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Abstract

We give an explicit construction of depth two threshold circuit with polynomial
weights and O~(n5) gates that computes an arbitrary threshold function. We also
give the construction of such circuits with O(n3/logn) gates computing the COM-
PARISON and CARRY functions, and that with O(n*/logn) gates computing the
ADDITION function. These improve the previously known constructions on its
size and simplicity.
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1 Introduction

A linear threshold function f(X) is a Boolean function with input X = (z1,---,z,) €
{0,1}" such that

f(X) — Sgn[F(X)] = { (1): ftf:e(rf/'zseza 0;

where
n
F(X) =wy+ szl‘z
i=1

The coefficients w; are called the weights of the threshold function. It is well known
that the weights of a threshold function can be restricted to integers with absolute
values less than 29("1°8™) without changing the set of realizable functions [9] (or see
[10, Theorem 3.3.9]). A gate that computes a linear threshold function is called a
threshold gate. A threshold circuit is a circuit consisting entirely of threshold gates.
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The relationship between the computational power of threshold circuits of small
depth with exponential weights and that with polynomial weights has been widely
investigated (see, e.g., [8, 11] for surveys). If one restrict the weights of the threshold
gates to be integers of polynomial magnitude, then we have exponential lower bounds
on the size of depth two circuits [3, 6]. However, for unrestricted weights, we have no
strong lower bounds on the size of a depth two threshold circuit for an explicit function
in NP.

In this paper, we develop a new and simplified simulation of a depth one threshold
circuit with unbounded weights (i.e., a linear threshold function with possibly expo-
nential weights) by a depth two threshold circuit with polynomial weights. Throughout
the paper, we define the size of a circuit to be the number of gates in it. Goldmann,
Hastad and Razborov showed in [4] that any linear threshold function can be computed
by a depth two threshold circuit of polynomial size and polynomial weights. Goldmann
and Karpinski [5] gave an explicit construction of such a circuit. The construction was
then simplified by Hofmeister [7]. Unfortunately, the size of the constructed circuit is
still quite large. (Their circuit consists of O(n*log®n) subcircuits each having O(n?p?)
gates where p is the O(n?logn)-th prime number!.) In this paper, we further simplify
the construction of such a circuit. Precisely, we give an explicit construction of depth
two threshold circuit with polynomial weights and O(n®) gates that computes an arbi-
trary linear threshold function. Here we use the “O” (soft O) notation, which ignores
the polylogarithmic factors.

In this paper, we also give explicit constructions of depth two threshold circuits
with polynomial weights that compute the “comparison” and “addition” functions.
The comparison function is the Boolean function of two n-bit integers X and Y whose
output is 1 iff X > Y. Note that the comparison function can be computed by a single
threshold gate with exponential weights, but not by a gate with polynomial weights.
The addition function outputs all the bits of the sum of two n-bit numbers.

Siu and Bruck [12] showed that both functions can be computed by a depth two
threshold circuit with polynomial size and polynomial weights. Alon and Bruck [1]
presented the constructions of such circuits. In fact, they constructed depth two circuits
with a threshold gate at the top, and parity gates at the bottom. The size of their
circuit for the comparison is O(n?*), and that for the addition is O(n®). Since a parity
gate can be replaced by O(n) threshold gates with unit weights, their construction
yields a depth two threshold circuit of size O(n®) for the comparison, and that of size
O(n®) for the addition. Recently, we learned that Bohossian et al. [2] have presented
a construction of depth two threshold circuit with O(n*) gates for the comparison.

In this paper, we further improve these constructions on its size and simplicity.
The size of our circuit for the comparison is O(n3/logn) and that for the addition is
O(n*/logn).

'The estimation of the number of gates in their circuit described here (i.e., O(n'?)) is larger than
that described in [7] (i.e., O(n®)). This is because we believe that we need to use O(n®logn) many
prime numbers instead of O(nlogn) primes, which was claimed in [7], if we follow their construction.



2 Construction for General Threshold Functions

For two integers a < b, [a,b] denotes the set of integers {a,a + 1,...,b}. The set [1,n]
is simply denoted by [n]. For a set S, §S denotes the cardinality of S.

Given a linear combination F(X) = wy + Zie[n] wiz; with w; € Z and |w;| <
20(nlogn) Ty the following, we describe the construction of depth two threshold circuit
with small weights that computes the sign of F'(X).

Let L be the minimum integer such that |w;| < 2L for every i. Note that L =
O(nlogn). Define F(O(X) = F(X). For [ € [L], define a linear combinations F(*) and
E® as follows:

L0 = Llwi/2, if w; > 0,
g [w; /21, otherwise,

FOX) = wl + Y wls;,
i€[n]

EV(Xx) = FUD(X)-2FO(X).

Note that if we represent the weight w; by a binary sequence s;, w; 1, ..., w; 1, such that
w; = (=1)% X e w; 2771, then E() can also be represented by

EOX) = (=1)®wos+ Y (—1)%ws . (1)
1€[n]

Let Epar = | maxje(r) maxxeo,1}n EW® (X)|.- From Eq. (1), it is obvious that Ej; <

n + 1. For simplicity of presentation, we assume that |F(X)| > Enq + 1 for every

input X. (The other case can be dealt with easily by considering a linear combination

2n(2F(X) + 1) instead of F(X).) The construction due to Hofmeister [7] is based on
the following equality:

F(X)>0 & \/ (FYX) €0, Bras) A F(X) € [~ Brnazs Brmaz))-
le[L]

The following lemma, which is the key to our construction, shows that the sign of
F(X) can be computed more efficiently.

Lemma 1 F(X) is positive iff F(X) € [Emaz + 1,3Em4z] for somel € [0,L — 1].

Proof. First, we show that if F(X) is positive, then F)(X) € [Epnae + 1, 3Emac]
for some I € [0,L — 1]. Since FO(X) = F(X) > Epar + 1 and FIO(X) = 0, it is
sufficient to show that F)(X) > 3E,,q, implies F(*41)(X) > E,,q5 + 1. This is clear
since if FO(X) > 3E,,44, then

FO(X) - EHD(X) S 3Emaz + 1 — Epmax
2 = 2

FU(X) = > Ermaz-



We now show that if F/(X) is negative, then FO (X) € [Emaz + 1, 3Em45] for every
1 €0,L —1]. Since FO(X) = F(X) < —(Epaz +1) and FE(X) = 0, it is sufficient
to show that

1. If FO(X) < —(Epaz + 1), then FUD(X) < Epas,
2. If FO(X) € [~ Emaz, Prmaz), then FY(X) € [~ Enazy Ermaz)-
If FO(X) < —(Epmae + 1), then
F(l) (X) — EU_H) (X) < _Ema:v -1+ Emam
2 - 2
which implies the first statement. For the second statement, we observe that if |F()(X)| <
FEnaz, then

F(H—l) (X) —

FOX) = BUY(X)| _ Bas + Fonas
2 - 2

[P0 =

= Ema;c .

O

The rest of the construction is similar to that of Hofmeister [7]. The following

lemma is a slight modification from the lemma used in their construction. This can
easily be proved by using the Chinese Remainder Theorem.

Lemma 2 [7, Lemma 2] Let a < b be two non-negative integers. Let b < p; < ps < ---
be prime numbers and let s be the minimum integer which satisfies p1---ps > 2+ Zpmaz +
1. Then for every Z € Z with |Z| < Zmag, it holds that:

1. Z € la,b] = Z mod p; € [a,b] for all p;,
2. Z ¢ [a,b] = Z mod p; € [a,b] for less than s- ((b— a) + 1) many p;.
O

Let p1 < ... < pr be r consecutive prime numbers. The value of r will be chosen
later. We choose p; such that 3E,,,, < 4n < p; in order to guarantee that no distinct
integers in [Epmags + 1,3Emes] can be equivalent modulo p; for every i. Let s be the
smallest integer such that p; ---ps > (n + 1)2L. Note that s = O(n).

For [ € [0,L — 1] and ¢ € [r], we define a linear combination Fz-(l) as follows:
FY (X) = (w(()l) mod p;) + Z (w§l) mod p;)z;.
J€ln]

Let TEST;;(X) be a Boolean function that outputs 1 iff Fz-(l) (X) mod p; € [Enas +
1,3Emaz)- By Lemmas 1 and 2, we have

F(X)>0 = Y > TEST(X)>r,
1€[0,L—1] s€[r]
F(X)<0 = Z Z TEST;(X) < 2Epaq - L - 5.

le[0,L—1]i€[r]

4



If we choose r such that r > 2E,,4 - L - 5, e.g., 7 = O(Epqz - n? log n) will suffice, then
F(X) is positive if and only if the sum of the values of rL = O(Emqs - 7% log?n) test
functions is at least r. Since Fi(l) (X) < (n+ 1)p; for every input X, TEST;;(X) can
be represented as the sum of O(n) linear threshold functions

Y CEX) 2 (Bmar + 1) + kpi” + “F(X) < 3Bmag + kpi” = 1),
kelo,n]

Here and hereafter, we use the notation of the form “F(X) > a” that denotes the
Boolean function whose value is 1 if F/(X) > a holds and is 0 otherwise. Putting them
all together, we can construct a depth two threshold circuit with at most O(nrL) =
O(Emaz - n*log? n) = O(n®) gates that computes f(X) = sgn[F(X)]. Remark that the
total number of wires in the resulting circuit is O(n%) and the weight of each wire is at
most O(np,) = O(Emag - n° log?n) = O(n*). Here we use the prime number theorem,
which says that p, = O(rlogr).

3 More Economical Construction for Simple Functions

The size of the circuit constructed in the previous section is O(Epqz-n*), which depends
on the value Fp,q, of the target function. Hence, it is interesting to consider functions
having small value of E4z, €.8., Emer = O(1). As examples of such functions, we
consider the COMPARISON and CARRY functions.

For X = (zn,...,z1) € {0,1}", we consider X as the integer } .., 2i=1g;. The
CARRY function is a Boolean function with two n-bit inputs X and Y that outputs 1
iff X +Y > 2", or equivalently Zie[n] (z; +;)2°"1 > 2". The COMPARISON function
is a Boolean function with two n-bit inputs X and Y that outputs 1 iff X > Y,
or equivalently »;cr (i — yi)28"1 > 0. Since Ejqr = O(1) for both functions, the
construction described in the previous section yields circuits with O(n*) gates. We
remark that the construction of a circuit for COMPARISON by Bohossian et al. [2]
can be obtained in this fashion.

In the following, we show that the number of gates in circuits for these functions
can be further reduced. Namely, we give explicit constructions of circuits for CARRY
and COMPARISON which use only O(n3/logn) gates.

First, we describe a construction of a circuit for the CARRY function. Let n <
p1 < ... < p, be r consecutive prime numbers. The value of r will be chosen later. Let
s be the smallest integer such that py ---ps > 2"t1. Note that s = O(n/logn).

For [ € [n] and i € [r], let m;; be an integer satisfying

Z (277" mod p;) + 1 — (2" mod p;) = my ;.
JElln]

Such an integer always exists since };cp 2=t 41 —2rt1=l = 0. For i € [r] and



[ € [n], let CHK;;(X,Y’) be a Boolean function that outputs 1 iff

>~ (@7 mod i) (w5 + y5) — (27~ mod pi) = my
Jj€ltn]

Below we will show that

CARRY(X,Y) =1 = Y > CHK,(X,Y)>r, (2)
le[n] i€[r]

CARRY(X,Y)=0 = ) Y CHK,(X,Y) < sn. (3)
le[n]i€[r]

To show these inequalities, it is convenient to consider the following two expressions of
the function CARRY:

CARRY(X,Y) = \/(“5"’“”:2”A N “wj+yj=1”)’ )
l€[n) JE[+1,n]
and
CARRY(X,Y) = \/ ( > 2jl(xj+yj)2”+””>- (5)
iefn] \ jelin]

The correctness of these expressions is obvious. It should be remarked that if we
define EXl.(X,Y) = “opty =27 A Vje[l+1,n] “r; +y; = 17 and SUM)(X,Y) =
> jelin] “=l(z; +y;) = 2"t then EX;(X,Y) — SUM,(X,Y) for every [ > 1 but
SUM;(X,Y) A EXi(X,Y) for every [ # 1. In fact,

EX;(X,Y) = SUM(X,Y)---SUM; |(X,Y) - SUM;(X,Y),

and hence CARRY (X, Y) = Ve EXi(X,Y) = Ve SUMI(X, Y).
Eq. (2) can be easily derived from Eq. (4) as follows:
CARRY(X,Y) =1

= Jehn “s+yu=2A J\ “zj+y;=1" (FromEq. (4))
JE[l+1,n]
= 3le[nVielr] CHK,(X,Y)=1

By using Eq. (5) instead of Eq. (4), we can derive Eq. (3) as follows:

CARRY(X,Y) = 0

= Vien > 2 Yz;+y;)-2""1£0 (From Eq. (5))
jelln]



= Vi€ [n] ﬂ{z’ € [r]

Z ZJ_l(-TJ + y]) o 2n+1—l = O(mOdpz)} S S (By Lemma 2)
J€(ln]

= ﬁ{(l,z') € [n] x [r] ‘ Z (2j_l mod p;)(z; +y;) — (2"+1_l mod p;) = 0(mod p,)}
JE[ln]
< sn

= ﬁ{(l,z) € [n] x [r] Z (277" mod p;)(z; +y;) — (2" mod p;) = ml,ipi} < sn

J€lln]
& Y > CHK,(X,Y) < sn.
le[n] i€[r]
If we choose r such that r > sn, eg, some r = O(n?/logn) will suffice,

then CARRY(X,Y) = 1 if and only if the sum of the values of rn = O(n3/logn)
test functions is at least r. Since a Boolean function of the form “F(z) = y” is equal
to “F(z) > y” + “F(x) < y” — 1, we can construct a depth two threshold circuit of
size O(n®/logn) that computes CARRY. The total number of wires in the resulting
circuit is O(n*/logn) and the weight of each wire is at most O(np,) = O(n3).

For the COMPARISON function, we use

COMPARISON(X,Y) = \/ (“a:l —yu=UA N fo-y= o”)
tefn] jeli+1,m]

instead of Eq. (4), and use

COMPARISON(X,Y) = \/ ( 2 i(ay -y = 1”>
]

lE[n JElln]

instead of Eq. (5). The rest of the construction is analogous to that for the CARRY
function. The size of the circuit is O(n3/logn).

Finally, we sketch the construction of circuit that computes the addition of two
n-bit integers based on our circuit for the carry function. For X = (zp,...,z1) and
Y = (yn,.-.,¥y1), the ADDITION(X,Y) outputs Z = (zp41,...,21) such that X +Y =
Z, or equivalently Zie[n](xi + ;)20 = Zie[n—H] 2201,

The k-th bit of the output of ADDITION is given by zx = x D yr D cx where
¢k denotes the output of CARRY (zg_1 -+ z1,yx—1---y1). To compute zj, we slightly
modify the definition of our test functions for CARRY. For ¢t € [0,2], | € [k — 1] and
i € [r], let CHK;;+(X,Y’) be a Boolean function that outputs 1 iff

Z (277" mod py)(z; + y;) — (27" mod p;) + 4kpi(zk + yi) = myp; + 4kpit,
jellk—1]
where m; ; is an integer satisfying

Z (277" mod p;) + 1 — (2" mod p;) = myp;.
JE[Lk—1]



Note that if z3, + yx # ¢, then CHK;;4(X,Y) = 0 for every [ and 4. It is easy to check
that the k-th bit of the output of ADDITION is 1 iff

> Z )'CHK 3 4(X,Y) + (r + sn) “zp +yp = 17 > .

t€[0,2] le[k—1] i€[r]

Hence, each bit of the output of ADDITION can be computed by a depth two threshold
circuit with polynomial weights and O(n3/log n) gates. Thus, the total number of gates
in our circuit for ADDITION is O(n?/logn).
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