find the i-th largest element. The question that naturally arises, is how much work can
be saved by employing preprocessing. Note the two phases in this framework: in the pre-
processing phase i is unknown—it is provided only in the subsequent selection phase. The
two extremes of this approach are pre-sorting the entire set using Θ(n log n) comparisons
and then selecting the i-th largest element using 0 comparisons, and in the other extreme,
conducting no preprocessing and selecting with Θ(n) comparisons. Previous works (e.g.
[4, 9, 10]) are restricted to this second case. This model has been explored for the search

operation. The search operation receives a key and returns its address in the data set or
that the given key is not in the data set. Borodin et al. [5] and Mairson [16] show that if
α(n) ·n comparisons are made during preprocessing then search requires at least n/e2α(n)

comparisons in the worst case. The model is analyzed for the average-case metric in [16]
and by McDiarmid in [17]. We note that a lower bound of f(n) comparisons for the search

operation immediately yields a lower bound of f(n)
log n comparisons for the select operation,

since selection can be used to implement binary search for a given key with logarithmic
slowdown. It seems interesting to ask whether this logarithmic denominator in the lower
bound can be avoided.

Another natural setting involving structured data sets is that of dynamically maintained
data structures. In this framework a data structure supports several operations, including
the maintenance operations insert and delete, and some selection operation (findmin

for example, which finds the minimal value in the data structure). A natural question here
is the tradeoff between the cost of each maintenance operation and the cost of executing
the selection operation.

Brodal et al. [7] examined the complexity of maintaining element ranks in a comparison
based data structure under the operations insert, delete, findmin and the operation
findany, which is only required to return some key in the data structure and its rank.
They show that if the number of keys in the data structure is n and insert and delete

both have worst case amortized complexity of t(n) comparisons per operation then findany

makes at least n/24t(n)+3 − 1 comparisons in the worst case, and the expected number of
comparisons made by findmin is at least n/e22t(n). It is natural to ask what can be said
about other selection operations in a dynamically maintained data structure. Intuitively,
it seems that select and findmedian are hard to maintain even under insert operations
only (without delete operations), while the minimum is easy to maintain under insert

operations—requiring only a single comparison per key inserted into the data structure.
This observation seems to shed new light on the difference between the difficulty of finding

2

the median compared with the difficulty of finding the minimum. Previous work does not
show a substantial separation between the two operations.

1.1 Main Results

We begin with the use of preprocessing to reduce the running time of select on a set of
distinct values. As mentioned, if no preprocessing is executed, select requires Ω(n) com-
parisons, whereas, if the set is sorted during preprocessing (using Θ(n log n) comparisons)
then the comparison complexity of select is reduced to 0. We extend this observation to a
tradeoff (with lower and upper bounds) between the amount of work spent during prepro-
cessing and the amount of work required then to run the selection itself. Theorem 1 asserts
that if only α(n) ·n comparisons are made during preprocessing select must make at least
(2+ ε)(n/e2α(n)) comparisons in the worst case, where ε > 2−40. The lower bound is proved
using the methods of [5, 16]. Note the strength of this lower bound. It means, for example,
that a linear time preprocessing algorithm can only save a constant factor of the (linear
time) execution of select. We also demonstrate a matching upper bound for this problem
by presenting a preprocessing algorithm which is allowed to make α(n) ·n comparisons and
a corresponding selection algorithm that makes at most [6n/(2α(n)−7)] comparisons (after
preprocessing).

We continue by considering dynamically maintained data structures with the select

operation. Brodal et al [7] showed an expected time lower bound of n/e22i(n) comparisons for
findmin when both update operations (insert and delete) have a worst-case amortized
cost of at most i(n) comparisons. Can this lower bound be asymptotically improved when
considering the more general select operation? We answer this question negatively by
presenting (in Section 5) a data structure with amortized comparison complexities of i(n)
comparisons for insert, 12 comparisons for delete and [6n/(2i(n)−7)] comparisons for
select. As findmin is a special case of select, this demonstrates, somewhat surprisingly,
that findmin and select are asymptotically equivalent in data structures with insert and
delete update operations.

Next, we present a trade-off between the comparison complexity of select and in-

sert only (nothing is assumed about the delete operation). We start with Corollary 1
(which follows from Theorem 1). This corollary asserts that if the amortized compari-
son complexity of the insert operation is at most i(n) then select must make at least
(2 + ε)(n/e2i(n)) comparisons in the worst case, where ε > 2−40. The same upper bound
(of Section 5) matches this lower bound as well. Note that a lower bound based only on
insert is significant. The complexity of insert is often much lower than that of delete.
The Priority queues of [11], for example, support insert in time O(1) but delete requires
time O(log n). For data structures such as this our lower bound for select is far higher
than the best known (e.g. Ω(n) instead of Ω(1) for the given priority queues).

We have established the fact that in a comparison based dynamically maintained data
structure with an insert operation select is hard (and even for many indices). But the
hard indices are determined dynamically as the data structure makes comparisons. The
question is: are there predetermined provably hard indices? For some indices the answer
is negative—maintaining the minimum requires only one comparison per insert operation.
The “hardest” fixed index selection problem seems to be the problem of selecting the median.

3

In [4] it was shown, somewhat surprisingly, that selecting the median from an (unprocessed)
input set is asymptotically equivalent to selecting the minimum. This seminal result defies
the intuition that median selection is much harder than minimum selection. Intuition
also suggests that maintaining the median should be much harder than maintaining the
minimum, and in this case the intuition is correct. In Theorem 2 and Corollary 2 it is
shown that if the amortized comparison complexity of the insert operation is at most i(n)
then findmedian must make at least (2 + ε)[n/(4e · 23i(n))] comparisons in the worst case,
where ε > 2−40. This means, for example, that if only O(1) comparisons are made during
insertion then findmedian must make Ω(n) comparisons in the worst case (compared with
0 comparisons in the worst case for findmin). Alternatively, Corollary 2 also implies that
if findmedian always makes O(1) comparisons, then the amortized comparison complexity
of insert must be Ω(log n) (compared with 1 for findmin). We note that previous proof
techniques used for the search operation (e.g. [5]) fail when directly applied to this problem.

Corollary 2 follows from the more general assertion of Theorem 2 which generalizes the
result beyond the findmedian operation to the operation find-αnlargest. This operation
returns the αn-th largest key in the data structure, where α = 1

m and m ∈ Z≥2. Theorem 2
shows that if the amortized comparison complexity of the insert operation is at most i(n)

then find-αnlargest must make at least (2 + ε){[(α − α2)n/(2
1+α

α
i(n))]} comparisons in

the worst case, for the same ε > 2−40. A symmetric result can be similarly proven for the
operation find-αnsmallest.

Finally, we address the question of finding explicit adversaries for these comparison based
algorithms. The lower bounds described so far are all derived from an information theoretic
argument. The problem of finding explicit adversaries for comparison based algorithms
was addressed by Atallah and Kosaraju in [2], and adversaries were presented in [5, 7].
As mentioned in [2], adversaries are important when it is required to efficiently produce a
counterexample to an impossibly efficient comparison based algorithm (say, an algorithm
that sorts in o(n log n)). As they note, the information theoretic lower bound assures us that
there exists an input sequence for which the algorithm will make many comparisons (or err),
but provides no method for efficiently finding this counterexample. Another application is
using such adversaries to slow down an algorithm as much as possible. We present a
new generic adversary for comparison based algorithms. Our adversary is similar to the
adversary of [2], but slightly superior. We proceed to show adversarial lower bounds for
several problems. For the problem of selection after preprocessing using at most α(n) · n
comparisons, the adversary forces that at least [n/(22α(n)) − 3] comparisons be made. We
then revisit the lower bound of Brodal et al. [7] for maintaining the findany operation. We
simplify their proof and improve the lower bound by a multiplicative factor of 8, showing
in Theorem 4 that if the amortized comparison complexities of insert and delete are at
most i(n) and d(n) respectively then findany must make at least [n/(22(i(n)+d(n))) − 3]
comparisons in the worst case. Note that in this case the new adversary improves the best
known lower bound for the problem. The new adversary can also force slower sorting than
the adversary of [2], though this improvement is only in the second-order term of the lower
bound.

4

1.2 Related Work

As previously mentioned, the problem of selecting the i-th largest element from a set of n
distinct values has received much attention. A survey of progress on the selection problem
is given by Paterson [19] and the references therein. In the early 70’s Blum et. al. [4] were
the first to show that selection could be done in O(n) (specifically in 5.43n) comparisons.
Their technique has been the basis of all subsequent improvements. They also gave a lower
bound of n+min{k− 1, n− k}− 1 for selecting the k-th largest element, in particular 1.5n
comparisons for selecting the median.

The upper bound for select and median selection was improved by Schönhage et.
al. [21] who showed a selection algorithm that makes at most 3n + o(n) comparisons. This
results was improved by Dor and Zwick [9] who presented an algorithm for median selection
that makes at most 2.9423n comparisons. They also extended their techniques to the
general selection problem, improving the existing upper bounds for selecting the αn-th
largest element.

The lower bound for selecting the median was continually improved using progressively
more elaborate arguments by Pratt and Yao [20], Kirkpatrick [15], Yap [22] and Munro and
Poblete [18] to about 1.837n. In 1979 Fussenegger and Gabow [12] used a new technique
to prove a 1.5n + o(n) lower bound for finding the median. Bent and John [3] used this
technique to further improve the lower bound for selecting the median to 2n+o(n) in 1985.
In 1995 Dor and Zwick [10] were able to improve this lower bound to (2 + ε)n + o(n) where
ε > 2−40. This is currently the highest known lower bound for median selection.

The problem of maintaining data structures with search operations has also been ex-
plored by Borodin et al. [6], where a tradeoff is shown between the comparison complexities
of update and search operations in implicit dictionaries. Alt and Mehlhorn [1] studied the
complexity of searching data that has been “semisorted”—data for which only part of the
n! order permutations are possible.

1.3 Organization

In Section 2 we define the comparison based model and some notations used throughout the
paper. In Section 3 lower bounds are shown for the select operation with preprocessing.
In Section 4 we show lower bounds for selection and for selecting the median in data
structures with an insert operation. In Section 5 we present an upper bound for selection
in data structures. In Section 6 we present a new explicit adversary for comparison
based algorithms and adversarial lower bounds for preprocessing algorithms run before a
select operation. Appendix A is devoted to lower bounds for the findany operation on
dynamically maintained data structures. In Appendix B we present efficient algorithms
for preprocessing and selection.

2 Preliminaries

Notations We will use [a . . . b] where a and b are integers and a ≤ b to denote the set
{a, a+1, . . . , b−1, b}. [n] for an integer n denotes [1 . . . n]. For two sets A and B that are both
subsets of some well ordered set U we denote by A > B the fact that ∀a ∈ A, ∀b ∈ B a > b.
Z≥n will refer to the set of integers greater or equal than n.

5

The Model In the comparison model an algorithm may only access input keys by com-
paring them. A comparison based algorithm is an algorithm that may only access input
keys by comparing them and storing them in memory. The algorithm is only charged for
comparisons, all other operations are free. A comparison based data structure is a data
structure whose operations (e.g. insert, delete etc.) are all comparison based. Many
generic data structure implementations are comparison based. In this paper we deal only
with comparison based algorithms and data structures. Lower bounds are stated for dy-
namically maintained data structures—data structures which receive no a-priori knowledge
of the sequence of operations that will be run on them.

Lower Bounds Throughout the paper we use the best known lower bound for selection
from a set of n elements (without preprocessing). Lower bounds are stated in terms of this
best known lower bound for selection—the lower bound of (2+ ε)n for selecting the median
of [10]. It is important to note that if the lower bound of [10] is improved, our lower bounds
will also improve. Throughout the paper ε will refer to the small constant ε > 2−40 of the
work of [10].

3 Selection with Preprocessing

In this section we present a lower bound for the select operation with preprocessing. This
is a consequence of the proofs methods of [5, 16]. We begin with a brief review of the model
and relevant past results, following the notation and exposition of [16].

A preprocessing algorithm, P , is run on a set of distinct and ordered keys U = {k1, . . . , kn},
with an order permutation π, where kπ(1) < . . . < kπ(n). The preprocessing algorithm can
be represented as a binary tree (the preprocessing tree), where each internal node makes a
comparison between two keys in the input set. The two children of each node correspond
to the two possible outcomes of each such comparison. Every leaf v of the preprocessing
tree has a partial order imposed by the comparisons made to reach it. This partial order
imposes a set of possible order permutations. An independent set of U under a partial order
A (also known as an anti-chain) is a set of elements which are completely incomparable
under A. W ⊆ U is an independent set if any order permutation of the elements of W is
possible under A. Lemma 3.1.1 of [16] states that if a partial order A of the n elements
of U is consistent with p permutations then U contains an independent set of size at least
p1/n. We are now ready to prove a simple theorem regarding selection after preprocessing.

Theorem 1 Let U be a data set containing n distinct values drawn from an ordered set.
Let P be a comparison based preprocessing algorithm that receives U , and S a comparison
based selection algorithm that receives P ’s output and an index i and outputs the i-th largest
element in U . If P makes at most α(n) · n comparisons then S must make at least (2 +
ε)(n/e2α(n)) comparisons in the worst case.

Proof: After P is run, making α(n) · n comparisons, there exists some leaf v of the pre-
processing tree which is reached by at least n!

2α(n)n permutations of the inputs. Let A be
the partial order imposed by the comparisons the preprocessing algorithm made to reach v.
By Lemma 3.1.1 of [16], under A there exists a maximal independent set W of size at least

6

n
e2α(n) . By the results of [10], if a selection algorithm is run after P terminates in the leaf v,
selecting the median from the independent set requires that at least (2+ ε)|W | comparisons
be made in the worst case. To show this rigorously, we assume towards a contradiction
that after P runs, S can always select the median with less than (2 + ε)|W | comparisons.
We now use P and S to construct an impossibly efficient algorithm M for median selection
from a set of |W | input keys. The selection algorithm M will simulate P on a large set of
dummy keys to arrive at the memory configuration of leaf v of the preprocessing tree. Note
that W is a maximal independent set, and thus every dummy key not in the independent
set is either smaller or larger than some key in W . Let l be the number of dummy keys
larger than some key in W , and i the index of the median in a set of size |W |. M will
now use P ’s output on the dummy keys and S to select the median of its input set. It will
place the input keys in the addresses of the items of the independent set W and run S to
find the l + i-th largest key in P ’s output. Any comparisons S makes between items not
in the independent set will be determined by the partial order of the leaf v or arbitrarily.
If a key (outside W) smaller or larger than some key in W is compared with some key in
W , the result will be that the item is smaller or larger respectively than the key in W .
Comparisons made between keys in W are answered according to the input set. Clearly the
new algorithm makes at most as many comparisons on the input set as S (i.e. less than
(2 + ε)|W |) and the i-th largest key in the input set is the l + i-th largest item in the input
of S’s simulated run. In conclusion, we get an algorithm for selecting the median from an
independent set W that makes less than (2 + ε)|W | comparisons—a contradiction. ut

An upper bound of [6n/(2α(n)−7)] is shown in Section 5. We have shown that select

is “hard” for at least one (dynamically chosen) index. It is not hard to see, by the same
argument used in the proof of Theorem 1, that if α(n) · n comparisons are made during
preprocessing then the selection of any of the n

e2α(n) indices in the resulting independent
set requires that at least n

e2α(n) − 1 comparisons be made in the worst case. These indices,
however, are different for every preprocessing algorithm. It may seem interesting to ask
whether there are any fixed indices for which selection is hard after preprocessing. We
note, however, that the approach of using preprocessing before a select operation is only
interesting when the index to be selected is not known in advance—if it is known which
rank is to be selected (e.g. the minimum, the median etc.) there is no use in a separate
preprocessing stage. This is part of our motivation for exploring selection operations in
dynamically changing data structures.

4 Selection in (Dynamic) Data Structures

In this section we give a lower bound for the operations select and select-median in
a dynamic data structure. We base our lower bounds only on the time spent in the in-

sert operation. As previously stated, this refinement is significant as many widely used
data structure implementations have insert operation which are much cheaper than their
delete operations (see [11]). In such cases, our lower bound is much stronger. The follow-
ing corollary is an easy consequence of Theorem 1.

Corollary 1 Let D be a comparison based data structure with insert and select oper-
ations. If the amortized comparison complexity of the insert operation is i(n), where n

7

is the number of keys in the data structure, then the select operation must make at least
(2 + ε)(n/e2i(n)) comparisons in the worst case.

Proof: Assume towards a contradiction that there exists a comparison based data struc-
ture with amortized insert complexity i(n) where select always makes less than (2 +
ε)(n/e2i(n)) comparisons. A special case of using this data structure is to partition the
operations into a preprocessing and a selection algorithm. During preprocessing, the n keys
will be inserted into the data structure, making at most i(n) · n comparisons. The data
structure’s select operation can now be used for selection. Thus, by Theorem 1 the data
structure’s select operation must make at least (2+ ε)(n/e2i(n)) comparisons in the worst
case—a contradiction. ut

It is again natural to ask whether the select operation is hard only for one index
or for many. As in the case of selection after preprocessing, it is not hard to see that
at least n/e2i(n) indices require that at least n/e2i(n) − 1 comparisons be made in the
worst case. These “hard” indices, however, are determined on-the-fly as keys are inserted
into the database and comparisons are made. We now ask whether there are fixed indices
for which selection from a data structure is always hard. There exist indices for which
selection may be very easy even if the insert operation makes very few comparisons. For
example, if we are only concerned with insert operations, the minimum can be maintained
by making only a single comparison in each insertion, keeping the minimum value in a
special location. Finding the minimum then requires zero comparisons. However, we show
that there are (many) predetermined indices for which select is hard. The following
theorem states a lower bound for the number of comparisons needed to perform the find-

αnlargest operation—selecting the αn-th largest key in the data structure, where α = 1
m

and m ∈ Z≥2. This lower bound shows a large gap between the complexity of maintaining
the minimum and the complexity of maintaining the αn-th largest key. (A symmetric result
can be similarly proven for the find-αnsmallest operation.)

Theorem 2 Let D be a comparison based data structure with insert and find-αnlargest

operations, where α = 1
m and m ∈ Z≥2. If the amortized complexity of the insert operation

is at most i(n), where n is the number of keys in the data structure, then find-αnlargest

must make at least (2 + ε)[(α − α2)n/(e2
1+α

α
i(n))] comparisons in the worst case.

Proof: Assume α(1 − α)n is an integer. We insert keys from the set {k1, . . . , kn} into the
data structure. The set K of (α − α2)n keys {kα2n+1, . . . , kαn} is initially an independent
set and all ((α − α2)n)! order permutations are possible for it. The α2n keys k1, . . . , kα2n

will get “large” values. ∀i ∈ [α2n], ∀a ∈ K, ki > a and k1 > . . . > kα2n. The (1 − α)n keys
kαn+1, . . . , kn will get “small” values. ∀i ∈ [αn + 1 . . . n], ∀a ∈ K, ki < a and kαn+1 > . . . >
kn. In conclusion, all keys are fixed except for the keys kα2n+1, . . . , kαn.

Consider (α − α2)n operation sequences, where ∀i ∈ [1 . . . (α − α2)n]:

Si = insert(k1) . . . insert(kαn+i 1
α
)find-αnlargest

The keys returned by all of these operation sequences are from kα2n+1, . . . , kαn. In S1 the
maximum of kα2n+1, . . . , kαn is returned, and more generally, in Si the i-th largest key of
kα2n+1, . . . , kαn is returned.

8

Before the find-αnlargest operation is run in the last operation sequence, S(α−α2)n,
the total number of comparisons that have been made on the (α−α2)n keys kα2n+1, . . . , kαn

is at most (1 − α2) · i(n) · n (recall that in the first α2n insertions no comparisons in-
volving these keys are made). Thus there is an independent set W ⊆ K such that

|W | ≥ [(α − α2)n/(e2
1+α

α
i(n)) − 2]. Note that ∀i ∈ [1 . . . (α − α2)n] in operation sequence

Si, before the find-αnlargest call, W is an independent set. By the argument given in
the proof of Theorem 1, selecting the median from W requires at least (2 + ε)(|W |) com-
parisons, and thus, since there exists a sequence Sj in which the median is selected, in Sj

the find-αnlargest operation must make at least (2 + ε)(|W |) comparisons in the worst
case. ut

The lower bound of Theorem 2 is a function of α, where α = 1
m and m ∈ Z≥2. This

lower bound is highest for α = 1
2 . The operation find-αnlargest with α = 1

2 is simply
the operation findmedian. This is expected, as the median is considered the “hardest”
index for selection. The lower bound for maintaining the median is stated in the following
corollary:

Corollary 2 Let D be a comparison based data structure with insert and findmedian

operations. If the amortized comparison complexity of the insert operation is i(n), then
findmedian must make at least (2 + ε)[n/(4e · 23i(n))] comparisons in the worst case.

5 Upper Bounds for Selection in Data Structures

In this section we show upper bounds for the problem of maintaining a data structure
holding n keys with insert, delete and select operations. We note that the data struc-
ture presented is efficient in terms of its comparison complexity, but its actual complexity
is higher. Our main purpose in presenting this data structure is to show that select is
asymptotically equivalent to findmin in data structures with insert and delete opera-
tions. This surprising result highlights the motivation behind our (higher) lower bound for
select and findmedian under only insert operations. We also use this data structure to
present upper bounds. We will use the following two well known algorithms as subroutines:

• select(A, i) on an arbitrary (unordered) array A of size n returns the address of the
i-th largest value in the array. By [21] select can be done with 3n comparisons for
any i.

• partition(A, i, j, k) on an array A[i . . . j] of size n = j − i + 1 shuffles the array keys
so that the lowest k values are in the leftmost k array addresses, and the highest
n− k values are in the rightmost n− k array addresses. partition can be done in 3n
comparisons by the results of [21] (their algorithm determines for every key whether
it is larger or smaller than the selected key, no further comparisons are needed for
shuffling).

The amortized comparison complexity of the data structure’s insert operation will be
i(n) + c, where n is the number of keys in the data structure and c is a constant. We
assume that i(n) is a “well-behaved” function. By “well behaved” we mean that for all

9

large enough n, n′ if n′ ≤ n then n′/2i(n′) ≤ n/2i(n). Note that this implies in particular
that i(n) = O(log n), which is reasonable since insertion with more than log n comparisons
is not interesting. It also implies i(n) is monotone. These “well-behaved” functions cover
most interesting cases (functions such as log n,

√
logn and log log n are all well behaved).

The data structure will hold m ≤ 2i(n)+1 lists of keys L1 . . . Lm, where the size of each
list Li is at most 2n/2i(n) and L1 > L2 > . . . > Lm. For each list Li the data structure will
maintain the size of Li, si, and a “pivot” of Li, pi. The pivot pi satisfies Li ≥ {pi} > Li+1.
As long as all pivots satisfy this inequality it is clear that ∀i ∈ [m − 1], Li > Li+1. Note
that pivots are not keys in the data structure—the value of a pivot may or may not be a
key in the data structure. We now describe the data structure operations:

insert(k): The insertion algorithm will first find the list in which k belongs, by finding
the smallest j such that k > pj . This is done using binary search on the list of pivots with
at most log m comparisons. k will be inserted into Lj (updating its size sj). If the inserted
key is smaller than all keys in the data structure, it is inserted into Lm and pm is updated
to be k.

The algorithm now makes sure that none of the lists are too large. This is done using
the split-lists procedure, which requires an extra amortized cost of at most 6 comparisons
per insert. From this we get that the amortized comparison complexity of insert is at
most log m + 6. After making sure none of the lists is too large, the algorithm verifies
the number of lists isn’t too large either. If the combined size of lists Li and Li+1 is at
most n/2i(n), the two lists are merged (this requires no comparisons). The new pivot of the
merged list is pi+1. Thus there are indeed at most 2i(n)+1 lists in the data structure after
an insert operation. The total amortized comparison complexity of the insert operation
is log m + 6 ≤ i(n) + 7.

delete(k): The delete operation receives a key to be deleted and its address. The key is
simply deleted from its list. The lists are then checked to make sure they are not too small
or large. A call to split-lists ensures the lists aren’t too large. For every i ∈ [m − 1], if
the combined size of lists Li and Li+1 is at most than n/2i(n), they are merged as in the
insert operation. The delete operation has an amortized cost of at most 12 comparisons,
used by the split-lists call.

select(i): To select the i-th largest element from the data structure we locate the smallest
j such that

∑j
l=1 sl > i. This does not require any comparisons on the keys stored in the

data structure. We then select the (i − ∑j−1
l=1 sl)-th largest element from Lj , using at most

3|Lj | ≤ 6n/2i(n) comparisons. It is unfortunate that the true complexity of selection is
much higher—in a naive implementation, to find the index j, the selection algorithm needs
to sequentially scan all list sizes and sum them all, requiring O(2i(n)) operations, for a total
complexity of O(2i(n) + n/2i(n)), which is at least O(

√
n).

split-lists: This procedure is used by insert and delete to ensure that no list is too
large. The procedure examines each list in the data structure and if it has become of size
2n/2i(n) it is split around its median into two lists of equal sizes. A list Lj can become
too large either via keys inserted into it or via keys deleted from other lists. Splitting

10

the list requires 6n/2i(n) comparisons. We will “invest” a constant number of comparisons
per insert and delete operation, and the analysis will show that we always have enough
comparisons “invested” to split the list. In conclusion, Lj is split into two lists, Lj and
Lj+1, each of size n

2i(n) . The pivot of the smaller list remains pj , the pivot of the larger list
is the median (around which the list was split).

For the list Lj we will refer to nj , the size of the data structure at the last point in time
when the list was “balanced”—of size nj/2

i(nj) when the data structure was of size nj . Note
that after it is split a list is always balanced, and thus any operations run since the last time
the list was balanced were certainly run after the last split. If n ≥ nj the data structure has
grown since the list was last balanced, and it suffices to consider insert operations since
that time. Since nj ≤ n we know that nj/2

i(nj) ≤ n/2i(n). Thus at least n/2i(n) keys were
inserted into Lj since it was last balanced. Splitting Lj around the median takes 6n/2i(n)

comparisons, which means that “investing” 6 comparisons in each key inserted into the data
structure will suffice.

If n < nj then the list has grown too large via keys deleted from other lists, and possibly
via insertions into the list. Let a be the number of keys inserted into Lj since the last time it

was balanced. We get that
nj

2i(nj) +a ≥ 2n
2i(n) ≥ n

2i(nj) + n
2i(n) . Thus

nj−n

2i(nj) +a ≥ n
2i(n) . Investing

6 comparisons per insert operation and 12 comparisons per delete operation will suffice.
To see this, consider that in each “delete” operation 12 comparisons are “invested”, and
these comparisons are divided equally between all lists in the data structure. Now note that
at least nj − n items have been deleted from the data structure since Lj was last balanced.
The comparisons invested by these delete operations are split between at most 2i(nj)+1

lists. Thus a total of 6
nj−n

2i(nj) comparisons are invested in Lj via delete operations. The total

number of comparisons invested in Lj since it was last split is at least 6(
nj−n

2i(nj) + a) ≥ 6n
2i(n)

and thus enough comparisons were invested to “split” Lj .

Conclusion: We have presented a data structure with amortized insert complexity of
i(n)+7 comparisons and amortized delete complexity of 12 comparisons, in which select

requires at most 6n/2i(n) comparisons. This is asymptotically equivalent to the lower bound
of n/e22(i(n)+7) given in [7] for findmin. Thus, select is asymptotically equivalent to
findmin (and findany) under insert and delete operations. This data structure also
demonstrates tightness of our lower bounds for maintaining select and findmedian in a
data structure and of the lower bound for selection with preprocessing, as it can be used as
a preprocessing algorithm.

6 An explicit Adversary

In this section we present an adversary for comparison based algorithms. The adversary is
based on a new approach for analyzing comparison based algorithms, examining potential
value intervals. We assume that the comparison based algorithm receives the input keys in
some data structure (possibly a simple array). The analysis is based on looking at each key
in the data structure as being drawn from a potentially large set of values. For example,
initially (with no previous processing) one may think of every one of the n keys in the data
structure as getting any value in the set [n]. As comparisons are made, the number of

11

possible values for each key involved in comparisons drops. We will show that comparisons
reduce the number of possibilities slowly.

Consider a data structure holding n keys k1, k2 . . . kn. Before any work has been invested
in structuring the data, each of the keys potentially holds any possible value1. We distill
this disorder by thinking of each such key as a set of potential values. Initially, each key ki

is thought of as drawn from a set Ai of n potential values. The sets A1 . . . An consist of n

values each, Ai = {a1
i , a

2
i , ...a

n
i }, and n2 values all together. These n2 values, {ai

j}
i∈[n]
j∈[n], are

distinct and ordered and satisfy:
{a1

1, a
1
2 . . . a1

n} <

{a2
1, a

2
2 . . . a2

n} <

< · · · <

{an
1 , an

2 . . . an
n}.

Initially the ordering of the values within each set {aj
1, a

j
2 · · · aj

n} is undetermined.
When thinking of the potential values of a key we sometimes consider the indices of

possible values and not the values themselves. Initially, the set of potential indices for each
key is the interval [1..n], meaning, that any value in the set Ai is possible. In our analysis,
the set of potential indices will always form an interval of indices, shortening to sub-intervals
of [1..n] as more comparisons are made. Thus, if Ii is the interval of possible indices of the
key ki, then the set of values ki may get is {aj

i}j∈Ii
.

As initially Ii = [1...n] for all 1 ≤ i ≤ n, the algorithm uses comparisons to narrow
down intervals of possible values to obtain a better idea of the ordering of values seen so
far. Comparing pairs of keys (or intervals) is the only tool the comparison-based algorithm
can use to narrow down intervals. For example, if intervals Ii and Ij are compared, and the
result of the comparison is that Ii > Ij then it must be that ∀k ∈ Ii, l ∈ Ij : ak

i > al
j . Our

construction of the values {as
t} is such that ak

i > al
j implies k ≥ l. Thus, after two intervals

are compared they cannot overlap—if they overlapped before the comparison, at least one
of them must decrease in size. The only exception is that the smallest index k in the larger
interval Ii may also be the largest index (also, k) in the smaller interval Ij . This can happen
if ak

i > ak
j . Note that intervals of potential indices remain contiguous after comparisons are

made. This is because when an interval shrinks after a comparison it “loses” only its largest
elements or its smallest elements, depending on the result of the comparison.

6.1 The Adversary

We now explicitly describe the adversary. Whenever an algorithm makes a comparison
between two keys, and if the two possible answers are compatible with the history so far,
then our adversary will determine an outcome for the comparison. Key intervals shrink as
comparisons are made. The adversary will attempt to ensure the sum of interval sizes does
not decrease too much, and will maintain at all times a set of intervals consistent with its
past answers. The adversary will also maintain ordered subsets of every set {aj

1, a
j
2 · · · aj

n} for
each j ∈ [n]. Recall that initially no order has been determined between all the j-th elements
of all key intervals. Such an ordered subset will be marked as Oj . Even though there may

1We restrict ourselves to integral keys for simplicity, but keys drawn from any ordered set will do.

12

be many possible sets of intervals and ordered subsets consistent with the adversary’s past
answers, the adversary maintains only one such set. For any comparison requested by the
algorithm we will explicitly define the adversary’s behavior. All intervals Ii are initialized
to be [1..n] and ordered subsets are all initially empty.

Maintaining ordered subsets: an update to the ordered subset is only applied when an
interval Ii shrinks to size 1. In this case, the value aj

i remaining in this interval is determined
to be the smallest between the j-th values determined so far. Namely, if Ii = {j} and Oj is

aj
l1

< aj
l2

< . . . < aj
lm

then Oj is updated to be aj
i < aj

l1
< . . . < aj

lm
. Intervals only shrink

and never expand, thus an interval only shrinks to size 1 once and each of the n intervals
adds at most one item to some ordered subset.

Maintaining intervals. We now specify how the adversary acts when keys ki and kj with
corresponding intervals Ii and Ij are compared. There are several possible cases:

1. The two intervals are disjoint—Ii ∩ Ij = ∅. The result of the comparison has
already been determined. The intervals are both contiguous and thus all values in one of
the intervals are larger than all values in the other. The adversary simply replies that the
interval of larger values is the larger of the two intervals. Ii and Ij remain unchanged.

2. The two intervals are not disjoint and |Ii| = |Ij | = 1 (Ii = Ij = {k}). The
adversary returns an answer according to the ordered subset Ok. ak

i and ak
j must both be

in Ok, and their order is already determined. Ii and Ij remain unchanged. This is the only
case in which Ii and Ij are not disjoint after a comparison has been made between ki and
kj .

3. The two sets are not disjoint and Ii 6⊆ Ij and Ij 6⊆ Ii. Let B be the intersection of
the two intervals—B = Ii∩Ij . B, like Ii and Ij , is a contiguous interval and B ⊆ [1..n]. We
split B evenly (more or less) between the two intervals. Suppose w.l.o.g (Ii \B) > (Ij \B).

Let Bhigh be the largest |B|
2 values in B, and Blow be B \ Bhigh. The adversary updates Ii

to be Ii \ Blow, Ij to be Ij \ Bhigh, and returns the answer ki > kj .

4. The two sets are not disjoint, Ij is of size greater than 1, and Ii ⊆ Ij (Ij ⊆ Ii is

a symmetric case). Ii “splits” Ij into two unconnected blocks—Ihigh
j which is the set of

indices in Ij larger than any index in Ii, and I low
j , the set of indices in Ij smaller than any

index in Ii. Suppose, first, that |I low
j | > |Ihigh

j |, and define B, Bhigh, Blow as in case 3. The

adversary updates Ij to be Blow ∪ I low
j , Ii to be Bhigh and returns the answer ki > kj . If

|I low
j | < |Ihigh

j | then the adversary updates Ij to be Bhigh ∪ Ihigh
j , Ii to be Blow and returns

the answer ki < kj .

Remark: In cases 3,4 if B is not of even size, suppose w.l.o.g |Ij | > |Ii| (and in case 4

|I low
j | < |Ihigh

j |). Bhigh will be the largest |B|−1
2 values in B, Blow will, as usual, be B\Bhigh.

In other words, the interval of smaller size gets the larger chunk of B.

The adversary we have just described maintains a few important invariants:

Invariant 1 An interval never becomes empty.

Invariant 2 The adversary leaks no information on which of the values whose indices are
in interval Ii is indeed the value of ki, and no information about the order of {aj

1, a
j
2 · · · aj

n}
except the information in the ordered subset Oj.

13

Invariant 3 Intervals maintained by the adversary always remain contiguous.

6.2 Sum of Interval Sizes

We are now ready to prove that if the adversary is employed versus a comparison based
algorithm then the sum of interval sizes shrinks slowly as comparisons are made:

Lemma 1 If a data set contains n intervals of size n then after making at most α(n) · n
comparisons, if the adversary is employed, the sum of the sizes of these intervals is at least
[n2/(22α(n)) − n].

Proof: When interval Ii of size si
0 is involved in a comparison operation with interval Ij

its size decreases by at most a factor of 2—of the indices in Ii \ Ij at most half are removed
(this only happens in case 4). Of the elements in Ii∩Ij at most (|Ii∩Ij |+1)/2 are removed

(this happens in cases 3 and 4). Thus, Ii’s new size, si
1, satisfies si

1 ≥ si
0
2 − 1

2 . It follows that

after k comparisons Ii’s size, si
k, satisfies si

k ≥ si
0

2k − 1.
We denote by sumn the sum of interval sizes after all of the comparisons have been

made. If ki is the number of comparisons involving interval Ii we get:

sumn ≥
n∑

i=1

(
n

2ki
− 1)

Since there are at most α(n)·n comparisons during the sequence of operations, and each com-
parison involves two intervals, we get

∑n
i=1 ki ≤ 2α(n)·n. And thus sumn ≥ [n2/(22α(n))−n].

ut
We have established the fact that the accumulated size of the intervals deteriorates slowly.
We now deduce that there is a large overlap of intervals on some index.

Lemma 2 If there are n intervals whose combined size is at least [n2/(22α(n)) − n], then
there exists some index j ∈ [1..n] such that for at least [n/(22α(n))− 2] intervals Ii , |Ii| > 1
and j ∈ Ii.

Proof: There are n intervals of accumulated size at least [n2/(22α(n)) − n]. If we con-
sider only intervals of size larger than 1, then the sum of interval sizes must be at least
[n2/(22α(n))−2n]. From a simple counting argument we get that there exists some j ∈ [1..n]
such that j is in at least [n/(22α(n)) − 2] such intervals. ut
We now use Lemmas 1, 2 to show that if an algorithm does not make too many comparisons
(in a preprocessing phase or during data structure maintenance), then employing the ad-
versary ensures that there is a large subset of keys for which nothing is known about their
order.

Lemma 3 Let D be a data set whose n keys may get values in n intervals of size n as
above. Let M be a comparison based algorithm. Then after M makes at most α(n) · n
comparisons on D, if the adversary is employed, there is a set K of at least [n/(22α(n))− 2]
different keys and an index j ∈ [n] such that ∀ki ∈ K, ki may get the value aj

i and nothing

is known about the order of the values {aj
i}i|ki∈K (and thus K is an independent set).

14

Proof: By Lemma 1, after M runs there must be n intervals of combined size at least
[n2/(22α(n)) − n]. By Lemma 2 there exists some index j such that there are at least
[n/(22α(n)) − 2] intervals Ii for which |Ii| > 1 and j ∈ Ii. Let K be the set of keys ki such
that j ∈ Ii and |Ii| > 1. By Invariant 2, ∀ki ∈ K, ki may indeed get the value aj

i and

nothing is known about the order of the values {aj
i}i|ki∈K . ut

It is important to note these lemmas also hold for dynamically maintained data struc-
tures making insert and delete operations. In this case, the algorithm is defined to
include all (comparison) operations executed when insert or delete (or any other data
structure) operations were run. The number of elements in the input set is the number
of keys inserted into the data structure. Note that lower bounds are easier and upper
bounds (algorithms) are harder to construct with dynamically maintained data structures.
The reason is that preprocessing may access all the keys from the beginning. Dynamically
maintained data structures run only a small number of comparisons per operation, do not
know in advance what keys will be inserted and can only access keys that are currently in
the data structure. They are thus more limited than a preprocessing algorithm. We will
now show that the adversary can be used to ensure that after preprocessing there is at
least one index for which a select operation is especially hard. We give an information
theoretic lower bound for the selection operation, though any known adversary for selection
(e.g. that of [4]) can be used without any modifications to ensure the selection operation
also runs slowly.

Theorem 3 Let D be a data set containing n distinct values drawn from an ordered set.
Let P be a comparison based preprocessing algorithm that receives D, and S a comparison
based selection algorithm that receives P ’s output and an index i and outputs the i-th largest
element in D. If P makes at most α(n) · n comparisons then the adversary can be used to
ensure that S must make at least (2 + ε)[n/(22α(n)) − 2] comparisons in the worst case.

Proof: S is a select operation performed after preprocessing with at most α(n) · n com-
parisons. By Lemma 3 we know that if the adversary is employed while S runs then there
exists an independent set W of the input keys of size at least [n/(22α(n))− 2]. By an argu-
ment similar to that in the proof of Theorem 1, this implies that selecting the median from
W requires that at least (2 + ε)|W | comparisons be made in the worst case. ut

7 Acknowledgements

The second author wishes to thank the Technion’s Graduate School and Department of
Computer Science for generous support.

References

[1] Helmut Alt, Kurt Mehlhorn. “Searching Semisorted Tables”. SIAM Journal on Computing. 14(4): 840-
848 (1985)

[2] Mikhail J. Atallah, S. Rao Kosaraju. ”An Adversary-Based Lower Bound for Sorting”. Information

Processing Letters. 13(2): 55-57 (1981)

[3] S. W. Bent, J. W. John. “Finding the Median Requires 2n Comparisons”. STOC 1985: 213-216, 1985.

15

[4] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan. “Time bounds for selection”. Journal

of Computer and System Sciences, 7(4):448-461, 1973.

[5] Allan Borodin, Leonidas J. Guibas, Nancy A. Lynch, Andrew Chi-Chih Yao. “Efficient Searching Using
Partial Ordering”. Information Processing Letters. 12(2): 71-75 (1981).

[6] Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal, Avi Wigderson. “A Tradeoff
Between Search and Update Timefor the Implicit Dictionary Problem”. Theoretical Computer Science.
58: 57-68 (1988)

[7] G. S. Brodal, S. Chaudhuri, J. Radhakrishnan. “The Randomized Complexity of Maintaining the
Minimum”. Nordic Journal of Computing. 3(4):337-351, 1996.

[8] D. Dor, U. Zwick. “Finding The alpha n-Th Largest Element”. Combinatorica 16(1): 41-58, 1996.

[9] D. Dor, U. Zwick. “Selecting the Median”. SIAM Journal of Computing. 28(5): 1722-1758, 1999.

[10] D. Dor, U. Zwick. “Median Selection Requires (2+ ε)n Comparisons”. SIAM Journal of Discrete Math.
14(3):312-325, 2001.

[11] J. R. Driscoll, H. N. Gabow, R. Shrairman, R. E. Tarjan. “Relaxed Heaps: An Alternative to Fibonacci
Heaps with Applications to Parallel Computation”. Communications of the ACM. 31(11): 1343-1354,
1988.

[12] F. Fussenegger, H. N. Gabow. “A Counting Approach to Lower Bounds for Selection Problems”. Journal

of The ACM. 26(2): 227-238, 1979.

[13] C. A. R. Hoare. “Algorithm 63: partition”. Communications of the ACM. 4(7): 321, 1961.

[14] C. A. R. Hoare. “Algorithm 64: Quicksort”. Communications of the ACM. 4(7): 321, 1961.

[15] D. G. Kirkpatrick. “A Unified Lower Bound for Selection and Set Partitioning Problems”. Journal of

the ACM. 28(1): 150-165, 1981.

[16] Harry G. Mairson. ”Average Case Lower Bounds on the Construction and Searching of Partial Orders”.
FOCS 1985: 303-311.

[17] Colin McDiarmid. ”Average-Case Lower Bounds for Searching“. SIAM Journal on Computing. 17(5):
1044-1060 (1988)

[18] I. Munro and P.V. Poblete. “A lower bound for determining the median”. Technical Report Research
Report CS-82-21, University of Waterloo, 1982.

[19] M. Paterson. “Progress in Selection”. SWAT 1996: 368-379, 1996.

[20] V. R. Pratt, F. F. Yao. “On Lower Bounds for Computing the i-th Largest Element”. FOCS 1973:
70-81, 1973.

[21] A. Schönhage, M. Paterson, N. Pippenger. “Finding the Median”. Journal of Computer and System

Sciences. 13(2): 184-199 (1976)

[22] C.K. Yap. “New lower bounds for medians and related problems”. Computer Science Report 79, Yale
University, 1976. Abstract in Symposium on Algorithms and Complexity: New Results and Directions,
(J. F. Traub, ed.) Carnegie-Mellon University, 1976.

A FindAny in Data Structures

The approach of using preprocessing before a select operation is only interesting when the
index to be selected is not known in advance—if it is known which rank is to be selected
(e.g. the minimum, the median etc.) there is no use in a separate preprocessing stage.
This is also the case for the findany operation, which returns some key in the input
set and its rank. All information is available once the input set is revealed, and there is
no need for preprocessing. It is, however, interesting to consider the complexity of the
findany operation in a dynamically maintained data structure with insert and delete

operations. This question was first considered by Brodal et al. in [7]. They have shown that

16

if the worst case amortized complexity of the insert and delete operations on the data
structure is t(n), where n is the number of keys in the data structure, then the findany

operation requires at least [n/(24t(n)+3) − 1] comparisons in the worst case. In this section
we reformulate the proof of [7] using the potential value intervals of section 6. We simplify
the proof and improve the lower bound by a multiplicative factor of 8. We begin with a
proposition used in the subsequent proof of adversarial lower bounds for data structures:

Proposition 1 Let D be a comparison based data structure and S an operation sequence.
Let K and j be the set of keys and index, whose existence after S is run is guaranteed by
Lemma 3. For any operation sequence S ′ which is a prefix of S, after S ′ is run, ∀ki ∈ K,
ki may get the value aj

i and nothing is known about the order of the values {aj
i}i|ki∈K (If K

is an independent set after the operation sequence S it is also an independent set after any
prefix of S).

Proof: D has no knowledge about future operations and thus the view of operation sequence
S′ is identical to the view of S when running the operations of S ′. Thus after S ′ is run all
intervals are at least as large as they are after S is run and from here we can proceed as in
the proof of Lemma 3. ut

Theorem 4 Let D be a comparison based data structure supporting insert, delete and
findany operations. If the amortized comparison complexities of D’s insert and delete

operations are i(n) and d(n) respectively, where n is the number of keys in the data structure,
then D’s findany operation must make at least [n/(22(i(n)+d(n))) − 3] comparisons in the
worst case.

Proof: We begin similarly to the proof of [7] and define a series of operation sequences
S1 . . . Sn+1:

S1 = insert(k1) . . . insert(kn)findany

b1 is the key returned by the findany operation in S1. We similarly define Si for 2 ≤ i ≤ n:

Si = insert(k1) . . . insert(kn)delete(b1) . . .delete(bi−1)findany

Where bi is the key returned by the findany operation at the end of sequence Si and

Sn+1 = insert(k1) . . . insert(kn)delete(b1) . . .delete(bn)

We look at deleted elements as intervals that are simply no longer accessible by the data
structure. Examining the sequences, we note that the findany operation is always preceded
by n insert operations and at most n delete operations. Thus, there are at most (i(n) +
d(n)) · n comparisons made before any findany operation. By Lemma 3, in sequence
Sn+1 there is a set A of size at least n/(22(i(n)+d(n)))−2 of (deleted) keys about whose order
nothing is known. Let bmin be the first key in A that is deleted during Sn+1. In the sequence
Smin, when the findany operation is run, all keys in A are still in the data structure D
(by bmin’s minimality) and nothing is known about their order (by Proposition 1). The
findany operation of sequence Smin returns the rank of bmin. To know the rank of bmin

with certainty, at least |A| − 1 comparisons must be made in the worst case. ut

17

B A Preprocessing Algorithm for Selection

In this appendix we provide efficient algorithms for preprocessing and selection. These
algorithms will be efficient not only in terms of their comparison complexity and will also
be in-place. For convenience we will assume n is a power of 2.
Preprocessing Algorithm: We now turn to describing a preprocessing algorithm using
at most 3α(n) ·n comparisons. The preprocessing algorithm of this section is similar to the
sorting algorithm Quicksort [14]. The algorithm will split the array A into 2α(n) sub-arrays
of size n/2α(n): A1, . . . , A2α(n) , where A1 > A2 > . . . > A2α(n) . The array will be split using
partition. The Preprocessing algorithm will then be used recursively to split both the left
and right parts of the array.
preprocess(A, i, j):

1. if j − i + 1 ≤ 2α(n) then return.
2. partition(A, i, j, b j−i+1

2 c).
3. preprocess(A, i, i + b j−i+1

2 c).
4. preprocess(A, i + b j−i+1

2 c + 1, j).

The preprocessing algorithm splits the array into 2α(n) different sub-arrays A1 . . . A2α(n)

where A1 > . . . > A2α(n) and Ai contains the values located at addresses (i−1)·n

2α(n) . . . i·n
2α(n) − 1

of the array. The comparison complexity of the preprocessing algorithm with any pair (i, j)
satisfying n = j− i+1, Cp(n), satisfies Cp(n) ≤ 2 ·Cp(

n
2)+3n and Cp(

n
2α(n)) = 0 (note that

we count only comparisons of array keys). Thus, we get that Cp(n) ≤ 3α(n) · n.

Selection After Preprocessing After the array has been preprocessed using at most
3α(n) · n comparisons, it is split into 2α(n) sub-arrays. Our selection algorithm will find
the sub-array in which the i-th largest key is located—the index of this sub-array is j =
b i

2α(n) c + 1. It will then run select(A[(j−1)n

2α(n) . . . jn
2α(n) − 1], i − (j−1)n

2α(n) + 1), using at most
3n

2α(n) comparisons.

Conclusion:We show that if α(n) · n time is invested in preprocessing, then select(i)

can done using at most 3n/(2
α(n)

3) = n/(2Ω(α(n))) comparisons. A nice property of this
preprocessing algorithm is that it is efficiently progressive—it can be run intermittently
while selection queries are made, and almost nothing is lost by splitting up the algorithm’s
run into phases separated by selection queries. This property is very useful when the amount
of time for preprocessing is not known in advance, or if it is expected that there will be
stretches of time when selection queries are relatively rare, when the algorithm can continue
to preprocess the data, finally arriving at a sorted array. While this algorithm has higher
comparison complexity than the algorithm of section 5, it is efficient not only in terms
of its comparison complexity, but also in terms of its true complexity and is in-place and
efficiently progressive.

18

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

