
Using Nondeterminism to Amplify Hardness∗

Alexander Healy † Salil Vadhan ‡

Division of Engineering & Applied Sciences

Harvard University

Cambridge, Massachusetts

Emanuele Viola §

October 13, 2004

Abstract

We revisit the problem of hardness amplification in NP, as recently studied by O’Donnell
(STOC ‘02). We prove that if NP has a balanced function f such that any circuit of size s(n)
fails to compute f on a 1/poly(n) fraction of inputs, then NP has a function f ′ such that any
circuit of size s′(n) = s(

√
n)Ω(1) fails to compute f ′ on a 1/2 − 1/s′(n) fraction of inputs. In

particular,

1. If s(n) = nω(1), we amplify to hardness 1/2− 1/nω(1).

2. If s(n) = 2n
Ω(1)

, we amplify to hardness 1/2− 1/2n
Ω(1)

.

3. If s(n) = 2Ω(n), we amplify to hardness 1/2− 1/2Ω(
√

n).

These improve the results of O’Donnell, which only amplified to 1/2 − 1/
√

n. O’Donnell
also proved that no construction of a certain general form could amplify beyond 1/2− 1/n. We
bypass this barrier by using both derandomization and nondeterminism in the construction of
f ′.

We also prove impossibility results demonstrating that both our use of nondeterminism
and the hypothesis that f is balanced are necessary for “black-box” hardness amplification
procedures (such as ours).

Keywords average-case complexity, hardness amplification, pseudorandom generators for space-
bounded computation, noise stability.

∗An extended abstract of this paper appeared in STOC 2004 [HVV].
†Email: ahealy@fas.harvard.edu. Research supported in part by NSF grant CCR-0205423 and a Sandia Fellow-

ship.
‡Email: salil@eecs.harvard.edu Research supported by NSF grant CCR-0133096, ONR grant N00014-04-1-

0478, a Sloan Research Fellowship, and US-Israel BSF grant 2002246. Work done in part while a fellow at the
Radcliffe Institute for Advanced Study at Harvard University.

§Email: viola@eecs.harvard.edu. Research supported by NSF grant CCR-0133096 and US-Israel BSF grant
2002246.

1

Electronic Colloquium on Computational Complexity, Report No. 87 (2004)

ISSN 1433-8092

1 Introduction

Average-case complexity is a fundamental topic in complexity theory, whose study has at least two
distinct motivations. On one hand, it may provide more meaningful explanations than worst-case
complexity about the intractability of problem instances actually encountered in practice. On
the other hand, it provides us with methods to generate hard instances, allowing us to harness
intractability for useful ends such as cryptography and derandomization.

One of the goals of this area is to establish connections between average-case complexity and
worst-case complexity. While this has been accomplished for high complexity classes such #P and
EXP (e.g. [Lip, BF, BFL, FL, CPS, STV, TV, Vio1]), it remains a major open question for NP.
In fact, there are results showing that such connections for NP are unlikely to be provable using
the same kinds of techniques used for the high complexity classes [FF, Vio1, BT, Vio2].

A more modest goal is “hardness amplification”, where we seek to establish connections between
“mild” average-case complexity and “strong” average-case complexity. That is, given a problem
for which a nonnegligible fraction of inputs are “hard”, can we obtain a problem for which almost
all inputs are hard? To make this precise, let us define “hard”.

Definition 1.1. For δ ∈ [0, 1/2], a function f : {0, 1}n → {0, 1} is δ-hard for size s if every circuit
of size s fails to compute f on at least an δ fraction of inputs.

Note that the maximum value of the hardness parameter δ is 1/2 because f is boolean (so can
trivially be computed with error probability at most 1/2.)

The hardness amplification problem is to convert a function f that is δ-hard for size s into a
function f ′ that is (1/2− ε)-hard for size polynomially related to s. Typically, δ = 1/ poly(n) and
the aim is to make ε = ε(n) vanish as quickly as possible.

The standard approach to hardness amplification employs Yao’s XOR Lemma [Yao] (see [GNW]):
Given a mildly hard-on-average function f : {0, 1}n → {0, 1}, we define f ′ : {0, 1}n·k → {0, 1} by

f ′(x1, . . . , xk)
def
= f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk).

The XOR Lemma says that the hardness of f ′ approaches 1/2 exponentially fast with k. More
precisely:

Yao’s XOR Lemma. If f is δ-hard for size s(n) ≥ nω(1) and k ≤ poly(n), then f ′ is (1/2 −
1/2Ω(δk) − 1/s′)-hard for size s′(n · k) = s(n)Ω(1).

In particular, taking k = Θ(n/δ), the amplified hardness is dominated by the 1/s′ term. That
is, we can amplify to hardness (1/2− ε), where ε is polynomially related to the (reciprocal of the)
circuit size for which f was hard. (Note, however, that we should measure ε = ε(n′) as a function
of the new input length n′ = n · k, so when k = n, the hardness is actually 1/2− 1/s(

√
n′)Ω(1).)

However, if we are interested in hardness amplification within NP (i.e. f and f ′ are character-
istic functions of languages in NP), we cannot use the XOR lemma; it does not ensure that f ′ is
in NP when f is in NP. Hardness amplification within NP was first addressed in a recent paper
of O’Donnell [O’D], which is the starting point for our work.

2

1.1 O’Donnell’s Hardness Amplification

To ensure that the new function f ′ is in NP when f is in NP, O’Donnell [O’D] was led to study
constructions of the form

f ′(x1, . . . , xk)
def
= C(f(x1), f(x2), . . . , f(xk)), (1)

where C is an efficiently computable monotone function. The monotonicity of C ensures that f ′ is
in NP when f is in NP. But we are left with the task of choosing such a function C and proving
that it indeed amplifies hardness.

Remarkably, O’Donnell was able to precisely characterize the amplification properties of Con-
struction 1 in terms of a combinatorial property of the combining function C, called its expected
bias. (The actual definition is not needed for this discussion, but can be found in Section 3.) By
finding a monotone combining function in which this expected bias is small, he obtained the first
positive result on hardness amplification in NP:

O’Donnell’s Theorem [O’D]. If NP has a balanced function that is 1/ poly(n)-hard for
polynomial-size circuits, then NP has a function that is (1/2 − 1/n1/2−α)-hard for polynomial-
size circuits (where α is an arbitrarily small positive constant).

However, the amplification provided by O’Donnell’s theorem is not as strong as what the XOR
Lemma gives. It is limited to 1/2 − 1/

√
n, regardless of the circuit size s for which the original

function is hard, even if s is exponentially large. The XOR Lemma, on the other hand, amplifies
to 1/2− 1/sΩ(1). O’Donnell showed that this difference is inherent — no construction of the form
(1) with a monotone combining function C can always amplify hardness to better than 1/2− 1/n.1

1.2 Our Result

In this paper, we manage to amplify hardness within NP beyond the 1/2− 1/n barrier:

Main Theorem. If NP has a balanced function that is 1/ poly(n)-hard for circuits of size s(n),
then NP has a function that is (1/2 − 1/s′(n))-hard for circuits of size s′(n) = s(

√
n)Ω(1). In

particular,

1. If s(n) = nω(1), we amplify to hardness 1/2− 1/nω(1).

2. If s(n) = 2nΩ(1)
, we amplify to hardness 1/2− 1/2nΩ(1)

.

3. If s(n) = 2Ω(n), we amplify to hardness 1/2− 1/2Ω(
√

n).

Items 1–3 match the parameters of the Yao’s XOR Lemma. However, subsequent “deran-
domizations” of the XOR Lemma [Imp, IW1] actually amplify up to 1/2− 1/2Ω(n) rather than just
1/2−1/2Ω(

√
n) in the case s(n) = 2Ω(n). This gap is not inherent in our approach and, as mentioned

below, would be eliminated given a corresponding improvement in one of the tools we employ.
Of course, our construction cannot be of the form in Construction (1). Below we describe our

two main points of departure.

1The gap between O’Donnell’s positive result of 1/2− 1/
√

n and his negative result of 1/2− 1/n is not significant
for what follows, and in particular, it will be subsumed by our improvements.

3

1.3 Techniques

To explain how we bypass it, we first look more closely at the source of the 1/2 − 1/n barrier.
The actual barrier is 1/2 − 1/k, where k is the input length of the monotone combining function
C. (This is based on the [KKL] bound on the noise stability of monotone functions.) Since in
Construction (1), f ′ has input length n′ = n · k ≥ k, it follows that we cannot amplify beyond
1/2− 1/n′.

Derandomization. Given the above, our first idea is to break the link between the input length
of f ′ and the input length of the combining function C. We do this by derandomizing O’Donnell’s
construction. That is, the inputs x1, . . . , xk are no longer taken independently (as in Construction
(1)), but are generated pseudorandomly from a short seed of length n′ � k, which becomes the
actual input to f ′. Our method for generating the xi’s is based on combinatorial designs (as in
the Nisan–Wigderson generator [NW]) and Nisan’s pseudorandom generator for space-bounded
computation [Nis2], and reduces the input length of f ′ from n · k to n′ = O(n2 + log2 k). We stress
that this derandomization is unconditional, i.e. requires no additional complexity assumption. We
also remark that it is the quadratic seed length of Nisan’s generator that limits our amplification to
1/2−1/2Ω(

√
n) rather than 1/2−1/2Ω(n) in Part 3 of our Main Theorem, and thus any improvement

in Nisan’s generator would yield a corresponding improvement in our result.
Similar derandomizations have previously been achieved for Yao’s XOR Lemma by Impagli-

azzo [Imp] and Impagliazzo and Wigderson [IW1]. The analysis of such derandomizations is typi-
cally tailored to a particular proof, and indeed both [Imp, IW1] gave new proofs of the XOR Lemma
for that purpose. In our case, we do not know how to derandomize O’Donnell’s original proof, but
instead manage to derandomize a different proof due to Trevisan [Tre].

Our derandomization allows for k to be larger than the input length of f ′, and hence we can go
beyond the 1/2−1/n′ barrier. Indeed, by taking k to be a sufficiently large polynomial, we amplify
to 1/2− 1/(n′)c for any constant c.

Using Nondeterminism. To amplify further, it is tempting to take k superpolynomial in the
input length of f ′. But then we run into a different problem: how do we ensure that f ′ is in NP?
The natural algorithm for f ′ requires running the algorithm for f on k inputs.

To overcome this difficulty, we observe that we need only give an efficient nondeterministic
algorithm for f ′. Each nondeterministic path may involve only polynomially many evaluations of
f while the global outcome f ′(x) depends on exponentially many evaluations. To implement this
idea, we exploit the specific structure of the combining function C. Namely, we (like O’Donnell)
use the TRIBES function of Ben-Or and Linial [BL], which is a monotone DNF with clauses of
size O(log k). Thus, the nondeterministic algorithm for f ′ can simply guess a satisfied clause and
evaluate f on the O(log k) corresponding inputs.

1.4 Other Results

We also present some complementary negative results:

• We show that the assumption that the original hard function is balanced is necessary, in the
sense that no monotone “black-box” hardness amplification can amplify unbalanced functions
of unknown bias (or even improve their bias).

4

• We show that our use of nondeterminism is necessary, in the sense that any “black-box”
hardness amplification in which each evaluation of f ′ is a monotone function of at most k
evaluations of f can amplify hardness to at most 1/2− 1/k.

Informally, a “black-box” hardness amplification in which the construction of the amplified
function f ′ from f only utilizes f as an oracle and is well-defined for any function f (regardless of
whether or not it is in NP). Moreover, the correctness of the construction is proved by a generic
reduction that converts oracle A (regardless of its circuit size) computes f ′ well on average into one
that computes f well on average. (A formal definition is given in Section 11.) We note that most
results on hardness amplification against circuits, including ours, are black-box (though there have
been some recent results using non-black-box techniques in hardness amplification against uniform
algorithms; see [IW2, TV]).

Our framework also gives a new proof of the hardness amplification by Impagliazzo and Wigder-
son [IW1]. Our proof is simpler and in particular its analysis does not employ the Goldreich–Levin
[GL] step.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we discuss some preliminaries. In
Section 3, we review existing results on hardness amplification in NP. In Section 4, we present our
main results and new techniques. Sections 5 through 9 treat the details of the proof of our main
theorem. In Section 10, we show how we could amplify to 1/2− 1/2Ω(n) given an improvement in
the pseudorandom generator we use. Hardness amplification of unbalanced functions is discussed
in Section 11, and finally in Section 12 we show a sense in which the use of nondeterminism in our
main result is necessary.

2 Preliminaries

We denote the uniform distribution on {0, 1}n by Un. If Un occurs more than once in the same
expression, it is understood that these all represent the same random variable; for example, Un ·
f(Un) denotes the random variable obtained by choosing X

R←{0, 1}n and outputting X · f(X).

Definition 2.1. Let X and Y be two random variables taking values over the same set S. Then
the statistical difference between X and Y , is

∆(X, Y)
def
= max

T⊆S

∣

∣

∣
Pr[X ∈ T]− Pr[Y ∈ T]

∣

∣

∣
.

We view probabilistic functions as functions of two inputs, e.g. h(x; r), the first being the input
to the function and the second being the randomness. (Deterministic functions may be thought of
as probabilistic functions that ignore the randomness.) For notational convenience, we will often
omit the second input to a probabilistic function, e.g. writing h(x) instead of h(x; r), in which case
we view h(x) as the random variable h(x; U|r|).

Definition 2.2. The bias of a 0-1 random variable X is

Bias [X]
def
=
∣

∣

∣
Pr[X = 0]− Pr[X = 1]

∣

∣

∣
= 2 ·∆(X, U1).

5

Analogously, the bias of a probabilistic function f : {0, 1}n → {0, 1} is

Bias [f]
def
=
∣

∣

∣
Pr[f(Un) = 0]− Pr[f(Un) = 1]

∣

∣

∣
,

where the probabilities are taken over both the input chosen according to Un and the coin tosses of
f . We say that f is balanced when Bias [f] = 0.

We say that the random variables X and Y are ε-indistinguishable for size s if for every circuit
C of size s,

∣

∣

∣
Pr
X

[C(X) = 1]− Pr
Y

[C(Y) = 1]
∣

∣

∣
≤ ε.

We will routinely use the following connection between hardness and indistinguishability.

Lemma 2.3 ([Yao]). Let h : {0, 1}n → {0, 1} be any probabilistic function. Then the distributions
Un · h(Un) and Un · U1 are ε-indistinguishable for size s if, and only if, h is (1/2 − ε/2)-hard for
size s + Θ(1).

Finally, whenever we amplify the hardness of a function f : {0, 1}n → {0, 1} that is hard for
circuits of size s(n), we assume that s(n) is well-behaved in the sense that it is computable in time
poly(n) and s(cn) = s(n)O(1), for all constants c > 0. Most natural functions smaller than 2n, such

as nk, 2logk n, 2nε
, 2εn are well-behaved in this sense.

3 Overview of Hardness Amplification in NP
In this section we review the essential components of existing results on hardness amplification in
NP. We then discuss the limitations of these techniques. By the end of this section, we will have
sketched the main result of O’Donnell [O’D], following the approach of Trevisan [Tre]. We outline
this result in a way that will facilitate the presentation of our results in subsequent sections.

Let f : {0, 1}n → {0, 1} be an average-case hard function, and let C : {0, 1}k → {0, 1} be any
function. In [O’D], O’Donnell studies the hardness of functions of the form

C ◦f⊗k : ({0, 1}n)k → {0, 1}

where f⊗k(x1, . . . , xk)
def
= (f(x1), . . . , f(xk)), and ◦ denotes composition. That is,

(C ◦f⊗k)(x1, . . . , xk)
def
= C(f(x1), . . . , f(xk)).

In order to ensure that C ◦f⊗k ∈ NP whenever f ∈ NP, O’Donnell chooses C to be a
polynomial-time computable monotone function. (Indeed, it is not hard to see that a monotone
combination of NP functions is itself in NP.)

O’Donnell characterizes the hardness of C ◦f⊗k in terms of a combinatorial property of the
combining function C, called its expected bias (which we define later).

We will now review the key steps in establishing this characterization and O’Donnell’s final
amplification theorem.

6

Step 1: Impagliazzo’s hardcore set. An important tool for establishing this connection is
the so-called hardcore set lemma of Impagliazzo [Imp], which allows us to pass from computational
hardness to information-theoretic hardness.

Definition 3.1. We say that a (probabilistic) function g : {0, 1}n → {0, 1} is δ-random if g is
balanced and there exists a subset H ⊆ {0, 1}n with |H| = 2δ2n such that g(x) = U1 (i.e. a coin
flip) for x ∈ H and g(x) is deterministic for x /∈ H.

Thus, a δ-random function has a set of relative size 2δ on which it is information-theoretically
unpredictable. The Impagliazzo hardcore set lemma says that any δ-hard function f : {0, 1}n →
{0, 1} has a hardcore set H ⊆ {0, 1}n of density ≈ 2δ such that f is very hard-on-average on H.
Thus, f looks like a δ-random function to small circuits (cf., Lemma 2.3). (Following subsequent
works, our formulation of Impagliazzo’s lemma differs from the original one in several respects.)

Lemma 3.2 ([Imp], [KS], [STV], [O’D]). For any function f : {0, 1}n → {0, 1} that is balanced
and δ-hard for size s, there exists a δ′-random function g : {0, 1}n → {0, 1} such that X · f(X) and
X · g(X) are ε-indistinguishable for size Ω(sε2/ log(1/δ)), with δ ≤ δ′ ≤ 2δ, where X ≡ Un.

In particular, by a standard hybrid argument,

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ)), where the Xi’s are uniform and independent.

Step 2: Expected Bias. By the above, proving the computational hardness of C ◦f⊗k reduces
to calculating the information-theoretic hardness of C ◦g⊗k for some δ′-random g. It turns out that
information-theoretic hardness can be characterized by the following quantity.

Definition 3.3. Let h : {0, 1}n → {0, 1} be any probabilistic function. We define the expected bias
of h by

ExpBias [h]
def
= E

x←Un

[

Bias [h(x)]
]

,

where Bias [h(x)] is taken over the coin tosses of h.

The next lemma shows that information-theoretic hardness is equivalent to expected bias.

Lemma 3.4. For any probabilistic h : {0, 1}n → {0, 1},

∆(Un · h(Un), Un · U1) =
1

2
ExpBias [h] .

Proof. ∆(Un · h(Un), Un · U1) = E
x←Un

[∆(h(x), U1)] = E
x←Un

[Bias [h(x)] /2] = ExpBias [h] /2.

In particular, no circuit (regardless of its size) can distinguish between Un · h(Un) and Un · U1

with advantage greater than ExpBias [h] /2.
Now we characterize the hardness of C ◦f⊗k in terms of expected bias. Specifically, by taking

ε = 1/s1/3 in Lemma 3.2 and using Lemmas 2.3 and 3.4, one can show the following.

7

Lemma 3.5 ([O’D]). Let f : {0, 1}n → {0, 1} be balanced and δ-hard for size s, and let C :
{0, 1}k → {0, 1} be any function. Then there exists a δ-random function g : {0, 1}n → {0, 1} such
that C ◦f⊗k : ({0, 1}n)k → {0, 1} has hardness

1

2
− ExpBias

[

C ◦g⊗k
]

2
− k

s1/3

for circuits of size Ω
(

s1/3/ log(1/δ)
)

− size(C), where size(C) denotes the size of a smallest circuit
computing C.

What makes this lemma so useful is that the quantity ExpBias
[

C ◦g⊗k
]

turns out to be inde-
pendent of the choice of the δ-random function g and hence also of the particular hard function f .
(Specifically, it equals the expectation of the bias of C after a random restriction that leaves each
input bit unrestricted with probability δ.) Thus we are left with the task of understanding a purely
combinatorial property of the combining function C.

Step 3: Noise Stability Unfortunately, it is often difficult to analyze the expected bias directly.
Nonetheless, the expected bias is closely related to the noise stability, a quantity that is more
amenable to analysis and well-studied (e.g., [KKL], [O’D], [MO]).

Definition 3.6. The noise stability of C with respect to noise δ, denoted NoiseStabδ[C], is defined
by

NoiseStabδ[C]
def
= 2 · Pr

x,η
[C(x) = C(x⊕ η)]− 1,

where x is random, η is a vector whose bits are independently one with probability δ and ⊕ denotes
bitwise XOR.

The following lemma from [O’D] bounds the expected bias of C ◦g⊗k (and hence the hardness
in Lemma 3.5) in terms of the noise stability of C.

Lemma 3.7. Let g : {0, 1}n → {0, 1} be δ-random. Then

ExpBias
[

C ◦ g⊗k
]

≤
√

NoiseStabδ[C].

Combining this with Lemma 3.5, we find that the hardness of C ◦f⊗k is roughly 1/2−
√

NoiseStabδ[C]/2.
The next step is to exhibit a combining function C with a small noise stability (to ensure that the
hardness of C ◦f⊗k is as close to 1/2 as possible). The following is shown in [O’D].

Lemma 3.8 ([O’D]). For all δ > 0, there exists a k = poly(1/δ) and a polynomial-time computable
monotone function C : {0, 1}k → {0, 1} with NoiseStabδ[C] ≤ 1/kΩ(1).

Finally, by combining Lemmas 3.5, 3.7 and 3.8, we obtain the following weaker version of
O’Donnell’s hardness amplification within NP. (While a stronger version of O’Donnell’s result was
mentioned in the introduction, the following version will suffice as a starting point for our work.)

Theorem 3.9 ([O’D]). If there is a balanced f ∈ NP, f : {0, 1}n → {0, 1} that is 1/ poly(n)-hard
for size s(n), then there is f ′ ∈ NP, f ′ : {0, 1}m → {0, 1} that is (1/2 − 1/mΩ(1))-hard for size
s(mΩ(1))Ω(1).

8

Limitations of Direct Product Constructions.

O’Donnell also showed that Theorem 3.9 is essentially the best result that one can obtain using the
techniques that we have described thus far. He showed that for all monotone combining functions
C there is a δ-hard f such that the hardness of C ◦f⊗k is no better than 1/2 − NoiseStabδ[C]/2.
This is problematic because the noise stability of monotone functions cannot become too small.

Theorem 3.10 ([KKL]). For every monotone function C : {0, 1}k → {0, 1} and every δ > 0,

NoiseStabδ[C] ≥ (1− 2δ) · Ω
(

log2 k

k

)

.

Therefore, for any monotone C : {0, 1}k → {0, 1} there is a δ-hard f such that C ◦f⊗k does
not have hardness 1/2 − NoiseStabδ[C]/2 ≤ 1/2 − Ω(1/k). Since C ◦f⊗k takes inputs of length
m = n · k ≥ k, this implies that we must employ a new technique to amplify beyond hardness
1/2− Ω(1/m).

4 Our Results

In this paper, we obtain the following improvement upon Theorem 3.9.

Theorem 4.1 (Main Theorem). If there is a balanced f ∈ NP, f : {0, 1}n → {0, 1} that
is 1/ poly(n)-hard for size s(n), then there is f ′ ∈ NP, f ′ : {0, 1}m → {0, 1} that is (1/2 −
1/s(
√

m)Ω(1))-hard for size s(
√

m)Ω(1).

We also show that the assumption that we start with a balanced function f is essential. Specif-
ically, we show (Section 11) that no monotone black-box hardness amplification can amplify the
hardness of functions whose bias is unknown. Most hardness amplifications, including the one in
this paper, are black-box. However, the assumption that f is balanced can be dispensed with when
amplifying within NP/ poly (i.e., f , f ′ are computed by nondeterministic polynomial-size circuits).

We now describe the two main techniques that allow us to prove Theorem 4.1. As explained in
the introduction, these two techniques are derandomization and nondeterminism.

4.1 Derandomization

As in the previous section, let f : {0, 1}n → {0, 1} be our hard function and let C : {0, 1}k → {0, 1}
be a (monotone) combining function.

We will derandomize O’Donnell’s construction using an appropriately “pseudorandom” gener-
ator.

Definition 4.2. A generator G : {0, 1}l → ({0, 1}n)k is any function. We call l the seed length of
G, and we often write G(σ) = X1 · · ·Xk, with each Xi ∈ {0, 1}n.

G is explicitly computable if given σ, 1 ≤ i ≤ k, we can compute Xi in time poly(l, log k), where
G(σ) = X1 · · ·Xk.

Instead of using the function C ◦f⊗k : ({0, 1}n)k → {0, 1}, we take a generator G : {0, 1}l →
({0, 1}n)k (where l� nk) and use (C ◦f⊗k) ◦G : {0, 1}l → {0, 1}, i.e.,

(C ◦f⊗k) ◦G(σ) = C
(

f(X1), . . . , f(Xk)
)

,

9

where (X1, . . . , Xk) ∈ ({0, 1}n)k is the output of G(σ). This reduces the input length of the function
to l. Therefore, if l � nk we would expect (C ◦f⊗k) ◦ G to be harder (with respect to its input
length) than C ◦f⊗k. We will show that this is indeed the case, provided the generator G satisfies
the following requirements:

1. G is indistinguishability-preserving: Analogously to Lemma 3.5, the generator G should
be such that the computational hardness of (C ◦f⊗k) ◦G is at least the information-theoretic
hardness of (C ◦ g⊗k)◦G for some δ-random function g – that is, at least 1/2−ExpBias

[

(C ◦ g⊗k) ◦G
]

.
We will see that this can be achieved provided that G is indistinguishability-preserving; that
is (analogously to the last part of Lemma 3.2),

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

should be indistinguishable, for some δ-random g, when σ
R← {0, 1}l and (X1, . . . , Xk) ∈

({0, 1}n)k is the output of G on input σ.

2. G fools the expected bias: G should be such that for any δ-random g, ExpBias
[

(C ◦ g⊗k) ◦G
]

is approximately ExpBias
[

C ◦ g⊗k
]

, and thus, by Lemma 3.7:

ExpBias
[

(C ◦ g⊗k) ◦G
]

≤
√

NoiseStabδ[C] + ε, (2)

for a suitably small ε. Actually, we will not show that G fools the expected bias directly and
instead will work with a related quantity (the expected collision probability), which will still
suffice to show Inequality (2).

Informally, the effect of the two above requirements on the generator G is that the hardness of
(C ◦f⊗k) ◦G is roughly the hardness of C ◦f⊗k, while dramatically reducing the input length from
nk to l (the seed length of G). More precisely, as illustrated in Figure 1, the first requirement allows
us to relate the hardness of (C ◦f⊗k) ◦G to the information-theoretic hardness of C ◦g⊗k (where g
is a δ-random function); the second allows us to relate this information-theoretic hardness to the
noise stability of the combining function C. In particular, if we employ the combining function
from Lemma 3.8, we obtain hardness 1/2−1/kΩ(1). Thus, by choosing k � l, we bypass the barrier
discussed at the end of the previous section.

Now we briefly describe how the above requirements on G are met. The first requirement is
achieved through a generator that outputs combinatorial designs. This construction is essentially
from Nisan and Wigderson [Nis1, NW] and has been used in many places, e.g. [IW1, STV].

The second requirement is achieved as follows. We show that if G is pseudorandom against
space-bounded algorithms and the combining function C is computable in small space (with one-
way access to its input), then Inequality (2) holds. We then use Nisan’s unconditional pseudorandom
generator against space-bounded algorithms [Nis2], and show that combining functions with low
noise stability can in fact be computed in small space.2 Note that we only use the pseudorandomness
of the generator G to relate the expected bias with respect to G to a combinatorial property of the
combining function C. In particular, it is not used to fool the circuits trying to compute the hard

2The same approach also works using the unconditional pseudorandom generator against constant-depth circuits
of [Nis1] and showing that the combining function is computable by a constant-depth circuit; however, the space
generator gives us slightly better parameters.

10

Figure 1: Derandomization overview.

Hardness of
(C ◦f⊗k) ◦G

oo [Imp] + G Indistinguishability-Preserving (§5)

Information-Theoretic
Hardness of (C ◦g⊗k) ◦G, where g δ-random

(= 1/2− ExpBias
[

(C ◦g⊗k) ◦G
]

)

oo G Fools Expected Bias (§6)

1/2−NoiseStab[C]

∨

[O’D]

1/2− 1/kΩ(1)

function. This is what allows us to use an unconditional generator against a relatively weak model
of computation.

Our final generator, Γ, is the generator obtained by XORing a generator that is indistinguishability-
preserving and a generator that fools the expected bias, yielding a generator that has both proper-
ties. The approach of XORing two generators in this way appeared in [IW1], and was subsequently
used in [STV].

4.2 Using Nondeterminism

The derandomization described above gives hardness amplification up to 1/2−1/nc for any constant
c. This already improves upon the best previous result, namely Theorem 3.9. However, to go
beyond this new techniques are required. The problem is that if we want C to be computable in
time poly(n), we must take k = poly(n) and thus we amplify to at most 1/2−1/k = 1/2−1/ poly(n).

We solve this problem taking full advantage of the power of NP, namely nondeterminism. This
allows us to use a function C : {0, 1}k → {0, 1} which is computable in nondeterministic time
poly(n, log(k)); thus, the amplified function will still be in NP for k as large as 2n.

Conversely, in Section 12 we show that any non-adaptive monotone black-box hardness am-
plification that amplifies to hardness 1/2 − 1/nω(1) cannot be computed in P, i.e. the use of
nondeterminism is essential.

We will now proceed by discussing the details of the derandomization (Sections 5, 6 and 7)
and the use of nondeterminism (Section 8). The results obtained in these sections are summarized

11

Table 1: Hardness Amplification within NP.

Functions : {0, 1}n → {0, 1}

Amplification up to Technique Reference

1/2− 1/
√

n Direct Product [O’D]

1/2− 1/nc, for every c Derandomized Direct Product Theorem 7.1

Derandomized

1/2− 1/2Ω(
√

n) Direct Product & Theorem 8.1
Nondeterminism

in Table 1. For clarity of exposition, we focus on the case where the original hard function f is
balanced and is 1/3-hard. Hardness amplification from hardness 1/ poly(n) is discussed in Section
9, and hardness amplification of unbalanced functions is discussed in Section 11.

5 Preserving Indistinguishability

The main result in this section is that if G is pseudorandom in an appropriate sense, then the
hardness of (C ◦f⊗k) ◦G is roughly

1/2− ExpBias
[

(C ◦ g⊗k) ◦G
]

for some δ-random function g. As we noted in the previous section, it will be sufficient for G to be
indistinguishability-preserving . We give the definition of indistinguishability-preserving and then
our main result.

Definition 5.1. A generator G : {0, 1}l → ({0, 1}n)k is said to be indistinguishability-preserving
for size t if for all (possibly probabilistic) functions f1, . . . , fk,g1, . . . , gk the following holds:

If for every i, 1 ≤ i ≤ k the distributions

Un · fi(Un) and Un · gi(Un)

are ε-indistinguishable for size s, then

σ · f1(X1) · · · fk(Xk) and σ · g1(X1) · · · gx(Xk)

are kε-indistinguishable for size s − t, where σ is a random seed of length l and X1 · · ·Xk is the
output of G(σ).

12

Lemma 5.2. Let f : {0, 1}n → {0, 1} be δ-hard for size s, let G : {0, 1}l → ({0, 1}n)k be a generator
that is indistinguishability-preserving for size t and let C : {0, 1}k → {0, 1} be any function. Then
there exists a δ′-random g, with δ ≤ δ′ ≤ 2δ such that the function (C ◦f⊗k) ◦G : {0, 1}l → {0, 1}
has hardness

1

2
− ExpBias

[

(C ◦ g⊗k) ◦G
]

2
− k

s1/3

for circuits of size Ω
(

s1/3/ log(1/δ)
)

−t−size(C) where size(C) denotes the size of a smallest circuit
computing C.

Proof. By Lemma 3.2, there exists a δ′-random function g with δ ≤ δ′ ≤ 2δ, such that Un · f(Un)
and Un · g(Un) are ε-indistinguishable for size Ω(sε2, log(1/δ)). Since G is a indistinguishability-
preserving for size t by assumption, this implies that

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2 log(1/δ)) − t, where here and below σ denotes a uniform
random seed in {0, 1}l and X1 · · ·Xk will denote the output of G(σ). This in turn implies that

σ · C(f(X1) · · · f(Xk)) and σ · C(g(X1) · · · g(Xk))

(i.e., σ · (C ◦f⊗k) ◦G(σ) and σ · (C ◦ g⊗k) ◦G(σ))

are kε-indistinguishable for size Ω(sε2/ log(1/δ))− t− size(C). By Lemma 3.4,

σ · (C ◦ g⊗k) ◦G and σ · U1

are (ExpBias
[

(C ◦ g⊗k) ◦G
]

/2)-indistinguishable for any size. Therefore, we have that

σ · (C ◦f⊗k) ◦G and σ · U1

are (ExpBias
[

(C ◦ g⊗k) ◦G
]

/2 + kε)-indistinguishable for size Ω(sε2/ log(1/δ))− t− size(C). The

result follows by setting ε = 1/s1/3 and applying Lemma 2.3.

In particular, we note that the identity generator G : {0, 1}nk → ({0, 1}n)k, i.e. G(x) =
x, is indistinguishability-preserving for size 0 (by a hybrid argument), and thus Lemma 3.5 is a
corollary of Lemma 5.2. However, the identity generator has seed-length nk and is therefore a very
poor pseudorandom generator. Fortunately, there are indistinguishability-preserving pseudorandom
generators with much shorter seeds which will allow us to use Lemma 5.2 to obtain much stronger
hardness amplifications.

Lemma 5.3. There is a constant c such that for every n ≥ 2 and every k = k(n) there is an
explicitly computable generator IPk : {0, 1}l → ({0, 1}n)k with seed length l = c · n2 that is indi-
stinguishability-preserving for size k2.

Proof. The generator is due to Nisan and Nisan and Wigderson [Nis1, NW], and is based on
combinatorial designs. Specifically, we let S1, . . . , Sk ⊆ [l] be an explicit family of sets such that
|Si| = n for all i, and |Si ∩ Sj | ≤ log k for all i 6= j. Nisan [Nis1] gives an explicit construction of
such sets with l = O(n2). Then the generator IPk : {0, 1}l → ({0, 1}n)k is defined by IPk(σ) :=
(σ|S1 , . . . , σ|Sk

), where σ|Si ∈ {0, 1}n denotes the projection of σ onto the coordinates indexed by the
set Si. The proof that this generator is indistinguishability preserving for size k ·2maxi6=j |Si∩Sj | ≤ k2

follows the arguments in [NW, STV].

13

6 Fooling the Expected Bias

In this section we prove a derandomized version of Lemma 3.7. Informally, we show that if C is com-
putable in a restricted model of computation and G “fools” that restricted model of computation,
then for any δ-random function g:

ExpBias
[

(C ◦ g⊗k) ◦G
]

≤
√

NoiseStabδ[C] + ε.

The restricted model of computation we consider is that of nonuniform space-bounded algo-
rithms which make one pass through the input, reading it in blocks of length n. These are formally
modeled by the following kind of branching programs.

Definition 6.1. A (probabilistic, read-once, oblivious) branching program of size s with block-size
n is a finite state machine with s states, over the alphabet {0, 1}n (with a fixed start state, and an
arbitrary number of accepting states). Each edge is labelled with a symbol in {0, 1}n. For every
state a and symbol α ∈ {0, 1}n, the edges leaving a and labelled with α are assigned a probability
distribution. Then computation proceeds as follows. The input is read sequentially, one block of n
bits at a time. If the machine is in state a and it reads α, then it chooses an edge leaving a and
labelled with α according to its probability, and moves along it. The width of a branching program
is the maximum, over i, of the number of states that are reachable after reading i symbols.

Intuitively, the space of the algorithm is the logarithm of the width. Now we formally define
pseudorandom generators against branching programs.

Definition 6.2. A generator G : {0, 1}l → ({0, 1}n)k is ε-pseudorandom against branching pro-
grams of size s and block-size n if for every branching program B of size s and block-size n:

∣

∣Pr[B(G(Ul)) = 1]− Pr[B(Unk) = 1]
∣

∣ ≤ ε.

In [Nis2], Nisan builds an unconditional pseudorandom generator against branching programs.
Its parameters (specialized for our purposes) are given in the following theorem.

Theorem 6.3 ([Nis2]). For every n and k ≤ 2n, there exists a generator

Nk : {0, 1}l → ({0, 1}n)k

such that:

• Nk is 2−n-pseudorandom against branching programs of size 2n and block-size n.

• Nk has seed length l = O(n log k).

• Nk is explicitly computable.

Note that Nisan [Nis2] does not mention probabilistic branching programs. However, if there is
a probabilistic branching program distinguishing the output of the generator from uniform, then
by a fixing of the coin tosses of the branching program there is a determinisitic branching program
that distinguishes the output of the generator from uniform.

We now state the derandomized version of Lemma 3.7.

14

Lemma 6.4. Let

• g : {0, 1}n → {0, 1} be a δ-random function,

• C : {0, 1}k → {0, 1} be computable by a branching program of width w and block-size 1,

• G : {0, 1}l → ({0, 1}n)k be ε/2-pseudorandom against branching programs of size k · w2 and
block-size n.

Then ExpBias
[

(C ◦ g⊗k) ◦G
]

≤
√

NoiseStabδ[C] + ε.

Proof. We will not show that G fools the expected bias, but rather the following related quantity.
For a probabilistic boolean function h(x; r) we define its (normalized) expected collision probability
as

ExpCP[h]
def
= E

x

[

2 · Pr
r,r′

[h(x; r) = h(x; r′)]− 1
]

.

The same reasoning that shows Lemma 3.7, shows that for every probabilistic boolean function h:

ExpBias [h] ≤
√

ExpCP[h]. (3)

Let h(x; r) : ({0, 1}n)k → {0, 1} be the probabilistic function C ◦ g⊗k. Even though h is defined
in terms of g, it turns out that its expected collision probability is the same for all δ-random
functions g. Specifically, for x = (x1, . . . , xk), the only dependence of the collision probability
Prr,r′ [h(x; r) = h(x; r′)] on xi comes from whether g(xi) is a coin flip (which occurs with probability
δ over the choice of xi), g(xi) = 1 (which occurs with probability (1 − δ)/2), or g(xi) = 0 (which
occurs with probability (1−δ)/2). In the case where g(xi) is a coin flip, then the i’th bits of the two
inputs fed to C are random and independent, and otherwise they are equal and fixed (according to
g(xi)). It can be verified that this corresponds precisely to the definition of noise stability, so we
have:

ExpCP[h] = NoiseStabδ[C]. (4)

Now we construct a probabilistic branching program M : ({0, 1}n)k → {0, 1} of width w2, size
kw2 and block-size n such that for every x ∈ ({0, 1}n)k:

Pr[M(x) = 1] = Pr
r,r′

[h(x; r) = h(x; r′)].

To do this, we first note that, using the branching program for C, we can build a probabilistic
branching program with block-size n and width w which computes C ◦ g⊗k: The states of the
branching program are the same as those of the branching program for C, and we define the
transitions as follows. Upon reading symbol α ∈ {0, 1}n in state s, if g(α) = 0 (resp. g(α) = 1),
we deterministically go to the state given by the 0-transition (resp., 1-transition) of C from state
s, and if g(α) is a coin flip, then we put equal probability on these two transitions.

Then, to obtain M , run two independent copies of this branching program (i.e., using indepen-
dent choices for the probabilistic state transitions) and accept if and only if exactly one of the two

15

copies accepts. Now,
∣

∣

∣
ExpCP[(C ◦ g⊗k) ◦G]−NoiseStabδ[C]

∣

∣

∣

=
∣

∣

∣
ExpCP[(C ◦ g⊗k) ◦G]− ExpCP[C ◦ g⊗k]

∣

∣

∣
(by (4))

= 2 ·
∣

∣

∣
Pr[M ◦G(Ul) = 1]− Pr[M(Un·k) = 1]

∣

∣

∣

≤ ε. (by pseudorandomness of G)

The lemma follows combining this with Equation (3).

7 Amplification up to 1/2− 1/ poly

In this section we sketch our hardness amplification up to 1/2 + 1/nc, for every c:

Theorem 7.1. If there is a balanced f : {0, 1}n → {0, 1} in NP that is (1/3)-hard for size
s(n) ≥ nω(1), then for every c > 0 there is a function f ′ : {0, 1}m → {0, 1} in NP that is
(1/2− 1/mc)-hard for size (s(

√
m))Ω(1).

To amplify we use the TRIBES function of Ben-Or and Linial [BL], a monotone read-once DNF.

Definition 7.2. The TRIBES function on k bits is:

TRIBESk(x1, . . . , xk)
def
=

(x1 ∧ . . . ∧ xb) ∨ (xb+1 ∧ . . . ∧ x2b) ∨ . . . ∨ (xk−b+1 ∧ . . . ∧ xk)

where there are k/b clauses each of size b, and b is the largest integer such that (1− 2−b)k/b ≥ 1/2.
Note that this makes b = O(log k).

The TRIBES DNF has very low noise stability when perturbed with constant noise.

Lemma 7.3 ([O’D, MO]). For every constant δ > 0,

NoiseStabδ[TRIBESk] ≤
1

kΩ(1)
.

A key step in our result is that TRIBESk is (trivially) computable by a branching program of
width 3, and therefore we can use Lemma 6.4 to fool its expected bias.

We now define the generator we will use in our derandomized direct product construction.

Definition 7.4. Given n and k ≤ 2n, define the generator Γk : {0, 1}m → ({0, 1}n)k as follows:

Γk(x, y)
def
= IPk(x)⊕Nk(y),

where ⊕ denotes bitwise XOR.

We recall the properties of Γ we are interested in:

Lemma 7.5. The following hold:

1. Γk is indistinguishability-preserving for size k2.

16

2. Γk is 2−n-pseudorandom against branching programs of size 2n and block-size n.

3. Γk has seed length m = O(n2).

4. Γk is explicitly computable (see Definition 4.2 for the definition of explicit).

Proof. (1) By Lemma 5.3 and the fact that an indistinguishability-preserving generator XORed
with any fixed string (in particular, Nk(y) for any y) is still indistinguishability-preserving . (2)
By Theorem 6.3 and the fact that XORing with any fixed string (in particular, IP k(x) for any x)
preserves pseudorandomness against branching programs. (3) By the seed lengths of IP k (Lemma
5.3) and Nk (Theorem 6.3). (4) Because IPk is explicit (Lemma 5.3) and Nk is explicit (Theorem
6.3).

Proof of Theorem 7.1. Given f : {0, 1}n → {0, 1} that is δ-hard for size s(n) (for δ = 1/3) and a
constant c, let k = nc′ for c′ = O(c) to be determined later. Consider the function f ′ : {0, 1}m →
{0, 1} defined by

f ′
def
= (TRIBESk ◦f⊗k) ◦ Γk.

Note that f ′ ∈ NP since f ∈ NP, TRIBES is monotone and both Γ and TRIBES are efficiently
computable.

We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for size k2 by
Lemma 7.5, Lemma 5.2 implies that there is a δ′-random function g (for δ ≤ δ′ ≤ 2δ) such that f ′

has hardness
1

2
− ExpBias

[

(TRIBESk ◦ g⊗k) ◦ Γk

]

2
− k

s(n)1/3
(5)

for circuits of size Ω
(

s(n)1/3
)

−k2−size(TRIBESk). Next we bound the hardness. By Lemma 7.5, we
know that Γk is 2−n-pseudorandom against branching programs of size 2n and block-size n. In par-
ticular, since k = poly(n), Γk is 1/k-pseudorandom against branching programs of size 9k and block-
size n. Since TRIBESk is trivially computable by a branching program of width 3, we can apply
Lemma 6.4 in order to bound ExpBias

[

(TRIBESk ◦ g⊗k) ◦ Γk

]

by
√

NoiseStabδ′ [TRIBESk] + 2/k.

And this noise stability is at most 1/kΩ(1) by Lemma 7.3. Since k = poly(n) and s(n) = nω(1), the
k/s1/3 term in the hardness (5) is negligible and we obtain hardness at least 1/2− 1/kΩ(1).

We now bound the circuit size: Since TRIBESk is computable by circuits of size O(k), and
s(n) = nω(1), the size is at least s(n)Ω(1).

To conclude, note that f ′ has input length m = n2 by Lemma 7.5. The result then follows by
an appropriate choice of c′ = O(c).

8 Using Nondeterminism

In this section we discuss how to use nondeterminism to get the following theorem.

Theorem 8.1. If there is a balanced f : {0, 1}n → {0, 1} in NP that is (1/3)-hard for size s(n),
then there is an f ′ : {0, 1}m → {0, 1} in NP that is (1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Our main observation is that TRIBESk is a DNF with clause size O(log k), and therefore it is
computable in nondeterministic time poly(n) even when k is superpolynomial in n:

17

Lemma 8.2. Let f : {0, 1}n → {0, 1} be in NP, and let Gk : {0, 1}l → ({0, 1}n)k be any explicitly

computable generator (see Definition 4.2) with l ≥ n. Then the function f ′
def
= (TRIBESk ◦f⊗k)◦Gk

is computable in NP for every k = k(n) ≤ 2n.

Proof. We compute f ′(σ) nondeterministically as follows: Guess a clause vi ∧ vi+1 ∧ · · · ∧ vj in
TRIBESk. Accept if for every h s.t. i ≤ h ≤ j we have f(Xh) = 1, where G(σ) = (X1, . . . , Xk) and
the values f(Xh) are computed using the NP algorithm for f .

It can be verified that this algorithm has an accepting computation path on input σ iff f ′(σ) = 1.
Note that the clauses have size logarithmic in k, which is polynomial in n. Moreover, G is explicitly
computable. The result follows.

Now the proof of Theorem 8.1 proceeds along the same lines as the proof of Theorem 7.1, setting

k
def
= s(n)Ω(1).

9 Amplifying from Hardness 1/ poly

Our amplification from hardness Ω(1) to 1/2− ε (Theorem 7.1) can be combined with O’Donnell’s
amplification from hardness 1/ poly to hardness Ω(1) to obtain an amplification from 1/ poly to
1/2− ε. However, since O’Donnell’s construction blows up the input length polynomially, we would
only obtain ε = 1/s(nΩ(1)) (where the hidden constant depends on the initial polynomial hardness)
rather than ε = 1/s(

√
n)Ω(1) (as in Theorem 7.1). Thus we show here how to amplify directly

from 1/ poly to 1/2− ε using our approach. For this we need a combining function C that is more
involved than the TRIBES function. The properties of C that are needed in the proof of Theorem
4.1 are captured by the following lemma.

Lemma 9.1. For every δ(n) = 1/nO(1), there is a sequence of functions Ck : {0, 1}k → {0, 1}, such
that for every k = k(n) with nω(1) ≤ k ≤ 2n, the following hold:

1. NoiseStabδ[Ck] ≤ 1/kΩ(1).

2. For every f : {0, 1}n → {0, 1} in NP and every explicitly computable generator (see Definition
4.2) Gk : {0, 1}l → ({0, 1}n)k with l ≥ n, the function (Ck ◦ f⊗k) ◦Gk is in NP.

3. Ck can be computed by a (read-once, oblivious) branching program of width nO(1).

Before proving Lemma 9.1, let us see how it can be used to prove our main theorem.

Theorem 9.2 (Thm. 4.1, restated). If there is a balanced f ∈ NP, f : {0, 1}n → {0, 1} that
is 1/ poly(n)-hard for size s(n), then there is f ′ ∈ NP, f ′ : {0, 1}m → {0, 1} that is (1/2 −
1/s(
√

m)Ω(1))-hard for size s(
√

m)Ω(1).

Proof. Let f : {0, 1}n → {0, 1} be a balanced function in NP that is δ = δ(n)-hard for size s(n),

where δ ≥ 1/nO(1). Let k = k(n)
def
= s(n)1/7 and let Ck be the function guaranteed by Lemma 9.1.

Let Γk be the the generator from Definition 7.4. Consider the function f ′ : {0, 1}m → {0, 1} defined

by f ′
def
= (Ck ◦ f⊗k) ◦ Γk. Note that f ′ ∈ NP by Item 2 in Lemma 9.1.

18

We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for size k2 (by
Lemma 7.5), Lemma 5.2 implies that there is a δ′-random function g (for δ ≤ δ′ ≤ 2δ) such that f ′

has hardness

α(m) =
1

2
− ExpBias

[

(Ck ◦ g⊗k) ◦ Γk

]

2
− k

s(n)1/3
(6)

for circuits of size

s′(m) = Ω

(

s(n)1/3

log(1/δ)

)

− k2 − size(Ck).

We first bound the hardness α(m). By Lemma 7.5, we know that Γk is 2−n-pseudorandom against
branching programs of size 2n and block-size n. Since the branching program for computing Ck

has width w = nO(1), we have k · w2 < 2n, so we may apply Lemma 6.4 in order to bound
ExpBias

[

(Ck ◦ g⊗k) ◦ Γk

]

by
√

NoiseStabδ′ [Ck] + 2/2n. This noise stability is at most 1/kΩ(1) by

Item 1 in Lemma 9.1. Using the fact that k = s(n)1/7, we have

α(m) ≥ 1

2
−
√

1/kΩ(1) − 2/2n

2
− k

s(n)1/3
=

1

2
− 1

s(n)Ω(1)
.

We now bound the circuit size s′(m). Since Ck is computable by a branching program of width
w = poly(n) it is also computable by a circuit of size poly(n) · k. So size(Ck) ≤ poly(n) · k. Since
log(1/δ) = O(log n) and s(n) = nω(1), we have

s′(m) = Ω

(

s(n)1/3

log n

)

− s(n)2/7 − poly(n) = s(n)Ω(1).

To conclude, we note that f ′ has input length m = O(n2) by Lemma 7.5, so s(n) = s(Ω(
√

m)) =
s(
√

m)Ω(1), and we indeed obtain hardness α(m) = 1/2− 1/s(
√

m)Ω(1) for size s′(m) = s(
√

m)Ω(1).

The rest of this section is devoted to the proof of Lemma 9.1. Recall that amplification from
hardness Ω(1) (Theorem 7.1) relies on the fact that the TRIBES DNF has low noise stability
with respect to noise parameter δ = Ω(1) (i.e., Lemma 7.3). Similarly, to amplify from hardness
1/ poly(n) we need to employ a combining function that has low noise stability with respect to noise
1/ poly(n). To this end, following [O’D], we employ the recursive-majorities function, RMAJr. Let
MAJ denote the majority function.

Definition 9.3. The RMAJr function on 3r bits is defined recursively by:

RMAJ1(x1, x2, x3)
def
= MAJ(x1, x2, x3)

RMAJr(x1, . . . , x3r)
def
=

RMAJr−1

(

MAJ(x1, x2, x3), . . . , MAJ(x3n−2, x3n−1, x3n)
)

The following lemma quantifies the noise stability of RMAJ.

Lemma 9.4 ([O’D], Prop. 11). There is a constant c such that for every δ > 0 and every
r ≥ c · log(1/δ), we have

NoiseStabδ[RMAJr] ≤
1

4
.

19

Note that if r = O(log n) then RMAJr is a function of 3r = poly(n) bits. This is important
because, unlike TRIBES (cf., Lemma 8.2), we do not know how to compute the recursive majority
of superpolynomially many input bits in NP. However, when r = O(log n), RMAJr does not have
sufficiently low noise stability to be used on its own. For this reason, we will combine RMAJ with
TRIBES. (The same combination of RMAJ and TRIBES is employed by O’Donnell, albeit for a
different setting of parameters.)

Proof of Lemma 9.1. Given n and δ = δ(n) ≥ 1/nO(1), let r
def
= c · log(1/δ) for a constant c to

be chosen later. Assume, without loss of generality, that r and k/3r are integers. The function
Ck : {0, 1}k → {0, 1} is defined as follows

Ck
def
= TRIBESk/3r ◦RMAJ⊗k

r .

We now prove that Ck satisfies the required properties.

1. We will use the following result from [O’D].

Lemma 9.5 ([O’D], Proposition 8). If h is a balanced boolean function and ϕ : {0, 1}k →
{0, 1} is any boolean function, then

NoiseStabδ[ϕ ◦ h⊗k] = NoiseStab 1
2
−NoiseStabδ [h]

2

[ϕ].

Letting c be a sufficiently large constant (recall that r = c · log(1/δ)), by Lemma 9.4 we have
that NoiseStabδ[RMAJr]/2 ≥ 1/2 − 1/8 ≥ 3/8. Now note that RMAJr is balanced because
taking the bitwise complement of an input x also negates the value of RMAJr(x). Hence, by
Lemma 9.5,

NoiseStabδ[TRIBESk/3r ◦RMAJ⊗k
r] = NoiseStab3/8[TRIBESk/3r] ≤ 1

(k/3r)Ω(1)
=

1

kΩ(1)
,

where the last two equalities use Lemma 7.3 and the fact that k = nω(1) and r = O(log n).

2. The proof is similar to the proof of Lemma 8.2. To compute (TRIBESk/3r ◦RMAJ⊗k
r ◦f⊗k) ◦

Gk, we guess a clause of the TRIBESk/3r and verify that all the RMAJr evaluations feeding
into it are satisfied (using the NP algorithm for f). The only additional observation is that
each of the recursive majorities depends only on 3r = poly(n) bits of the input, and hence
can be computed in time polynomial in n.

3. As noted earlier, TRIBESk/3r is computable by a branching program of width 3. RMAJr, on

the other hand, can be computed by a branching program of width 2O(r) = nO(1) as follows.
Consider a non-uniform algorithm with a stack that reads the inputs to RMAJr in order,
placing them on the stack; every time the stack contains the values of all 3 inputs to some
MAJ, it replaces them with the value of their majority. Using non-uniformity to determine
when such triples can be collapsed, the only space requirement is the stack of size O(r).
(It is not hard to see that a stack of size O(r) always suffices.) Therefore this non-uniform
space-bounded computation can be performed by a branching program of width 2O(r). By
composing the (constant width) branching program for TRIBES with the branching program
for RMAJ, we can compute Ck by a branching program of width 2O(r) = nO(1).

20

10 On the Possibility of Amplifying Hardness up to 1/2− 1/2Ω(n)

Even when starting from a function that is δ-hard for size 2Ω(n), our results (Theorem 4.1) only
amplify hardness up to 1/2− 1/2Ω(

√
n) (rather than 1/2− 1/2Ω(n)). In this section we discuss the

possibility of amplifying hardness in NP up to 1/2 − 1/2Ω(n), when starting with a function that
is δ-hard for size 2Ω(n). The problem is that the seed length of our generator in Lemma 7.5 is
quadratic in n, rather than linear. To amplify hardness up 1/2− 1/2Ω(n) we need a generator (for
every k = 2Ω(n)) with the same properties of the one in Lemma 7.5, but with linear seed length.

Recall our generator is the XOR of an indistinguishability-preserving generator and a generator
that is pseudorandom against branching programs. While it is an open problem to exhibit a
generator with linear seed length that is pseudorandom against branching programs, an indisting-
uishability-preserving generator with linear seed length is given by the following lemma.

Lemma 10.1. For every constant γ, 0 < γ < 1, there is a constant c such that for every n there

is an explicitly computable generator IP ′2n/c : {0, 1}l → ({0, 1}n)2
n/c

with seed length l = c · n that
is indistinguishability-preserving for size 2γ·n.

Proof. The generator is due to Nisan and Wigderson [NW] and Impagliazzo and Wigderson [IW1].
It is the same generator as the one used in Lemma 5.3, except we require a design consisting of
2Ω(n) sets of size n in a universe of size O(n), with pairwise intersections of size at most γn/2. An
explicit construction of such a design is given in [GV].3

Theorem 10.2. Suppose that there exists an explicit generator N ′2n : {0, 1}l → ({0, 1}n)2
n

that is
2−n-pseudorandom against branching programs of size 2n and block-size n and that has seed length
l = O(n). Then the following holds: If there is a balanced f ∈ NP, f : {0, 1}n → {0, 1} that is
1/ poly(n)-hard for size 2Ω(n), then there is f ′ ∈ NP, f ′ : {0, 1}m → {0, 1} that is (1/2− 1/2Ω(n))-
hard for size 2Ω(n).

For amplifying from constant hardness, it suffices to instead have a generator fooling constant-
depth circuits of size 2n with seed length O(n). (The generator of Nisan [Nis1] has seed length
poly(n).) The reason is that our proof that PRGs versus branching programs “fool” the expected
bias also works for PRGs versus constant-depth circuits, provided that the combining function is
computable in constant depth. The TRIBES function is depth 2 by definition (but the recursive
majorities RMAJ is not constant-depth, and hence this would only amplify from constant hardness).

More generally, we only need, for every constant γ > 0, a generator G : {0, 1}O(n) → ({0, 1}n)k

where k = 2γn such that for every δ-random function g,

ExpBias
[

(Ck ◦ g⊗k) ◦G
]

= 2−Ω(n),

where, for example, Ck = TRIBESk (when δ is constant). As in the proof of Lemma 3.7, in proving
such a statement, it may be convenient to work instead with the (polynomially related) expected
collision probability. An important property of Ck = TRIBESk we used in bounding the expected
bias with respect to G is that it gives expected bias 2−Ω(n) if G is replaced with a truly random
generator (i.e. using seed length n ·k) and δ is constant. One might try to use a different monotone

3In [IW1] they give a randomized algorithm, using O(n) random bits, such that with probability exponentially
close to 1, the algorithm explicitly computes such sets S1, . . . , SM with l = O(n). This is sufficient for computing an
indistinguishability-preserving generator.

21

combining function with this property, provided it can also be evaluated in nondeterministic time
poly(n).

11 On the balancing hypothesis

The hardness amplification results in the previous sections start from balanced functions. In this
section we study this hypothesis. Our main finding is that, while this hypothesis is not necessary
for hardness amplification within NP/ poly (i.e., non-deterministic polynomial size circuits), it is
likely to be necessary for hardness amplification within NP.

To see that this hypothesis is not necessary for amplification within NP/ poly, note that if the
quantity Prx[f(x) = 1] of the original hard function f : {0, 1}n → {0, 1} is known, then we can
easily pad f to obtain a balanced function f̄ : {0, 1}n+1 → {0, 1}:

f̄(x, p)
def
=

f(x) if p = 0
0 if p = 1 and x ≤ Prx[f(x) = 1] · 2n

1 if p = 1 and x > Prx[f(x) = 1] · 2n

It is easy to see that f̄ is 1/ poly(n)-hard if f is. Since a circuit can (non-uniformly) know
Prx[f(x) = 1], the following hardness amplification within NP/ poly is a corollary to the proof of
Theorem 4.1.

Corollary 11.1. If there is an f ∈ NP/ poly, f : {0, 1}n → {0, 1} that is 1/ poly(n)-hard for size
s(n), then there is f ′ ∈ NP/ poly, f ′ : {0, 1}m → {0, 1} that is (1/2 − 1/s(

√
m)Ω(1))-hard for size

s(
√

m)Ω(1).

Now we return to hardness amplification within NP. First we note that, in our results, to
amplify the hardness of f : {0, 1}n → {0, 1} up to 1/2− ε it is only necessary that Bias [f] ≤ εc for
some universal constant c. The argument is standard and can be found, for example, in [Tre].

Combining this observation with the above padding technique, O’Donnell constructs several
candidate hard functions, one for each ‘guess’ of the bias of the original hard function. He then
combines them in a single function using a different input length for each candidate; this gives a
function that is very hard on average for infinitely many input lengths. However, this approach,
even in conjunction with derandomization and nondeterminism, cannot give better hardness than
1/2 − 1/n. (Roughly speaking, if we want to amplify to 1/2 − ε, then we will have at least 1/ε
different candidates and thus the “hard” candidate may have input length n ≥ 1/ε, which means
1/2− ε ≤ 1/2− 1/n.)

To what extent can we amplifiy the hardness of functions whose bias is unknown? Non-monotone
hardness amplifications, such as Yao’s XOR Lemma, work regardless of the bias of the original
hard function. However, in the rest of this section we show that, for hardness amplifications that
are monotone and black-box, this is impossible. In particular, we show that black-box monotone
hardness amplifications cannot amplify the hardness beyond the bias of the original function.

We now formalize the notion of black-box monotone hardness amplification and then state our
negative result.

Definition 11.2. An oracle algorithm Amp : {0, 1}l → {0, 1} is a black-box β-bias [δ 7→ (1/2−ε)]-
hardness amplification for length n and size s if for every f : {0, 1}n → {0, 1} such that Bias [f] ≤ β

22

and for every A : {0, 1}l → {0, 1} such that

Pr[A(Ul) 6= Ampf (Ul)] ≤ 1/2− ε,

there is an oracle circuit C of size at most s such that

Pr[CA(Un) 6= f(Un)] ≤ δ.

Amp is monotone if for every x, Ampf (x) is a monotone function of the truth table of f .

Note that if Amp is as in Definition 11.2 and if f is δ-hard for size s′ and Bias [f] ≤ β, then
Ampf is (1/2 − ε)-hard for size s′/s: if there were a circuit A of size s′/s computing Ampf with
error probability at most 1/2 − ε, then CA would be a circuit of size s · (s′/s) = s′ computing f
with error probability at most δ, contradicting the hardness of f . The term “black box” refers to
the fact that the definition requires this to hold for every f and A, regardless of whether or not f
is in NP and A is a small circuit.

Theorem 11.3. For any constant θ > 0, if Amp is a monotone black-box β-bias [δ 7→ (1/2− ε)]-
hardness amplification for length n and size s ≤ 2n/3 such that 1/2−2ε > δ+θ, then β ≤ 4ε+O(2−n).

The main ideas for proving this bound are the same as in the negative result for black-box
hardness amplification in [Vio1]: First we show that the above kind of hardness amplification
satisfies certain coding-like properties. (Roughly, Amp can be seen as a kind of list-decodable code
where the distance property is guaranteed only for δ-distant messages with bias at most β (cf.,
[Tre]).) Then we show that monotone functions fail to satisfy these properties. The limitation we
prove on monotone functions relies on the Kruskal-Katona theorem (see [And]). In particular, we
use the following corollary to the Kruskal-Katona theorem.

Lemma 11.4. Let f : {0, 1}n → {0, 1} be a monotone function, and let Sk be the uniform distri-
bution on n-bit strings of Hamming weight k (i.e., having exactly k ones). Then for every integer
k, 0 ≤ k ≤ n/2, either

Biasx←Sk
[f(x)] ≥ 1− 2k

n
or Biasx←Sn−k

[f(x)] ≥ 1− 2k

n
.

The following lemma captures the coding-like properties of monotone, black-box hardness am-
plifications — it shows that it is very unlikely that Ampf for a “random f” will land in any fixed
Hamming ball of radius 1/2 − ε. Let Fp be the uniform distribution on functions f whose truth-
tables have relative Hamming weight exactly p, i.e. Prx[f(x) = 1] = p. For two functions f1, f2, let

Dist denote the Hamming distance of their truth tables, i.e. Dist(f1, f2)
def
= Prx[f1(x) 6= f2(x)].

Lemma 11.5. Let Amp be a monotone black-box β-bias [δ 7→ (1/2− ε)]-hardness amplification for
length n and size s ≤ 2n/3, where 1/2 − β/2 > δ + γ and 1/2 − β/2 = d/2n for some integer d.
Then for both p in {1/2− β/2, 1/2 + β/2} and every function G:

Pr
F←Fp

[Dist(G,AmpF) ≤ 1/2− ε] ≤ 2−Ω(2n).

23

Proof. Let N
def
= 2n. For every function f of bias at most β such that Dist(G,Ampf) ≤ 1/2 − ε,

there must exist a circuit of size s, with oracle access to G, that computes f with error at most δ.
Therefore, since there are 2O(s log s) circuits of size s and no more than 2H(δ)N functions that are
at distance at most δ from f , there are at most 2O(s log s)2H(δ)N such functions. Thus, when we
restrict our attention to the

(

N
pN

)

functions in Fp, we have:

Pr
F∈Fp

[Dist(G,AmpF) ≤ 1/2− ε] ≤ 2O(s log s) · 2H(δ)N

(

N
pN

)

≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(p))N

≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(1/2−β))N

≤ 2−Ω(N).

Proof of Theorem 11.3. It will be convenient to assume that 1/2 − β/2 = d/2n for some integer
d. Because the conclusion of the theorem only bounds β up to an additive term of size O(2−n),
this assumption is without loss of generality. We may also assume that β ≤ 4ε + θ because a
β-bias hardness amplification is also a β ′-bias hardness amplification for any β ′ ≤ β, and 4ε + θ >
4ε + O(2−n).

By Lemma 11.4, we may choose p ∈ {1/2 − β/2, 1/2 + β/2} such that for at least half of the

x ∈ {0, 1}l, BiasF∈Fp [AmpF (x)] is at least β. Define the function G(x)
def
= MAJF∈Fp AmpF (x). Now

consider
Pr

Ul,F←Fp

[AmpF (Ul) 6= G(Ul)]. (7)

We now apply Lemma 11.5, setting γ = θ/2. Note that the hypothesis is satisfied because 1/2 −
β/2 ≥ 1/2− (4ε + θ)/2 > δ + θ/2. Thus, we conclude that Quantity (7) is at least 1/2− ε− 2Ω(2n).

On the other hand:

Pr
Ul,F←Fp

[AmpF (Ul) 6= G(Ul)]

= EUl

[

Pr
F←Fp

[AmpF (Ul) 6= G(Ul)]
]

= EUl

[1

2
− BiasF←Fp [AmpF (x)]

2

]

(by definition of bias and G)

=
1

2
−

EUl

[

BiasF←Fp [AmpF (x)]
]

2

≤ 1

2
− (β/2)

2
(by the choice of p)

Combining the two bounds, we have that 1/2 − β/4 ≥ 1/2 − ε − 2−Ω(2n), which implies that
β ≤ 4ε + O(2−n).

24

12 Nondeterminism is necessary

In this section we show that deterministic, monotone, non-adaptive black-box hardness amplifica-
tions cannot amplify hardness beyond 1/2 − 1/ poly(n). Thus, the use of nondeterminism in our
results (Section 8) seems necessary. Note that most hardness amplifications, including the one in
this paper, are black-box and non-adaptive.

O’Donnell [O’D] proves that any monotone “direct product construction” (i.e. f ′(x1, . . . , xk) =
C(f(x1), . . . , f(xk)), as in Equation 1) cannot amplify to hardness better than 1/2−1/n, assuming
only that the amplification works. Our result is orthogonal: we relax the assumption that the
hardness amplification is a direct product construction (allowing any monotone nonadaptive oracle
algorithm f ′ = Ampf), but on the other hand we require that the reduction proving its correctness
is also black-box (as formalized in Definition 11.2).

We prove our bound even for hardness amplifications that amplify only balanced functions (i.e.
β = 0 in Def. 11.2).

Theorem 12.1. For every constant δ < 1/2, if Amp is a black-box 0-bias [δ 7→ (1/2− ε)]-hardness
amplification for length n and size s ≤ 2n/3 such that for every x, Ampf (x) is a monotone function
of k ≤ 2n/3 values of f , then

ε ≥ Ω

(

log2 k

k

)

.

The proof of this result follows closely the proof of the negative result on hardness amplification
in [Vio1]. The main difference is here we use bounds on the noise stability of monotone functions
rather than constant depth circuits.

The following lemma is similar to Lemma 11.5. The only difference is in considering functions
F at distance η from f ; this will correspond to perturbing the monotone amplification-function
with noise of parameter η.

Lemma 12.2. Let Amp be as in Definition 11.2 with β = 0 and s ≤ 2n/3. Then for any constant
δ < 1/2 there is a constant η < 1/2 such that, for sufficiently large n, the following holds: If
f : {0, 1}n → {0, 1} is any fixed balanced function and F : {0, 1}n → {0, 1} is a random balanced
function such that Dist(f, F) = η, then

Pr
F

[Dist(Ampf ,AmpF) ≤ 1/2− ε] ≤ ε.

Proof. Let N
def
= 2n. It is easy to see that F is uniform on a set of size

(N/2
ηN/2

)2
. The rest is like the

proof of Lemma 11.5:

Pr[Dist(Ampf ,AmpF) ≤ 1/2− ε] ≤ 2O(s log s)2H(δ)N

(N/2
ηN/2

)2

≤ 2O(s log s) · (N/2 + 1)2 · 2(H(δ)−H(η))N

≤ ε.

where the last inequality holds for a suitable choice of η < 1/2, using the fact that δ < 1/2 is a
constant and that s ≤ 2n/3.

25

Proof of Theorem 12.1. Let η be the constant in Lemma 12.2. The idea is to consider

Pr
Ul,F,F ′

[AmpF (Ul) 6= AmpF ′

(Ul)], (8)

where F is a random balanced function and F ′ is a random balanced function such that
Dist(F, F ′) = η.

By the above lemma, the probability (8) is at least 1/2− 2ε.
On the other hand, for every fixed x, AmpF (x) is a monotone function depending only on k

bits of the truth-table of the function F . Since k is small compared to 2n, the distribution (F, F ′)
induces on the input of AmpF (x) a distribution very close to (Uk, Uk ⊕ µ), where µ is a noise vector
with parameter η. Specifically, it can be verified that the statistical difference between these two
distributions is at most O(k2/(η2n)). Because this value is dominated by log2 k/k when k ≤ 2n/3,
and because AmpF (x) is a monotone function of k bits, we may apply Theorem 3.10 to conclude
that the probability (8) is at most 1/2−O(log2 k/k).

Combining the two bounds, we have that 1/2−O(log2 k/k) ≥ 1/2−2ε and the results follows.

13 Impagliazzo and Wigderson’s Hardness Amplification

Our framework gives a new proof of the hardness amplification by Impagliazzo and Wigder-

son [IW1]. This hardness amplification can amplify hardness up to 1/2 − 1/2Ω(n) within E def
=

DTIME
(

2O(n)
)

. The improvement over the standard Yao XOR Lemma is that the input length of
the amplified function increases only by a constant factor. In this section, we sketch a simple proof
of this result using the framework in developed in earlier sections. In particular our proof does not
use the Goldreich–Levin hardcore predicate [GL].

The construction of [IW1] uses an expander-walk generator Wk : {0, 1}l → ({0, 1}n)k, which
uses its seed of length l = n + O(k) to do a random walk of length k (started at a random vertex)
in a constant-degree expander graph on 2n vertices. More background on such generators can be
found in [Gol2, Sec 3.6.3]. The construction of [IW1] XORs the expander-walk generator with the
(first k outputs of the) indistinguishability-preserving generator from Lemma 10.1:

Definition 13.1. Let k = c · n for a constant c > 1. Let IP ′′k : {0, 1}n → ({0, 1}n)k be a
generator that is indistinguishability-preserving for size 2n/c as given by Lemma 10.1. The generator
IW k : {0, 1}l → ({0, 1}n)k is defined as

IW k(x, y)
def
= IP ′′k(x)⊕Wk(y).

The seed length of IW k is l = O(n).

Given a function f that is 1/3-hard for size s = 2Ω(n), the Impagliazzo–Wigderson amplification
defines

f ′
def
= (XOR ◦ f⊗k) ◦ IW k : {0, 1}O(n) → {0, 1},

where k = c · n for a constant c that depends on the hidden constant in the s = 2Ω(n). They prove
the following about this construction.

Theorem 13.2 ([IW1]). If there is a function f : {0, 1}n → {0, 1} in E def
= DTIME (2O(n)) that is

1/3-hard for size 2Ω(n), then there is a function f ′ : {0, 1}m → {0, 1} in E that is (1/2−2−Ω(m))-hard
for size 2Ω(m).

26

Proof. By Theorem 5.2 there exists a δ′-random function g : {0, 1}n → {0, 1}, where δ′ is a constant,
such that the hardness of f ′ : {0, 1}O(n) → {0, 1} is 1/2 − ExpBias

[

(XOR ◦ g⊗k) ◦ IW k

]

− 2−Ω(n)

for circuits of size 2Ω(n).
We now bound the hardness. Whenever some IW i(x) falls in the set of inputs of density 2 · δ′

where the output of g is a coin flip, the bias of (XOR ◦ g⊗k) ◦ IW k is 0. Therefore

ExpBias
[

(XOR ◦ g⊗k) ◦ IW k

]

≤ Pr
x

[∀i : IW i(x) 6∈ H] ≤ 2−Ω(n),

where in the last inequality we use standard hitting properties of expander walks (see e.g. [Gol1]
for a proof), and take c to be a sufficiently large constant.

14 Acknowledgments

We thank Ryan O’Donnell and Rocco Servedio for an email exchange about noise stability. We
thank Richard Stanley for pointing out the Kruskal-Katona theorem. We also thank Oded Goldre-
ich, Luca Trevisan, Avi Wigderson, and the anonymous reviewers for helpful suggestions.

References

[And] I. Anderson. Combinatorics of finite sets. Dover Publications Inc., Mineola, NY, 2002.
Corrected reprint of the 1989 edition.

[BFL] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1(1):3–40, 1991.

[BF] D. Beaver and J. Feigenbaum. Hiding Instances in Multioracle Queries. In 7th Annual
Symposium on Theoretical Aspects of Computer Science, volume 415 of Lecture Notes in
Computer Science, pages 37–48, Rouen, France, 22–24 Feb. 1990. Springer.

[BL] M. Ben-Or and N. Linial. Collective Coin-Flipping. In S. Micali, editor, Randomness and
Computation, pages 91–115. Academic Press, New York, 1990.

[BT] A. Bogdanov and L. Trevisan. On Worst-Case to Average-Case Reductions for NP Prob-
lems. In 44th Annual Symposium on Foundations of Computer Science, Cambridge, Mas-
sachusetts, 11–14 Oct. 2003. IEEE.

[CPS] J.-Y. Cai, A. Pavan, and D. Sivakumar. On the Hardness of the Permanent. In 16th
International Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science, Volume 1563, Trier, Germany, March 4–6 1999. Springer-Verlag.

[FL] U. Feige and C. Lund. On the Hardness of Computing the Permanent of Random Matrices.
Computational Complexity, 6(2):101–132, 1996.

[FF] J. Feigenbaum and L. Fortnow. Random-Self-Reducibility of Complete Sets. SIAM J. on
Computing, 22(5):994–1005, Oct. 1993.

[Gol1] O. Goldreich. A Sample of Samplers - A Computational Perspective on Sampling (survey).
Electronic Colloquium on Computational Complexity (ECCC), 4(020), 1997.

27

[Gol2] O. Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness, volume 17
of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1999.

[GL] O. Goldreich and L. A. Levin. A Hard-Core Predicate for all One-Way Functions. In
Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages
25–32, Seattle, Washington, 15–17 May 1989.

[GNW] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR lemma. Technical Report
TR95–050, Electronic Colloquium on Computational Complexity, March 1995. http://

www.eccc.uni-trier.de/eccc.

[GV] D. Gutfreund and E. Viola. Fooling Parity Tests with Parity Gates. In Proceedings of the
Eight International Workshop on Randomization and Computation (RANDOM), Lecture
Notes in Computer Science, Volume 3122, pages 381–392, August 22–24 2004.

[HVV] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify hardness. In Pro-
ceedings of the Thirty-Six Annual ACM Symposium on the Theory of Computing, pages
192–201, Chicago, IL, 13–15 June 2004.

[Imp] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th Annual
Symposium on Foundations of Computer Science, pages 538–545, Milwaukee, Wisconsin,
23–25 Oct. 1995. IEEE.

[IW1] R. Impagliazzo and A. Wigderson. P = BPP if E Requires Exponential Circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pages 220–229, El Paso, Texas, 4–6 May 1997.

[IW2] R. Impagliazzo and A. Wigderson. Randomness vs time: derandomization under a uniform
assumption. J. Comput. System Sci., 63(4):672–688, 2001. Special issue on FOCS 98 (Palo
Alto, CA).

[KKL] J. Kahn, G. Kalai, and N. Linial. The Influence of Variables on Boolean Functions (Ex-
tended Abstract). In 29th Annual Symposium on Foundations of Computer Science, pages
68–80, White Plains, New York, 24–26 Oct. 1988. IEEE.

[KS] A. Klivans and R. A. Servedio. Boosting and Hard-Core Sets. Machine Learning, 53(3):217–
238, 2003.

[Lip] R. Lipton. New Directions in Testing. In Proceedings of DIMACS Workshop on Distributed
Computing and Cryptography, 1989.

[MO] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random
Struct. Algorithms, 23(3):333–350, 2003.

[Nis1] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

[Nis2] N. Nisan. Pseudorandom Generators for Space-bounded Computation. Combinatorica, 12,
1992.

28

[NW] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci., 49(2):149–
167, Oct. 1994.

[O’D] R. O’Donnell. Hardness Amplification Within NP . In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, pages 751–760. ACM, May 2002.

[STV] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. System Sci., 62(2):236–266, 2001. Special issue on the Fourteenth Annual IEEE
Conference on Computational Complexity (Atlanta, GA, 1999).

[Tre] L. Trevisan. List Decoding Using the XOR Lemma. In 44th Annual Symposium on Foun-
dations of Computer Science, Cambridge, Massachusetts, 11–14 Oct. 2003. IEEE.

[TV] L. Trevisan and S. Vadhan. Pseudorandomness and Average-Case Complexity via Uni-
form Reductions. In Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, pages 129–138, Montréal, CA, May 2002. IEEE.

[Vio1] E. Viola. The Complexity of Constructing Pseudorandom Generators from Hard Func-
tions. Technical Report TR04-020, Electronic Colloquium on Computational Complexity,
2004. http://www.eccc.uni-trier.de/eccc. To appear in Computational Complexity.
Preliminary version titled ‘Hardness vs. Randomness within Alternating Time’, in 18th
Annual IEEE Conference on Computational Complexity.

[Vio2] E. Viola. On Parallel Pseudorandom Generators. Technical Report 04–074, Electronic
Colloquium on Computational Complexity, 2004.

[Yao] A. C. Yao. Theory and Applications of Trapdoor Functions (Extended Abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois,
3–5 Nov. 1982. IEEE.

29

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

