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Abstract. We study the complexity of computing k-wise independent
and e-biased generators G : {0,1}" — {0,1}™. Specifically, we refer
to the complexity of computing G explicitly, i.e. given x € {0,1}" and
i € {0,1}'°8™  computing the i-th output bit of G(x). [MNT90] show
that constant depth circuits of size poly(n) (i.e. AC®) cannot explicitly
compute k-wise independent and e-biased generators with seed length
n= 210g°(1) m.

In this work we show that DLOGTIME-uniform constant depth circuits
of size poly(n) with parity gates can explicitly compute k-wise indepen-
dent and e-biased generators with seed length n = (poly)log m. In some
cases the seed length of our generators is optimal up to constant factors,
and in general up to polynomial factors. To obtain our results, we show
a new construction of combinatorial designs, and we also show how to
compute, in DLOGTIME-uniform AC®, random walks of length log®n
over certain expander graphs of size 2".

1 Introduction

The notion of pseudorandom generators (PRGs) is central to the fields of Com-
putational Complexity and Cryptography. Informally, a PRG is an efficient de-
terministic procedure that maps a short seed to a long output, such that certain
tests are fooled by the PRG, i.e. they cannot distinguish between the output of
the PRG (over a random input) and the uniform distribution. More formally, a
PRG G : {0,1}" — {0,1}™ e-fools a test M : {0,1}™ — {0,1} if

Pr [M(y)=1—- Pr [M(G(x)) =1]|<e.
LB M) =1- Pr [M(G@)=1] <
One popular class of tests are parity ones (sometimes called linear tests).
These are the tests that, given z € {0,1}™, only output the XOR of a fixed sub-
set of the bits of z. A generator is called e-biased if it e-fools such tests [NN9O].
Another popular type of tests are those whose value, given z € {0,1}™, depends

* Research supported in part by the Leibniz Center, the Israel Foundation of Science,
a US-Israel Binational research grant, and an EU Information Technologies grant
(IST-FP5).

** Research supported by NSF grant CCR-0133096 and US-Israel BSF grant 2002246.

ISSN 1433-8092



only on k fixed bits of z, but the dependence on those bits is arbitrary. A genera-
tor is called (e, k)-wise independent if it e-fools such tests. An important special
case of (e, k)-wise independent generators are those where € = 0, i.e. every k fixed
output bits of the generator are uniform over {0, 1}*. Such generators are called
k-wise independent. e-biased and k-wise independent generators have found sev-
eral applications in Complexity Theory and Cryptography. For a discussion of
these generators we refer the reader to the excellent book by Goldreich [Gol99].

In this paper we study the following general question: what are the mini-
mal computational resources needed to compute k-wise and e-biased generators?
Throughout this work, when we refer to the complexity of a generator G, we
actually refer to the complexity of computing the i-th bit of G(x) given a seed
z € {0,1}™ and an index i € {0,1}°8™. This is a more refined notion of complex-
ity (compared to the complexity of computing G(x), which is at least linear in the
output length m), and it is especially adequate for generators having logarithmic
seed length (i.e. n ~ logm), as is the case with k-wise independent and e-biased
generators (see below). Generators for which we can efficiently compute the i-th
output bit of G(z), given z € {0,1}" and i € {0,1}'°8™ are called ezplicit.
Explicitness plays a crucial role in many applications where only some portion
of G(z) is needed at each time, and the application runs in time polynomial in
the seed length of the generator (rather than in its output length). These appli-
cations include constructions of universal hash functions, lower bounds proofs
[Kab03], resource-bounded measure theory [CSS97], and more.

k-wise independent and e-biased generators, G : {0,1}" — {0,1}™, explicitly
computable in time poly(n) are known with seed length logarithmic in the output
length, i.e. n = O(logm) [CG89,ABI86,NN90,AGHP92] (for constant k¥ and e.
Later we will be more precise about the dependence on k and €). On the other
hand, Mansour, Nisan and Tiwari [MNT90] showed? that any k-wise independent,
or e-biased generator G : {0,1}" — {0,1}™ explicitly computable by constant

depth circuits (AC?) of size poly(n) must have seed length n > log”m 5,
poly logm.

In this paper we ask the following question: Are there k-wise independent
and e-biased generators, G : {0,1}" — {0,1}™, with seed length n = O(logm)
(or n = polylogm), explicitly computable by constant depth circuits with par-
ity gates (denoted AC°[®]) of size poly(n)? (Recall that parity is the function
PB(z) := 3", s mod 2).

We give an affirmative answer by showing several constructions of such gener-
ators explicitly computed by AC°[@®] circuits of size poly(n) (our results are dis-
cussed below). All our circuits are DLOGTIME-uniform. Informally this means
that each gate (resp. edge) in the circuit can be specified in time linear in
the name of the gate (resp. edge). DLOGTIME-uniformity is the strongest no-
tion of uniformity found generally applicable, and gives nice characterizations of
ACP, ACO[®)] [BIS90]. In this paper whenever we say that a circuit class is uni-
form we always mean that it is DLOG TIME-uniform. Note that uniform AC°[@)]

3 In [MNT90] this negative result is stated for hash functions only, but their techniques
apply to k-wise independent and e-biased generators as well.



is strictly contained in L := logarithmic space. Therefore all our generators are
in particular explicitly computable in space O(logn). For background on circuit
complexity we refer the reader to the excellent book by Vollmer [Vol99].

Recently there has been some work on constructing k-wise independent and
e-biased generators in the very restricted class NC? (i.e. each output bit of the
generator depends on a constant number of input bits) [CM01,MST03,ATK04].
However, it is not difficult to see that the seed length of these generators must
be n = m®® | which is exponentially bigger than the seed length of the con-
structions that we present here.

Generators : {0,1}" — {0,1}™ explicitly computable
by DLOGTIME-uniform AC°[@®] circuits of size poly(n)

Seed length Type Limitations Reference
n = O(logm) k-wise k=0() Theorem 10 (1)
n = O(k*log(m)log(k - logm))| k-wise - Theorem 10 (2)
n = O(logm + log1/¢) e-biased|e > 1/2P° 1o8108(m) | Theorem 12 (1)
n = O(logm - log 1/¢) e-biased - Theorem 12 (2)

Table 1. Our main results.

1.1 Our results

Our main results are summarized in Table 1. We now discuss some of the gen-
erators in Table 1.

k-wise independent generators in AC°[®]: k-wise independent generators ex-
plicitly computable in time poly(n) are known with seed length n = O(klogm)
[CG89,ABI86] which is optimal up to constant factors (a lower bound of (klogm)/2
was proven in [CGHT85]).

To understand the difficulty of implementing these generators in AC°[@®]
let us discuss a construction from [CG89,ABI86]. For simplicity of exposition,
assume that m = 2" for some integer h. Let GF(2") be the field of size 2", then
for every k, the generator G : {0,1}" — {0,1}™ defined as

G(ag,a1,...,ak-1); := Zajij, where ag, a1, . ..,ax_1,4 € GF(2"), (1)
i<k

is a k-wise independent generator* with seed length n = kh = klogm.

For concreteness, in the following discussion let us fix k at most poly(h), so
that poly(n) = poly(h). To compute the generator in Equation 1 we must solve
two problems: (i) we must find a representation of GF(2") (e.g., an irreducible

* This generator outputs non-Boolean random variables. To get Boolean random vari-
ables we can, say, take the least significant bit of G(z);.



polynomial of degree h over GF(2)), and (ii) we must compute field operations
(such as multiplication and exponentiation) over G F(2").

We do not know how to solve (i) in uniform AC°[®)] circuits of size poly(h)
for every given h. However, for h of the special form h = 2-3! (for some 1), one can
use the polynomial z" +z"/? 4+ 1 which is irreducible over GF(2) (see e.g. [vL.99],
Theorem 1.1.28). (Also, standard algorithms solve (i) under P-uniformity.)

At the time we wrote this paper we did not know how to solve (ii) in uni-
form ACP[®]. However, subsequent to our work, and actually motivated by it,
there has been progress on (ii) (E. Allender, A. Healy and E. Viola, personal
communication, August 2004).

In this work we exhibit alternative constructions of k-wise independent gen-
erators computable in uniform AC[®)].

Techniques: Our k-wise independent generators are based on combinatorial
designs. A combinatorial design is a collection of m subsets Si,...,Spm of {1...n}
with small pairwise intersections. We obtain the i-th output bit of the generator
by taking the parity of the bits of the seed indexed by S;. Roughly speaking, the
small intersection size of the sets will guarantee the k-wise independence of the
variables. For the case k¥ = O(1), we give a new construction of combinatorial
designs with n = O(logm), which is computable in AC°[®] (Lemma, 7). Follow-
ing an idea from [HRO3] (credited to S. Vadhan), we obtain this construction by
“concatenating” Reed-Solomon codes with a design construction from [Vio04].

To compute our design constructions (specifically the Reed-Solomon code)
we work over finite fields as well (as does the classic k-wise independent generator
in Equation 1). The difference is that in our constructions we need finite fields
of size exponentially smaller, i.e. poly(n) (as opposed to 2") . Representations
of such fields can be found by brute force (even in uniform AC?), and results by
Agrawal et. al. [AAIT01] show how to perform field operations over fields of size
poly(n) by uniform AC? circuits of size poly(n).

e-biased generators in AC°[@]: Similar to k-wise independent generators, e-
biased generators explicitly computable in time poly(n) are known with seed
length n = O(logm + log 1/€) [NN90,AGHP92] which is optimal up to constant
factors [AGHP92].

Alon et. al. [AGHP92] give three simple constructions, but none of them
seems to be implementable in uniform AC?[®]: they either seem to be inherently
sequential, or they need large primes, or they need exponentiation over finite
fields of size 2™ with exponent of n bits, all of which do not seem to be computable
in uniform AC°[®] circuits of size poly(n).

Prior to the work of [AGHP92], Naor and Naor [NN90] gave another con-
struction. We show that their construction (as long as € > 1/2p°y1ogloem) can he
implemented in uniform AC°[®]. (For € < 1/2Polvloglogm we obtain seed length
O((logm)(log 1/€)) with a slight modification of the construction in [NN90]).

Techniques: The construction of [NN90] goes through a few stages. In partic-
ular it uses as a component a 7-wise independent generator. By the discussion
above, we have such a generator in uniform AC°[®]. [NN90] also needs to com-



pute random walks on an expander graph. We show that, for every fixed ¢,
random walks of length log®n on the Margulis expander [Mar73] of size 2", can
be computed by uniform AC? circuits of size poly(n) (where the depth of the
circuit depends on ¢). We also argue that for this specific expander, our result is
tight. Bar-Yossef, Goldreich and Wigderson [BYGW99] show how to efficiently
compute walks on the same expander but in an online model of computation.
Their result is incomparable to ours. Ajtai [Ajt93] shows how to compute in
uniform AC° of size poly(n) walks of length logn on expander graphs of size
exponentially smaller, i.e. n.

Almost k-wise independent generators in AC°[@]: Using the approach of [NN9(]
that combines k-wise independent and e-biased generators to get almost k-wise
independent generators, we can use our constructions to obtain an (e, k)-wise
independent generator G : {0,1}™ — {0,1}™ explicitly computable by uniform
ACP[®] circuits of size poly(n, logm). Its seed length is O(k+log log m+log(1/€))
as long as k = poly loglogm and € = 1/2P°ylogloem Tp this range of parameters,
this seed length matches that of the best known constructions [NN90,AGHP92]
up to constant factors. We leave the details of this construction to the interested
reader.

Organization: In Section 2 we discuss some preliminaries. In Section 3 we show
the connection between combinatorial designs and k-wise independent gener-
ators, and we exhibit our construction of combinatorial designs and our con-
structions of k-wise independent generators in uniform AC?[®]. In Section 4 we
give our e-biased generators in uniform AC°[®]. This includes our results about
computing walks on expander graphs.

2 Preliminaries

We now define k-wise independent and e-biased generators. Denote the set
{1,...,m} by [m]. For I C [m] and G(z) € {0,1}™ we denote by G(z)|r €
{0,1}1I the projection of G(x) on the bits specified by I. Recall that @ is the
parity function, i.e. P, ;(x) == > ;c;x;i (mod 2).

Definition 1. Let G : {0,1}™ — {0,1}™ be a function.

— G is (e, k)-wise independent if for every 0 < k' < k, M : {0,1}* — {0,1}
and I C [m] such that |I| = k':

Pr [M(y)=1- Pr [M(G(z :1|<e
P M@ =1 = P (MG =1 <
— G is k-wise independent if it is (0, k)-wise independent.

— G is e-biased if for every O # I C [m]: | Prycqo,13n [@;e; G()i = 0]—%‘ <e.



We now define the circuit classes of interest in this paper. AC? is the class
of constant depth circuits with -,V and A gates, where V and A have un-
bounded fan-in. AC°[@®] is the class of constant depth circuits with -, Vv, A and
€ gates, where V, A and € have unbounded fan-in. A family of circuits {C},} is
DLOGTIME-uniform, if there is a Turing machine M running in linear time that
decides the direct connection language of {C,}, which is the language of tuples
(t,a,b,n), such that b and a are names of gates in C,, b is a child of a, and a is of
type t [BIS90,Vol99]. In this paper uniform always means DLOG TIME-uniform.

Definition 2. A generator G : {0,1}" — {0,1}™ is explicitly computable by
uniform AC[®] (resp. AC?) circuits of size g, if there is a uniform AC°[®)]
(resp. AC®) circuit C of size g such that C(z,i) = G(z); for all z € {0,1}" and
i € {0,1}°8™ where G(z); is the i-th output bit of G(z).

In [MNT90] they essentially prove the following negative result on the abil-
ity of AC? circuits to explicitly compute (e, k)-wise independent and e-biased
generators.

Theorem 3 ([MNT90]). Fiz any constant € < 1/2. Let G : {0,1}" — {0,1}™
be a generator either (e,2)-wise independent or e-biased. Let C be a circuit of
size g and depth d such that C(z,i) = G(z); for every x € {0,1}",i € {0,1}°8™,
Then log?~! g > Q(logm).

In some of our constructions we make use of the following result from [AAI*01]
about field operations in uniform AC°[®]. We denote by GF(2!) the field with
2t elements, and we identify these elements with bit strings of length ¢.

Lemma 4 ([AAIT01], Theorem 3.2 and proof of Theorem 1.1). For any
functions t = O(logn) and k = poly(n) there is a uniform AC®[®] circuit of
size poly(n) such that given a polynomial p(z) := Zf:o a;z* of degree k over
GF(2"), and b € GF(2%), computes p(b).

We stress that Lemma 4 do not depend on any specific representation of the
field. In fact, even if the representation is not given, a uniform AC° circuit of
size poly(n) can find the first (lexicographically) representation by brute force.

3 k-wise independent generators from designs

In this section we present a general approach that gives k-wise independent
generators from combinatorial designs. First we define combinatorial designs.
Then we show how to get k-wise independent generators from combinatorial
designs. We then turn to the problem of efficiently constructing designs with
good parameters.

Definition 5. [NW94] A (I,d)-design of size m over a universe of size s is a
family S = (S1,...,Sm) of subsets of [s] that satisfies: (1) for every i, |S;| =,
and (2) for every i # j, |S; N S;| < d.



We now show how to get k-wise independent generators from combinatorial
designs.

Lemma 6. Let S = (S1,...,5n) be a ((k + 1)d,d)-design of size m
over o universe of size m. Define the generator Gg:{0,1}" — {0,1}™ as:
Gs(r); == @jesi r;. Then Gg is a k-wise independent generator.

Proof. Fix k output bits 41, .. .,4;. We show that Gs(z);, is uniform over {0,1}
and independent from Gg(z);,,...,Gs(x)i,_, - By definition, Gg(z);, is the par-
ity of the bits in z indexed by S;,. Since S is a ((k + 1)d, d)-design there is
e € S;, such that e & [y ;< Si;- Thus the value of Gs(z);, is independent
from Gg(z);,,...,Gs(x);,_,, because its parity includes a bit that is indepen-
dent from the bits in the parities of Gg(z);,,...,Gs(x)i,_,- O

Note that under a certain choice of combinatorial designs, the generator Gg
in Lemma 6 is Nisan’s generator against constant depth circuits [Nis91]. Indeed
it was observed by several researchers that Nisan’s generator is poly log m-wise
independent [LN90,CSS97].

We want to point out the connection of our approach to the NC° generators
of [MSTO03]. There, the generators are based on certain bipartite graphs that
have the unique-neighbor property (see [MSTO03] for the exact definition). Our
combinatorial designs, can be seen as bipartite graphs with this property. (By
having the elements of the universe on one side and the sets on the other, and
placing edges between elements and the sets that contains them). Interestingly,
such graphs with the parameters that [MSTO03] need are unknown explicitly,
and this fact makes their constructions nonuniform. On the other hand, as we
show below, graphs with the parameters that we need can be constructed very
efficiently.

3.1 Combinatorial designs computable in uniform AC?[®]

By Lemma 6, in order to construct a k-wise independent generator, G : {0,1}" —
{0,1}™, explicitly computable in uniform AC°[®], we need to show a construc-
tion of a ((k + 1)d, d)-design of size m over a universe of size n, that is explicitly
computable in uniform AC°[®]. By this we mean that given 1 < i < m, we can
compute the i’th set in the design (say, as a characteristic vector) in uniform
AC[a)].

We now describe a new construction of combinatorial designs of size m
with universe size O(logm), where the size of the sets is larger than the size
of their pairwise intersections by an arbitrarily large constant factor. While
there are known constructions that achieve the parameters that we need (e.g.
[NW94,KvM99,Vio04]) these constructions are not explicit (not even polynomial-
time explicit).

Our construction follows an idea from [HRO3] (credited to Salil Vadhan) to
combine error-correcting codes with combinatorial designs. While their construc-
tion does not achieve the parameters that we need, we can use this idea to obtain



designs with the desired parameters combining Reed-Solomon codes with a de-
sign construction from [Vio04]. The following lemma states the parameters that
we achieve.

Lemma 7. For every constant ¢ > 1 and large enough m there is a family
S of (c?logm,2clogm)-designs of size m over a universe of size 50 - ¢ logm.
Moreover, there is a uniform AC[®] circuit of size poly(logm), such that given
i € {0,1}1°8™ computes the characteristic vector of S;.

Note that in this construction the ratio (set size)/(pairwise intersection) =
¢/2 can be an arbitrarily large constant.

Lemma 7 uses as a component a family of designs with exponentially smaller
parameters computable in AC? [Vio04].

Lemma 8 ([Vio04]). For every constant ¢ > 1, and for every large enough n
there is a family S of (clogmn,logn)-designs of size n over a universe of size
50-c2log n. Moreover, there is a uniform AC® circuit of size poly(n) that, given
i €0, l}log", computes the characteristic vector of S;.

Proof (of Lemma 7). First we describe the construction, then we show it is a
design with the claimed parameters and then we study its complexity.

Construction: The idea is ‘combining’ a Reed-Solomon code with the designs
given by Lemma 8. Let n be such that nlogn = clogm. Fix a field F of size
n (without loss of generality we assume that n is a power of 2). Let h := n/c.
Fix z € [n"] = [271°87/¢] = [m)], as a bit string z = ag . ..ay where each a; has
log(n) bits. Define the polynomial p, over F as p, := E?:o a;zt. Let by,..., by
be an enumeration of all elements of F.

Now consider a family (D1, ..., D,) of (clogn,logn) designs of size n over a
universe of size 50 - ¢2logn as guaranteed by Lemma, 8.

Then S = (S1,...,Sy,) is defined as follows: We view 2 € [n"] as an index
in [m], and we define the characteristic vector of S, to be D,_(4,) - Dy, (b,)-
Namely it is a concatenation of n characteristic vectors of sets from D.

Analysis: S has m sets, each of size n - clogn = c?logm, and the universe
size is n - 50c®logn = 50¢3 logm. We now bound the intersection size. Consider
z # Z'. Since p, and p, are polynomials of degree at most h, there are at most
h distinct b € F such that p,(b) = p./(b). Whenever p, (b) # p.(b), we have that
D, ) and D, (3 are distinct sets in the design D, and thus their intersection
is at most logn. Therefore

|S: N Sy| <h-clogn+ (n—h)-logn < 2nlogn = 2clogm

Complezity: By Lemma 4, computing p,(b) can be done by uniform AC°[®]
circuits of size poly(n) = poly(logm), and D can be computed in uniform AC°
circuts of size poly(n) = poly(logm) by Lemma 8. O

The construction above gives k-wise independent generators with k = O(1)
(see Theorem 10). For k¥ = w(1) we use as a component a design construction by
Nisan and Wigderson [NW94]. The complexity of computing this construction
follows from Lemma 4, we omit the proof.



Lemma 9 ([NW94]). For every integers £, m such that logm < ¢ < m, there
is a (£,logm)-design of size m over a universe of size O(£%). Moreover, there is a
uniform ACO[®)] circuit of size poly(£), such that given i € {0,1}'°®™ computes
the characteristic vector of S;.

We now state our k-wise independent generators.

Theorem 10. For every large enough m, there is a k-wise independent gener-
ator G : {0,1}" — {0,1}™, that is explicitly computable by uniform AC°[®]
circuits of size poly(n), where,

1. k> 2 is a constant, and n = O(logm). Or,
2. k is any function (of m), and n = O(k?log(m)log(k - logm)).

Proof. For Item (1) we plug the design construction from Lemma 8 (with ¢ :=
2(k + 1)) into Lemma 6. Item (2) is obtained as follows. Consider a ((k +
1)log m,log m)-design S of size m over a universe of size O(k? log® m) as guaran-
teed by Lemma 9. By Lemma 6, Gs is a k-wise independent generator, however
the seed length of G5 is n = O(k?log® m). To reduce the seed length, suppose
we have a (k- (k + 1) logm)-wise independent generator G’ : {0,1}" — {0, 1}™.
We claim that Go G’ : {0,1}" — {0,1}™ is still a k-wise independent generator.
This is because every k output bits of G depend on at most & - (k + 1) log m out-
put bits of G'(z). Since G' is (k- (k + 1) log m)-wise independent, these bits will
by uniformly and independently distributed. Now, using for G’ the generator of
[CG89,ABI86| (Section 1.1, Equation 1) we have n' = k- (k+ 1) log(m) - logn =
O(k? log(m) log(k - logm)). Finally, by Lemma 4, G’ is computable by uniform
AC°[] circuits of size poly(n'). O

A “combinatorial” construction. We note that our approach allows for a con-
struction of k-wise independent generators (for £ = O(1)) that does not use finite
fields of growing size. This is obtained combining, as in Lemma 7, the designs
from Lemma 8 with an error correcting code. For the latter, we take an expander
code [SS96] based on the Margulis expander discussed in Section 4.1. Since this
error-correcting code does not have the minimum distance that we need, we use
an expander graph (again, the Margulis construction) to increase its minimum
distance, at the price of increasing the alphabet size (this is actually in our fa-
vor since we need a large alphabet to concatenate with the designs), as is done
by Alon et. al. [ABNT92]. The resulting generators match the parameters of
Theorem 10 (1), and they are computable in P-uniform AC?[@®] circuits of size
poly(n). We omit the formal details.

4 e-bias in AC°[@)]

In this section we describe our constructions of e-biased generators in uniform
AC°[®]. We obtain our constructions by exhibiting uniform AC°[®] implementa-
tions of the e-biased generator due to Naor and Naor [NN90]. We do not describe



the e-biased generator in [NN90] here. We only point out that it is built combin-
ing 7-wise independent generators, 2-wise independent generators and random
walks on expander graphs. Using our k-wise independent generators in uniform
AC°[@] (Theorem 10) for the first two, all that is left to do is to compute walks
on expander graphs in uniform AC°[®]. We now formally state what random
walks we need to get e-biased generators.

A family of graphs {Gx}n is a family of d-regular expander graphs if there is
a constant A < d such that for every N the graph Gnx has N nodes, is d-regular,
and the second largest eigenvalue (in absolute value) of its adjacency matrix is
at most A. To get the e-biased generator of [NN90] with seed length n we need
to compute random walks of length | = O(log1/€) on expander graphs of size
20(n) . We show in the next section that for every fixed ¢ we can compute walks
of length log®n on certain expander graphs of size 2" in uniform AC? circuits
of size poly(n).

Theorem 11. There is a family {Gn}n of 8-regular expander graphs such that
for every c there is a uniform AC® circuit of size poly(n) that, given v € Gan
and a path w of length log®n (i.e. w € [8]'9°"), computes the node v' € Gon
reached starting from v and walking according to w.

Using the expander walks in Theorem 11 we get, for € > 1/2!°8°(logm) gy
e-biased generator with seed length optimal up to constant factors [AGHP92].
For smaller €, we replace the random walk on the expander with random (inde-
pendent) nodes in the graph, and obtain a generator with larger seed.

Theorem 12. For every large enough m, there is an e-biased generator G. :
{0,1}™ — {0,1}™, eaplicitly computable by uniform ACC[®] circuits of size
poly(n), where

1. n = O(logm + log(1/€)) and € = 1/2'98°(18™) " for qn arbitrary constant
c¢>0. Or,
2. n=0((logm) -log(1/€)) and € = e(m) is arbitrary.

4.1 Expander walks in AC°

In this section we prove Theorem 11, i.e. we show that there is an expander graph
of size N = 2" where random walks of length | = O(log®n) can be computed by
uniform AC? circuits of size poly(n) (for every fixed constant ¢; the depth of the
circuit depends on ¢). We use an expander construction due to Margulis [Mar73]
(the needed expansion property was proved later in [GG81,JM87]), which we
now recall.

Let m := v/N (we assume without loss of generality that m is a power of
2). The vertex set of Gy is Z,, X Z,,, where Z,, is the ring of the integers
modulo m. Each vertex v is a pair v = (x,y) where z,y € Z,,. For matrices
T:,T> and vectors by, bs defined below, each vertex v € Gy is connected to
Tiv,Thv + by, Tov, Tov + be and the four inverses of these operations.



Theorem 13. [Mar73,GG81,JM87] The family {Gn}n with Ty i= (é })
11 0 1
graphs (the absolute value of the second eigenvalue of the adjacency matriz is

5v2 < 8).

We now prove Theorem 11, with the family {Gn}n of expander graphs from
Theorem 13. That is, we show that walks of length log® n on G2» can be computed
in uniform AC? circuits of size poly(n). We note that this result is tight, i.e. there
is no AC?[®] circuit (uniform or not) of size poly(n) that computes random walks
of length log“’(l) n on Gan. This is because computing >, z; given z € {0, 1}
(which cannot be done in AC?[@®] for I = log”") n) can be AC® reduced to
the problem of computing random walks of length O(l) over G- . (Proof sketch:
Given z, replace ‘1’ in z with a step along the edge associated with T}, replace ‘0’
in z with a self-loop. Call z' the string thus obtained. Now start at vertex (0, 1),
and compute a walk according to z'. It is easy to see that the first coordinate of
the ending node is ), ;). However this negative result relies on the particular
expander graph and on its representation. We do not know if AC°[®] (or AC?)
circuits of size poly(n) can compute random walks of length log“" n on some
expander with w(n) vertices.

We now turn to the proof of Theorem 11. By the definition of G, there
are 8 matrices 71, ..., Ts with constant size entries and 8 vectors by, . . ., bg with
constant size entries such that the set of neighbors of a vertex v are {Tiv +b;
i < 8}. Thus computing the random walk translates to computing

T = (1 0), by = <1> and by := (0> is a family of 8-regular expander

vl = A (As(Ar(Av+ar) +az) +az)...) +a
where for every i, A; € {TZ 14 <8} and a; € {l~),~ 14 < 8}. We write this as
v = Av+ A where A:= A;.. . AyA; and A" := A;... Asa1+4; ... Azas+. . +ay.

So we are left with the following tasks: computing the matrix A, the vector
A’, and then computing Av + A’. We now show how to solve these problems
in uniform AC?. Recall (from the definition of the expander graph above), that
the operations are modulo m. We will show how to do these calculations without
taking modulo m. This latter operation can be done at the last step, and since
we take m to be a power of 2 (i.e. n is even) it amounts to truncating the most
significant bits.

First note that since the matrices A;’s have constant size entries, then A and
A’ have entries of size at most O(l) = log®n bits for some ¢. To compute Av+ A’
given A, A" and v we use the facts that (1) sum of two n-bit integers is in AC?
and (2) multiplication of a n-bit integer by a log® n-bit integer is in AC?. For (1)
see e.g. [Vol99], Theorem 1.20, for (2) see e.g. [Vol99], Theorem 1.21 (this latter
theorem shows multiplication of a n-bit integer by a logn-bit integer. The same
techniques give (2)). These circuits can be easily shown to be uniform.

We now show how to compute A, the same techniques give A’.



Lemma 14. For every fized constant c there is a uniform AC° circuit of size
poly(n) that, given I = log®n, 2 x 2 matrizes Ay,...,A; with constant size
entries, computes A =[], A;.

Proof. Instead of proving the lemma directly, it is convenient to show that the
product of n (as opposed to ) given matrices Aj,..., A, with constant size
entries can be computed in space O(logn), and then appeal to the following
lemma (that can be obtained combining results in [Nep70] and in [BIS90], details
omitted).

Lemma 15 ([Nep70] + [BIS90]). Let L be a language computable in loga-
rithmic space. Then for every constant ¢ > 1 there is a uniform AC® circuit of
size poly(n) that, given x of size log®n, correctly decides whether x is in L.

Suppose we are given n matrices Ay, ..., A, with constant size entries. The
idea is to first compute [],.,, 4; in Chinese Remainder Representation (CRR)
and then convert the CRR to binary (using a result by Chiu, Davida and Litow
[CDLO1]). More formally, note that every entry of [[,, Ai, for every k < n, will
be at most d™, for some constant d. By the Chinese Remainder Theorem each
number z < d" is uniquely determined by its residues modulo poly(n) primes,
each of length O(logn). The Prime Number Theorem guarantees that there will
be more than enough primes of that length. We refer to such a representation of
anumber z (i.e. as a list of residues modulo primes) as the CRR of z. Note that
to find the primes for the CRR we search among the integers of size O(logn).
This clearly can be done in logarithmic space.

We compute the product of the m matrices modulo one prime at a time,
reusing the same space for different primes. To compute the product modulo one
prime, note that transforming a matrix into CRR is easy because the matrices
have constant size entries. Each matrix multiplication is a simple modular sum
(modulo a prime of O(logn) bits) and therefore can be computed in logarithmic
space. The machine operates in space O(logn) because it only needs to store a
constant number of residues modulo a prime of length O(logn).

All that is left to do is to convert the product matrix from CRR to binary,
and this can be done in space O(logn) by a result in [CDLO1]. O
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