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Abstract. We consider the problem of testing whether a given system
of equations over a fixed finite semigroup S has a solution. For the case
where S is a monoid, we prove that the problem is computable in polyno-
mial time when S is commutative and is the union of its subgroups but
is NP-complete otherwise. When S is a monoid or a regular semigroup,
we obtain similar dichotomies for the restricted version of the problem
where no variable occurs on the right-hand side of each equation.
We stress connections between these problems and constraint satisfaction
problems. In particular, for any finite domain D and any finite set of
relations Γ over D, we construct a finite semigroup SΓ such that CSP (Γ )
is polynomial-time equivalent to the equation satifiability problem over
S.

1 Introduction

M. Goldmann and A. Russell studied in [10] the relationship between the alge-
braic properties of a finite group and the complexity of determining the solvabil-
ity of an equation or a system of equations over that fixed group. In particular,
they showed that determining whether a system of equations over G has a so-
lution is NP-complete for any non-Abelian G and polynomial time computable
for any Abelian G. Partial results concerning the complexity of the more general
problem of solving equations over finite semigroups were obtained in [2, 22, 23]
for the case of a single equation.

This paper, on the other hand, is concerned with the complexity of solving
systems of equations over a fixed finite semigroup. Formally, an equation over
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a finite semigroup S is given as: s1s2 . . . sk = t1t2 . . . tn where each si or ti is
either a constant c ∈ S or a variable xj . We will further say that an equation is
a target-equation if its right-hand side contains no variable.

The System of Equations Satisfiability problem for the finite semi-
group S (denoted EQN∗

S) is to determine whether a given system of equations
over S has a solution. We will also consider the restriction of EQN∗

S where each
equation is a target-equation and denote this problem T-EQN∗

S .
Our motivation to study this question is twofold. On one hand, the deep links

between finite semigroup theory and automata theory have lead to a number of
algebraic characterizations of complexity classes ([1, 12] among many others) and
this has given increased importance to the study of problems whose computa-
tional complexity is parametrized by the properties of an underlying algebraic
structure [2, 10, 23, 24].

Our second motivation relates to constraint satisfaction problems (CSP’s)
which provide a unified framework for the study of many combinatorial problems.
A conjecture of Feder and Vardi [9] states that every CSP is either in P or NP-
complete and such dichotomies have been established in a number of special
cases (e.g. [3, 10, 11, 21]). Both EQN∗

S and T-EQN∗
S can be viewed as special

cases of CSP’s and they present an interesting case study since most of the
recent progress towards this conjecture has relied heavily on universal algebra
methods (e.g. [3–6, 8]).

Using these techniques, B. Larose and L. Zádori have recently studied the
complexity of solving equations over arbitrary finite algebras rather than just
semigroups and obtained very broad results [18] which overlap some of our work
about finite monoids. Furthermore, the complexity of the counting problem as-
sociated with EQN∗

S has been investigated by G. Nordh and P. Jonsson [15], also
using a universal algebra point of view.

We are able to classify completely the complexity of EQN∗
S and T-EQN∗

S

for very wide classes of semigroups. Specifically, we obtain the three following
dichotomy results:

Main Theorems

– If M is a finite monoid then EQN∗
M is computable in polynomial time if

M is commutative and is the union of its subgroups and is NP-complete

otherwise.

– If M is a finite monoid then T-EQN∗
M is computable in polynomial time if

M divides the direct product of an Abelian group with a monoid satisfying

the identities x2 = x and xyxzx = xyzx, and is NP-complete otherwise.

– If S is a finite regular semigroup then T-EQN∗
S is computable in polynomial

time if S divides the direct product of an Abelian group with a semigroup

satisfying the identities x2 = x and xyxzx = xyzx, and is NP-complete

otherwise.

We cannot as of yet provide a similar dichotomy for T-EQN∗
S when S is not a

monoid or a regular semigroup or a dichotomy for EQN∗
S when S is not a monoid.

We obtain partial results but also show that the questions cannot be resolved



unless we settle the long standing conjecture about the complexity of CSP’s.
Indeed, we show that for every constraint satisfaction problem Γ , there exist
semigroups SΓ and TΓ such that Γ is polynomial-time equivalent to EQN∗

SΓ

and to T-EQN∗
TΓ

. We further show that if P 6= NP (which we will assume
throughout this paper) the class of semigroups for which T-EQN∗

S or EQN∗
S lies

in P is not closed under subsemigroups or homomorphic images, a fact which is
bound to hamper the progress of further investigations.

In Section 2, we give a short introduction to CSP’s and present the funda-
mental results from semigroup theory which are necessary for the development
of our discussion. In Section 3, we prove a number of sufficient algebraic con-
ditions for the NP-hardness of EQN∗

S and T-EQN∗
S while Section 4 presents

polynomial-time algorithms for solving systems of equations over “easy” classes
of semigroups. In Section 5, our three dichotomy theorems are proved as corol-
laries to the results of the two preceding sections. Finally, we prove in Section 6
that the complete classification of the complexity of either T-EQN∗

T or EQN∗
S

would result in a classification of the complexity of CSP’s. Some of our results
require rather technical semigroup theory and we have postponed some the more
tedious proofs to an appendix to improve the paper’s readability.

Some of the results appeared in the proceedings of MFCS’00 [19] and in two
of the authors’ Ph.D. theses [17, 23].

2 Background

2.1 Constraint Satisfaction Problems

Let D be a finite domain and Γ be a finite set of relations on D. To each pair
D,Γ corresponds a Constraint Satisfaction Problem (CSP): an instance of
CSP(Γ ) is a list of constraints, i.e. of pairs Ri(Si) whereRi ∈ Γ is a k-ary relation
and Si, the scope of Ri, is an ordered list of k variables (with possible repetitions)
and we want to determine whether the variables can be assigned values in D
such that each constraint is satisfied. For example Graph k-colorability is
the CSP where the domain consists of the k colors, Γ contains the single binary
relation encoding inequality and constraints correspond to edges in the graph.

This class of combinatorial decision problems has received a lot of atten-
tion because of the wide variety of problems which it encompasses and because
constraint satisfaction problems arise so naturally in artificial intelligence. Deep
connections with database theory and finite model theory have also been uncov-
ered [9].

For a finite semigroup S, the problem EQN∗
S can be seen as a CSP problem

over the domain S with Γ being the class of relations which are the solution set
of an equation over S. There is a technical caveat: since we place no bound on
the arity of these equations, Γ is a priori not finite but we will argue in Section 4
that the arity can in fact be bounded to 3 without loss of generality. Such a
construction is impossible for T-EQN∗

S and this problem can only be considered
a CSP in a looser sense, unless we forcibly restrict the arity of equations. Still,
this technicality has no bearing on our discussion.



For any D,Γ , CSP(Γ ) lies in NP and is easily seen to be NP-complete in
general so one seeks to identify tractable restrictions of the problem. One can
choose, for instance, to impose certain conditions on the structure of constraints
appearing in a given instance. A lot of research has also dealt with identifying
necessary and sufficient conditions on Γ such that CSP(Γ ) is tractable. This
approach was pioneered by T. Schaefer [21] who studied the CSP problem on
Boolean domains. In this case, the problem is usually known as Generalized

Satisfiability and Schaefer proved that this problem was NP-complete unless
it was one of six tractable special cases: 2-SAT, 0-valid SAT, 1-valid SAT, affine-
SAT, Horn-SAT and anti-Horn SAT. Affine-SAT is the case where each relation
is the solution set of a system of equations over the cyclic group C2. The only
other 2-element monoid is U1 the semilattice with two elements {1, 0} whose
multiplication is given by 1x = x1 = x and 0x = x0 = 0. Interestingly, we can
relate the last two of Schaefer’s tractable cases to systems of equations over U1.

Lemma 1. A Boolean relation is Horn or anti-Horn, i.e. expressible as tuples
satisfying a conjunction of disjuncts containing each at most one un-negated
(resp. negated) variable, if and only if it is the set of solutions of a system of
equations over U1.

Proof. Identify the element 1 of U1 with True and 0 with false. Then the Horn
clause X1 ∧X2 ∧ . . .Xn → Y is satisfied when one of the Xi’s is False or when
all Xi’s and Y are True. These are exactly the tuples which satisfy the equation

X1X2 . . . Xn = X1 . . .XnY

over U1.

Conversely, the equation X1 . . .Xn = Y1 . . . Ym corresponds to the Horn for-
mula: ∧

1≤i≤m

(X1 ∧ . . . ∧Xn → Yi) ∧
∧

1≤i≤n

(Y1 ∧ . . . ∧ Yn → Xi).

If on the other hand we choose to identify 1 with False and 0 with True,
a similar argument shows the relationship of U1 systems to anti-Horn formulas.

ut

Our hardness results in Section 3 will use reductions from 3sat, 1-3sat

(where we require that every clause contains exactly one literal set true) and
the restriction of the latter where each clause contains at least one negated and
one unnegated literal. The NP-completeness of the three problems is given by
Schaefer’s Theorem [21].

Recently, tools from universal algebra [5, 6], group theory and relational
database theory [9] have been used to identify “islands of tractability”, i.e. classes
of relations for which CSP is tractable. As noted in our introduction, it is con-
jectured that for any domain D and any set of relations Γ the problem CSP(Γ )
either lies in P or is NP-complete. Let us define a k-ary operation to be any



function f : Dk → D and say that a relation R ∈ Dt is closed under f if for any
k t-tuples lying in R:

(d1
1, d

1
2, . . . , d

1
t ), . . . , (d

k
1 , d

k
2 , . . . , d

k
t )

we also have the t-tuple

(f(d1
1, . . . , d

k
1), . . . , f(d1

t , . . . , d
k
t ))

in R. The algebraic properties of the operations that preserve every relation in Γ
can be studied to determine the complexity of CSP(Γ ) [5]. Using this approach,
A. Bulatov obtained a dichotomy theorem similar to the one of Schaefer for
domains of size three [3]. Furthermore, two known islands of tractability are
defined with the help of semigroups.

Theorem 1 ([4]). Let S be a finite semigroup and ΓS be the set of relations
which are closed under the multiplication in S then CSP(ΓS) is tractable if S is
a so-called “block group” and is NP-complete otherwise.

Theorem 2 ([9]). If G is a group and Γ is a set of relations such that for each
R ∈ Γ of arity t we have R a coset of Gt, then over the domain G the problem
CSP(Γ ) can be solved in polynomial time.

Recall that a subset of Gt forms a coset if and only if it is closed under the
ternary operation x · y−1 · z. Although our results are incomparable to these two
theorems, the mechanics of some of our upper bounds, as we will point out, are
quite similar.

For a digraph G, we define the digraph retract problem (or DRPG) as
follows: given an input digraph H containing G as a subgraph, is there a surjec-
tive graph homomorphism from H to G which is the identity on G. Equivalently,
DRPG can be viewed as a CSP whose domain consists of G’s vertices and a set
of relations consisting of one binary relation (corresponding to edges in G) and
for each element d in the domain, the unary relation consisting of the singleton
{d}.

Theorem 3 ([9]). For every set of relations Γ there exists a digraph GΓ such
that CSP(Γ ) is polynomial-time equivalent to DRPGΓ

.

2.2 Semigroups

We give here a brief introduction to the theory of finite semigroups and present
the necessary definitions and results. Although the paper is mostly self-contained,
we refer the reader to e.g. [13, 20] for a more thorough overview. In particular, the
latter reference stresses connections to automata theory and computer science.

Recall that a semigroup S is a set with a binary associative operation,
which we will write multiplicatively (save one noted exception in the proof of
Lemma 23). A monoid M is a semigroup with a distinguished identity element.
We will be solely concerned with finite semigroups and monoids and in the rest



of this paper S and M will always denote respectively a finite semigroup and a
finite monoid.

We denote by S1 the monoid obtained from S by adding an identity element
if there is none in S. For any semigroup S, we introduce five equivalence relations
known as Green’s relations which describe whether two elements generate the
same ideals in S. Formally:

– xJ y iff S1xS1 = S1yS1;
– xL y iff S1x = S1y;
– xR y iff xS1 = yS1;
– xH y iff both xR y and xL y;
– xD y iff xR ◦ L y, that is there exists z such that xR z and z L y.

It can be shown that R is a left-congruence (i.e. xR y implies cxR cy for all c)
and that L is a right-congruence. Moreover R and L commute (i.e. D = R◦L =
L◦R) and so all five of these relations are indeed equivalence relations. Moreover,
the relations J and D coincide for any finite S. Since we are only interested in
the structure of finite semigroups, we will consequently always refer to the J -
relation.

For an element x of S, we denote by Jx (resp. Rx, Lx, Hx) the J -class (resp.
R-, L-, H-class) of x. We also define natural pre-orders ≤J , ≤R, ≤L on S with
e.g. x ≤J y if and only if S1xS1 ⊆ S1yS1. We will say that “x is (strictly)
J -above y” if x ≥J y (resp. x >J y), and similarly for ≤R and ≤L. Note that
x ≤J y if and only if there exists u, v ∈ S1 such that x = uyv. Similarly, x ≤R y
if and only if there is u with x = yu and x ≤L y if and only if there is u with
x = uy. One can easily prove:

Lemma 2. For any a, b ∈ S such that aJ b, if a ≤R b (resp. a ≤L b) then in
fact aR b (resp. aL b).

The following lemma is the fundamental result about Green’s relations:

Lemma 3 (Green’s Lemma). Suppose a and b are two elements of the same
R-class, i.e. there exist u, v s.t. au = b and bv = a. Denote by ρu : S → S the
function defined by ρu(s) = su. Then ρu and ρv are inverse bijections from La

to Lb and from Lb to La respectively and they preserve H-classes.

The basic properties of Green’s relations lead to the so-called “egg-box” rep-
resentation of (finite) semigroups. Each J -class of the semigroup is represented
as a table where rows correspond to R-classes, columns to L-classes and cells
to H-classes. From Green’s Lemma, we also know that all the cells of a given
J -class contain the same number of elements. When writing out the egg-box
representation, the J -classes are often laid out with respect to the ≤J preorder
(see later examples).

We say that e ∈ S is idempotent if e2 = e. Idempotents play an important
role in the structure of semigroups: in particular, the identity element 1M is an
idempotent of M . We say that S has a zero is there is an element 0 ∈ S such
that 0s = s0 = 0 for all s ∈ S. Note that 0 is also idempotent.



Lemma 4. Let e = e2 be an idempotent of S. Then a ≤R e if and only if ea = a.
Similarly a ≤L e if and only if ae = a.

Lemma 5. Let a, b ∈ S with aJ b. Then ab ∈ Ra ∩ Lb if and only if La ∩ Rb

contains an idempotent e = e2. Otherwise, ab <J a.

The subsemigroup generated by an element s of S is finite of course, so there
must exist t, p such that st+p = st and the subsemigroup can be shown to have a
unique idempotent. We will denote by ω the exponent of S, that is the smallest
integer such that sω is idempotent for all s ∈ S. For any idempotent e ∈ S, the
set eSe forms a monoid of S with identity e which we call the local submonoid
of S associated with e.

Groups are a well-known special case of monoids. Recall that a monoid G is
a group if every element g ∈ G has an inverse g−1 such that gg−1 = g−1g = 1G.
Every idempotent in S forms a trivial subgroup of S. Note also that by Lemma 5
an H-class containing an idempotent is closed under multiplication and, more
generally, one can show:

Lemma 6. Let H be any H-class of S, then H contains an idempotent if and
only if H is a maximal subgroup of S.

Consequently every H-class contains at most one idempotent. Using Green’s
Lemma, one can further show that any two maximal subgroups of a common
J -class are isomorphic. If every maximal subgroup of S is trivial then S is said
to be aperiodic or group-free. An important consequence of Lemma 6 is:

Lemma 7. A semigroup S is aperiodic if and only if all its H-classes contain
a single element.

A J -class is said to be regular if it contains an idempotent. It can be shown
in fact that a regular J -class contains at least one idempotent in each of its R
and L classes. A semigroup is regular if all its J -classes are regular. We further
say that S is a union of groups if each H-class contains an idempotent and
thus forms a maximal subgroup of S. This is equivalent to the requirement that
sω+1 = s for each s ∈ S.

A semigroup is completely simple if it consists of a single J -class. Note that
by Lemma 5, a J -class of S forms a completely simple subsemigroup if and only
if it all its H-classes are subgroups.

Let us denote as E(S) the subsemigroup generated by the idempotents of S:
if E(S) contains only idempotent elements then we say that S is orthodox. It
can be shown that if S is a union of groups then S is orthodox if and only if all
its J -classes are completely simple orthodox subsemigroups [13].

We say that the semigroup T divides S if T is the morphic image of a subsemi-
group of S. A class of finite semigroups is a (pseudo)-variety4 if it is closed under
finite direct product and division. For two varieties V,W, we denote by V ∨ W

4 In this paper, we will use the term variety as a shorthand for the more technically
correct pseudo-variety.



the smallest variety containing both V and W: it consists of the semigroups
which divide a direct product S × T with S ∈ V and T ∈ W.

Some varieties will bear particular importance for this work, mainly subva-
rieties of the variety of bands, i.e. semigroups in which every element is idempo-
tent. In particular, we will consider the varieties of regular bands RB satisfying
xyxzx = xyzx, normal bands NB satisfying xyzx = xzyx and semilattices SL
satisfying xy = yx. Clearly, SL ⊆ NB ⊆ RB. In a semilattice, the ≤J forms a
partial order and multiplication in the semigroup corresponds to the semilattice
meet (∧). Note that two elements might not have a join (∨), i.e. a least upper
bound but if they do then it is unique. Note also that every band is aperiodic
and is a union of (trivial) groups.

We will further denote Ab the variety of Abelian groups, UG the variety
of unions of groups and DS the variety of semigroups whose regular J -classes
form completely simple subsemigroups (note that UG ⊆ DS). Mostly, we will
look at semigroups S in UG and it is worth mentioning that over such S, the
J -relation is a congruence and the quotient S/J is a semilattice.

Definition 1. If B is a variety of bands and H is a variety of groups, we say
that S is a strong B band of H-groups if there exists a band E ∈ B, a family of
disjoint groups {Ge|e ∈ E}, all of which lie in H, and for every e, f ∈ E such
that e ≥J f (in the J -order of E) a group homomorphism φe,f : Ge → Gf such
that:

1. S is the union of the Ge;
2. φe,e = idGe

for all e ∈ E;
3. for any e ≥J f ≥J d we have φf,d ◦ φe,f = φe,d;
4. for x ∈ Ge and y ∈ Gf the multiplication in S is given by the formula

x · y = φe,ef (x) · φf,ef (y).

One can verify that the multiplication defined above is associative so that S is
indeed a semigroup.

The proof of the next lemma is included in the appendix.

Lemma 8. For a semigroup S, a variety of bands B and a variety of groups H,
the following are equivalent:

1. S is a strong B-band of H-groups;
2. S belongs to B ∨ H.
3. S is an orthodox union of groups all of which lie in H, such that E(S) is

a band in B and H is a congruence. In particular, the idempotents form a
subsemigroup and S/H ≡ E(S).

3 Hardness Results

One would intuitively expect that solving a system of equations over some semi-
group S is no easier than solving a system of equations over a subsemigroup of



S or a morphic image of S. As we will see in Section 6, this intuition is unfor-
tunately incorrect but the following definition allows us to salvage it partly. We
will say that a subset T of S is inducible if there exists some expression E over
S (i.e. a product of variables and constants) whose image is exactly T .

Lemma 9. If T is an inducible subsemigroup of S, then EQN∗
T ≤P EQN∗

S and
T-EQN∗

T ≤P T-EQN∗
S.

This simple fact was established in [10]. We will make extensive use of it and
note that in particular, the following subsets of S are always inducible: every
local monoid eSe, the set of idempotents of S and the semigroup E(S) which
they generate and the subsemigroup I of elements lying in or J -below some
regular J -class J of S (and similarly for R and L classes). For the latter, we use
the expression xey where x, y are variables and e is some idempotent in J . Note
that I is the two-sided ideal generated by e. Often, we will simply write that we
“force a variable x to be idempotent” to mean that each of its occurrences is
replaced by xω.

When establishing our lower bounds, it is often convenient to think of a
certain variable, say x, as being restricted to a set of particular values T ⊆ S.
This can clearly be done without loss of generality as long as there exists a
system of (target-)equations E with variables x, y1, . . . , yk such that s is in T
if and only if E has a solution when x is set to s. We will say that such T are
(target)-definable in S. Of course, we have:

Lemma 10. If T is a definable (resp. target-definable) subsemigroup of S then
EQN∗

T ≤P EQN∗
S (resp. T-EQN∗

T ≤P T-EQN∗
S).

In particular, if J is a regular J -class containing the idempotent e, the target-
equation uxv = e defines the set {x|x ≥J e}. The proof of the next lemma serves
as a good example to illustrate the usefulness of the above observations.

Lemma 11. If S contains a non-Abelian subgroup, then T-EQN∗
S is NP-complete.

Proof. As we mentioned in our introduction, it has been shown that T-EQN∗
G

is NP-complete for any non-Abelian group G [10]. Let e be the idempotent of
a non-Abelian subgroup H of S. The local semigroup eSe is inducible and its
subgroup H can be defined (as a subset of eSe) by the target-equation xω = e.
We thus have

T-EQN∗
H ≤P T-EQN∗

eSe ≤P EQN∗
S ,

yielding our result. ut

Recall that a band is said to be normal if it satisfies xyzx = xzyx. In the
appendix, we will prove the following technical result:

Lemma 12. A band S is normal if and only if all its local monoids are semi-
lattices.

Lemma 13. If S is a band but is not a normal band, then EQN∗
S is NP-

complete.



Proof. Since every local monoid of S is inducible, it suffices, by Lemma 12,
to prove the NP-completeness of EQN∗

M for a non-commutative, idempotent
monoid M . Let a, b in M be such that ab 6= ba. We can choose a, b such that a
is a J -maximal element which is not central in M (i.e. which does not commute
with every element) and b is a J -maximal element which does not commute
with a. We now obtain a reduction from 3sat. For each Boolean variable Xi in
the formula, we create variables xi, x̄i, yi, ȳi and equations

(1) xix̄i = a (2) x̄ixi = a
(3) yiȳi = b (4) ȳiyi = b
(5) xiȳi = ȳixi (6) x̄iyi = yix̄i

Also, for each 3sat clause, e.g. X1 ∨X2 ∨X3, we add an equation

(7) x1x̄2x3 = a.

Given a satisfying assignment to the formula, we can construct a solution to the
above system by setting xi = a, x̄i = 1, yi = b, and ȳi = 1 whenever Xi is
True, and xi = 1, x̄i = a, yi = 1, ȳi = b whenever Xi is False.

Conversely, suppose the system of equations is satisfiable. Equation (1) shows
that both xi and x̄i lie J -above a. Since a and b don’t commute, a cannot be the
product of two elements commuting with b. However, any element strictly J -
above a is central so at least one of xi, x̄i must be J -equivalent to a. Moreover,
Eqs. (1) and (2) insure that xi, x̄i are both L-above and R-above a, so if xi J a
(say) we must also have xH a and thus x = a by aperiodicity. So at least one of
xi, x̄i must be a. Similarly at least one of yi, ȳi must be b, since any elements
strictly J -above b commute with a.

If xi = a, then ȳi commutes with a by Eq. (5). Thus ȳi must be strictly J -
above b. If yi = b, then x̄i commutes with b by Eq. (6), so x̄i is strictly J -above
a. We can thus obtain a consistent truth assignment to the literals by setting
Xi to True if and only if xi = a and yi = b and Xi to True if and only x̄i = a
and ȳi = b.

Since every element strictly J -above a is central but a is not, a cannot be
a product of elements J -above it. Therefore, if x1x̄2x3 = a then at least one of
x1, x̄2, x3 must be a and the corresponding 3sat clause is satisfied. ut

Lemma 14. If S does not lie in DS then T-EQN∗
S is NP-complete.

Proof. If S is not in DS, then it contains a regular J -class K which is not a
subsemigroup. Equivalently, some H-class of K does not contain an idempotent.
We will work over the inducible subsemigroup of elements that lie in or J -below
K. In this subsemigroup K is a maximal J -class and since we can force each
variable to be idempotent and define with a target equation the set of elements
lying in or above K, we can insure that each variable is one of the idempotents
of K. Let I be the set of idempotents of K: by introducing additional target-
equations, we will define a small subset of I whose properties will allow us to
build our reduction.



LetG = (V,E) be the undirected graph such that V = I and E = {(ei, ej)|eiej 6∈
K or ejei 6∈ K}. Note that by Lemma 5 the edge (ei, ej) is in E if and only
if eiejei is strictly J -below K. Since we assume that K is not a subsemigroup,
the graph contains at least one edge.

Suppose that there are distinct idempotents ei, ej , ek ∈ V such that (ei, ej) ∈
E but neither (ei, ek) nor (ej , ek) are in E. By definition, we have eiek ∈ K
and thus eiekLek. Similarly ekej R ek. So by Lemma 5, we know that eiekej =
(eiek)(ekej) also lies in K because the intersection of the L-class of eiek and
the R-class of ekej contains the idempotent ek. Symmetrically we also have
ejekei ∈ K.

Now the pair of target-equations

eixej = eiej ejxei = ejei

is satisfied when x is ei or ej . However one of eiej or ejei lies outside K and so
x = ek is not a solution. In other words, this pair of equations defines a set of
elements that contains ei and ej but not ek.

Next, suppose that the graph G contains a triangle with vertices ei, ej , ek.
We distinguish two cases. Suppose first that (eiejei)

ω = (eiekei)
ω. Then the

target-equation
(eixei)

ω = (eiejei)
ω

is satisfied for x = ej and x = ek but not x = ei. If on the other hand we
have (eiejei)

ω 6= (eiekei)
ω then we can assume w.l.o.g. that in fact (eiejei)

ω

does not lie R-above (eiekei)
ω. (Indeed, if the two values are both R-related

and L-related then they must be equal for each H-class contains at most one
idempotent.) Then the equation

(eixei)
ωw = (eiekei)

ω

can be satisfied by setting x = ei and w = (eiekei)
ω or x = ek and w = ei. But

one cannot choose x = ej since we assumed that (eiejei)
ω does not lie R-above

our target (eiekei)
ω. In all cases, we can introduce an equation defining a set of

elements containing only two of the three idempotents ei, ej , ek.
By iteratively adding such constraints, we can thus define smaller and smaller

subsets of I and we can continue until the corresponding graph is such that for
any three points ei, ej , ek, two out of the three possible edges are present. It is
easy to see that this means that the graph is a complete bipartite graph. Note
also that the graph still contains at least an edge. In other words, we have defined
a subset H of I with H = {e1, . . . , es, f1, . . . , ft} such that any product of ei’s
or any product of fi’s lies in K but both eifjei and fjeifj lie outside K, for any
i, j.

We can now show the NP-completeness of T-EQN∗
S with a very simple re-

duction from 3sat. Of course, we begin by constraining the variables, as we just
described, so that each of them lies in H and for every Boolean literal Xi, we
then pose the equations

(1) exix̄ie = efe (2) fxix̄if = fef



(where, say, e = e1 and f = f1) and for a clause X1 ∨X2 ∨X3 the equation

(3) (fx1x̄2x3f)ω = (fef)ω.

If the formula is satisfiable then one can verify that the system is satisfied by
setting xi = e and x̄i = f when Xi is True and xi = f and x̄i = e otherwise.

Conversely, Equations (1,2) force exactly one of xi, x̄i to be some ej and the
other to be some fk. If we set each Boolean literal to True iff the corresponding
variable is some ej then Equation (3) will insure that each clause contains at
least one true literal since any product ffrfsftf lies in K. ut

Lemma 15. If M is a monoid which is not a union of groups, then T-EQN∗
M

is NP-complete.

Proof. There must exist some m ∈M which is not part of a subgroup and thus,
by Lemma 5, such that m2 lies strictly J -below m. Let us choose a J -maximal
such m: Any element t >J m, is an element of a subgroup and thus satisfies
tω+1 = t. In particular, for any two elements s, t lying strictly above m we cannot
have st = ts = m for then s and t commute and so

mω+1 = (st)ω+1 = sω+1tω+1 = st = m,

a contradiction. Furthermore, if u, v are J -related to m with uv = m then we
have uRm and vLm and this implies that we cannot have uv = vu = m: In
that case, we would have u, v ∈ Hm but the product of any two elements of Hm

must lie strictly J -below m.
We use these observations to obtain the following reduction from 1-3sat:

for each Boolean variable Xi in the formula, we introduce variables xi, x̄i and
equations

(1) xix̄i = m (2) x̄ixi = m.

Moreover, for each clause of the formula, e.g. (X1∨X2∨X3) we add the equation

(3) x1x̄2x3 = m.

Suppose first that the 1-3sat formula is satisfiable. Then one can check that
the resulting system of equations is satisfied by setting xi = m and x̄i = 1
whenever Xi is True, and xi = 1 and x̄i = m whenever Xi is False.

Conversely, suppose that this system of equations is satisfiable. Our initial
observations show that Equations (1) and (2) can only be satisfied if exactly one
of xi, x̄i lies strictly J -above m while the other is J -related tom. We thus obtain
a consistent truth assignment by setting Xi (resp. Xi) to True if and only if xi

(resp. x̄i) is J -related to m. We claim that this truth assignment satisfies the
1-3sat formula.

In any solution to the system, we have xi ≥R m by Eq. (1) and xim =
xix̄ixi = mxi from Eqs. (1,2). We claim that if xi >J m then in fact ximHm.
Indeed, xi H xω

i since it lies strictly J -above m and by Lemma 4 xω
i m = m. So



ximLm. Furthermore, xim = mxi ≤R m and thus ximRm by Lemma 2. By
Green’s Lemma, we can infer that xi Hm = Hm.

This allows to conclude that if an equation of type (3), say x1x̄2x3 = m is
satisfied, then it cannot be that x1, x̄2, x3 are all J -above m for then, by our
previous claim, m2 = x1x̄2x3m ∈ Hm, a contradiction. Similarly, if any two of
these variables lie in Hm then the product must lie strictly J -below m and so
exactly one of them lies in Hm while the other two lie strictly J -above m. Thus,
exactly one literal of the corresponding clause is true. ut

The last three hardness results of this section require rather technical argu-
ments and their complete proofs have been postponed to the appendix. Never-
theless, we illustrate each of them using a concrete semigroup and a reduction
very similar to the more general construction described later on.

Lemma 16. If S is a union of groups such that H is not a congruence on S,
then T-EQN∗

S is NP-complete.

Example 1 Let S be the four-element semigroup {a, a2, e, ae} with multipli-
cation specified by a2e = e, ex = e for all x and a3 = a. This semigroup (in
fact a monoid since a2 is an identity) consists of two J -classes: the top one
contains the two element group {a, a2} and the bottom one two idempotents
e, ae which are L-related, as pictured in Figure 1. Thus S is indeed a union of
groups but H is not a congruence since we have aH a2 but ae 6H a2e = e.
We claim that T-EQN∗

S is NP-complete and construct the reduction from 3sat.
For each Boolean variable Xi, we introduce variables xi, x̄i, vi, si, ti such that
vi, si, ti are all H-related to a and add the equations:

(1) xie = e (2) x̄ie = e
(3) vixisie = e (4) viax̄itie = e

Moreover, for each 3sat clause, e.g. X1 ∨X2 ∨X3 we introduce the equation

(5) x1x̄2x3 = e.

Given an assignment to the Boolean literals satisfying the 3sat formula, one
can verify that this system has a solution by setting xi = e, x̄i = a2, ti = a
and vi = si = a2 whenever Xi is true and xi = a2, x̄i = e, ti = a2 and
vi = si = a whenever Xi is false. Furthermore, each equation of type (5) is
indeed satisfied since at least one of the three terms is e (by the satisfiability
of the formula) while the others are a2.
Conversely, suppose that there exists a solution to the constructed system.
Equations (1,2) show that xi and x̄i take values in {a2, e} but we cannot have
xi = x̄i = e for otherwise no value of vi can simultaneously satisfy Eqns. (3,4)
(while the values of si and ti are irrelevant in that case). Correspondingly, if
we set Xi (resp. Xi) to True when xi = e (resp. x̄i = e) then a litteral and
its complement are never both true. Finally, if x1x̄2x3 = e, one of those three
variables must be e and so each clause in the formula is indeed satisfied. ut



a

aa∗

e∗

ae∗

a∗ b∗

c∗

ac∗

bc∗

e∗

. . .

(ef)q∗

ef
. . .

f∗

. . .(fe)ω∗

. . .

Fig. 1. Egg-box pictures for the semigroups of Examples 1, 2 and 3 respectively. Idem-
potents are marked with ∗.

Lemma 17. If S is a band but is not a regular band, then T-EQN∗
S is NP-

complete.

Example 2 Consider the band S = {a, b, c, ac, bc} pictured in Figure 1 and
where ab = b, ba = a and c = ca = cb. It is not a regular band, because
abca = bc but abaca = ac.
We can now obtain the following reduction from 3sat to T-EQN∗

S . For each
Boolean literal Xi in the formula, we introduce the variables xi, x̄i, yi and
construct the equations

(1) axiax̄i = ac (2) bxibx̄i = bc
(3) ax̄iaxi = ac (4) bx̄ibxi = bc
(5) yixiac = ac (6) yix̄ibc = bc

Consider some solution of this system. Suppose that both xi and x̄i are J -
related to a then axiax̄i J a, it is a contradiction. From Equation (1) we have
xi 6= bc and from Equation (2) we have xi 6= ac. This means that if xi is J -
related to c then xi = c. The same holds for x̄i by Equations (3,4). Suppose that
both xi and x̄i are J -related to c, i.e. both are equal to c. Then yixiac = yic
and yix̄ibc = yic which is contradiction with Equations (5,6) and the fact
ac 6= bc. Altogether one of xi and x̄i is J -related to a and the second one is
equal to c.
We complete our reduction by introducing, for each of clause of the 3sat

formula, e.g. X1 ∨X2 ∨X3, the equation:

(7) ax1ax̄2ax3 = ac.

One can now verify that if the 3sat instance is satisfiable, then we can satisfy
the system obtained through our reduction by letting xi = c, x̄i = a, yi = a
whenever Xi is True, and xi = a, x̄i = c, yi = b whenever Xi is False.
Conversely, suppose the system of the equations is satisfiable. Since exactly
one of xi, x̄i is equal to c, we get a consistent truth assignment to the literals
by setting Xi (resp. Xi) to True if and only if xi = c (resp. x̄i = c). This
assignment satisfies every clause of the original formula for if the variables
occurring in Eq. (7) all are J -related to a we have ax1ax̄2ax3 = a. ut



Lemma 18. If S contains a J -class K forming a completely simple but un-
orthodox semigroup then T-EQN∗

S is NP-complete.

Example 3 Consider a completely simple semigroup S with two R-classes and
two L-classes as represented in the eggbox-picture of Figure 1. So S contains
four idempotents which we can denote as e, f, (ef)ω, (fe)ω because of Lemma
5. We assume however that ef 6= (ef)ω and let q be the smallest integer such
that (ef)q = (ef)ω. Again using Lemma 5, we know that if st = u in S then
sRu and tLu.
We show the NP-completeness of T-EQN∗

S using a reduction from 1-3sat: for
each Boolean variable Xi we create two variables xi, x̄i and force them to be
idempotents. We include equations

(1) xix̄i = (ef)q (2) xifex̄i = ef

For each clause, e.g. X1 ∨X2 ∨X3 we include the equation

(3) (x1f)(ex̄2)(x3f) = ef.

If the formula is satisfiable, then one can easily verify that a solution to the
system is obtained by setting xi = e and x̄i = (ef)q when Xi is True and
xi = (ef)q and x̄i = f when Xi is False.
Conversely, since both xi and x̄i are idempotents, Eqn. (1) shows that xi ∈
{e, (ef)q} while x̄i ∈ {f, (ef)q}. We cannot have simultaneously xi = e and
x̄i = f (by Eqn. 1) and we cannot have xi = x̄i = (ef)q for then xifex̄i =
(ef)qfe(ef)q = (ef)q, in violation of Eqn. (2).
We can therefore choose Xi to be True when xi = e and Xi to be True

when x̄i = f . Now note that the product xif is ef when xi = e and (ef)q

when xi = (ef)q. Similarly ex̄i is ef when x̄i = f and (ef)q when x̄i =
(ef)q. Let us first assume that q ≥ 3: if an equation of type (3) is satisfied:
(x1f)(ex̄2)(x3f) = ef then exactly one of the three terms in the product is ef
and so the corresponding clause contains exactly one literal set to True.
If q = 2 then an equation of type (3) will also be satisfied if all three corre-
sponding literals are True. But we can assume w.l.o.g. using Schaefer’s Theo-
rem that each clause contains at least one unnegated literal (say X1) and one
negated literal (say X2). We then add a fourth type of equation: x1x̄2 = (ef)q

which can be satisfied only by setting at least one of x1, x̄2 to (ef)q. Corre-
spondingly, at least one of X1, X2 is False and this prevents the problematic
case of all three literals in a clause being True. ut

4 Upper Bounds

We chose to establish our upper bounds for EQN∗ and T-EQN∗ by presenting
explicit algorithms rather than by combining established general results in the
study of CSP’s as this clearly shows the relation between the algebraic structure
of a semigroup S and the tractability of solving equations over S. An alternative
presentation was chosen in [23] and we will outline its main ideas.



If we introduce for each s ∈ S a dummy variable xs and an equation xs =
s, we can assume that no other equation in a system over S uses constants.
Furthermore, the equation x1 . . . xn+m = y is equivalent to the pair x1 . . . xn = z
and zxn+1 . . . xn+m = y and by using this trick repeatedly, we can assume that
every equation in a system is either xs = s for some constant s or xixj = xk (see
discussion in [18]). However the dummy variable z that we introduced appears
on the right-hand side of an equation so this construction does not work for
systems of target-equations.

Lemma 19. If S is a semilattice, then EQN∗
S is computable in polynomial time.

Proof. Observe that if (u1, . . . , un) and (v1, . . . , vn) are solutions to a system of
equations E in n variables over S, then (u1v1, . . . , unvn) is also a solution to E .
Indeed if xi1xi2 = xi3 is an equation of E then we have

ui1vi1ui2vi2 = ui1ui2vi1vi2 = ui3vi3

because S is commutative. Equations of the form xi = s for s ∈ S are also
satisfied because of idempotency. Note that (u1v1, . . . , unvn) is the meet of
(u1, . . . , un) and (v1, . . . , vn) in the semilattice Sn. It is in fact known that this
closure property of relations induced by equations over S suffices to obtain a
polynomial time algorithm for EQN∗

S [14]. Still, we sketch an explicit algorithm,
since it will serve as the basis for an algorithm solving equations over a larger
class of semigroups.

Our algorithm maintains a lower bound y = (y1, . . . , yn) for the minimal
solution to E . We initialize y as (0, . . . , 0) and update it as follows. For each
equation of the form xs = s for s ∈ S we begin by setting the corresponding
ys to s. In each subsequent step, if (y1, . . . , yn) is a solution to E , the algorithm
halts. If some equation in E , say xi1xi2 = xi3 is not satisfied then since we are
maintaining y as a lower bound to any assignment satisfying E , we know that
in any such assignment yi1 and yi2 will be bounded below by yi3 . Thus, if yi1 is
not J -above yi3 , we can update our lower bound by setting yi1 := yi1 ∨ yi3 i.e.
the J -minimal element of S lying above both of them5. We do similar updates
for yi2 and yi3 .

We iterate this until we reach a fixed point for y. The process terminates in
at most n · |S| steps since the value of y always increases in the semilattice Sn

and if the fixed point is not a solution to the system, then it must be that E
contains the equation xs = s but the corresponding ys lies above s and so E is
unsatisfiable. ut

Recall that a band is a regular band if it satisfies the identity abaca = abca.

Lemma 20. If S is a regular band, then T-EQN∗
S is computable in polynomial

time.

5 If no such element exists, we conclude that the system is unsatisfiable.



In order to establish this upper bound, we will use the following property of
solutions to a target-equation over a regular band. Recall that a shuffle of two
strings x1 . . . xk and y1 . . . yl is a string formed by these k + l elements and in
which the xi’s and yi’s appear in their original order.

Lemma 21. Let S be a regular band and suppose x1 . . . xk = s and y1 . . . yl = s
for some xi, yi, s ∈ S. For all shuffles K of x1 . . . xk with y1 . . . yl, we have
K = s.

Proof. In any band, the product of two elements J -above some u ∈ S is also
J -above u [13]. Hence we have K ≥J s since each xi, yi lies J -above s. On the
other hand, since all xi’s appear in K, we can use the identity abaca = abca to
get KsK = Kx1 · · ·xkK = K2 = K. Thus, s ≥J K and so sJ K. Furthermore,
for any i ≤ k we have x1 . . . xis = x1 . . . xix1 . . . xi . . . xk = s.

We claim that K ≥R s. Indeed, we have Ks = Ksx1 . . . xky1 . . . yl. Using
again the identity abaca = abca, we can replace the occurrence of xi in K on
the right-hand side of this equation with the prefix x1 . . . xi since all the xj with
j ≤ i appear both before and after xi. Hence Ks can be written as a product of
prefixes of x1 · · ·xk or y1 . . . yl times s. Thus Ks = s and K ≥R s.

By a symmetric argument, K ≥L s. Since sJ K, we have sHK and s = K
by aperiodicity. ut

From the universal algebra perspective, Lemma 21 can be used to show that
the relations induced by target-equations over a regular band are closed under
a so-called set function [8] and this is known to be a sufficient condition for
the tractability of the corresponding CSP. The algorithm we describe next is
implicitly using this fact.

Proof. of Lemma 20 For each variable xi, 1 ≤ i ≤ n, we initialize a set Ai = S
of “possible values” for xi and repeat the following until either the Ai are fixed
or some Ai = ∅: for all i from 1 to n, for each equation E involving xi, and each
ai ∈ Ai, if there exists no n-tuple (a1, . . . , ai, . . . , an) with aj ∈ Aj that satisfies
E, then we set Ai := Ai − {ai}.

If some Ai is empty, the system clearly has no solution. Conversely, we are
left with sets Ai such that for all ai ∈ Ai and all equations E in the system,
there are aj ∈ Aj for all i 6= j such that the n-tuple (a1, . . . , an) satisfies E. We
claim that this guarantees the existence of a solution to the system.

Indeed, let ti be the product in S of all elements of Ai = {a
(1)
i , . . . , a

(ri)
i } in

some arbitrary order. Then (t1, . . . , tn) satisfies all equations in the system. To
see this, consider some equation E : xj1xj2 . . . xjk

= s. One can easily show using
idempotency that by definition of the Ai’s and ti’s, the product tj1tj2 . . . tjk

is a
shuffle of solutions to this equation. So by Lemma 21, the tuple (t1, . . . , tn) also
satisfies the equation.

To show that our algorithm runs in polynomial time, it suffices to show that
we can efficiently test whether a given equation xj1 . . . xjk

= s has a solution
a = (a1, . . . , ai, . . . , an) where ai is given and for each j 6= i we want aj ∈ Aj .
Since a regular band S satisfies the identities xyxzx = xyzx and x2 = x, the



value of a product s1s2 . . . sm with si ∈ S is completely determined by the
set of elements of S occurring among the si and the order in which they first
appear from left to right and from right to left (see e.g. [16]). If we require
that xj1 . . . xjk

= s we can thus guess which elements of S do appear in this
product and where they first and last appear: because |S| is a constant, there
are only polynomially many such possibilities. For each of these, it is easy to
check whether or not we can find a such that xj1 . . . xjk

= s. ut

Note that for any solution (s1, . . . , sn) to the system, we have ti ≤J si for
each i because we must have si ∈ Ai.

For a set Q = {q1, . . . , qt} of integers with qi ≥ 2 for all i, we define a decision
problem LEQNQ as follows: given a system E of linear equations modulo qi for
some qi ∈ Q (with different equations using possibly different moduli), determine
if E has a solution over the integers.

Lemma 22. The problem LEQNQ lies in P for any set of moduli Q.

This is not hard to prove using elementary arithmetic. Alternatively, one
can see that LEQNQ is a constraint satisfaction problem over the domain D =
{0, 1, . . . , lcm(Q)−1} whose relations are solution sets of linear equations (whose
arity can be bounded to 3) over the different moduli. The domain D can be
viewed as a cyclic group under addition and it is clear that every k-ary relation
is then a coset of D3. The problem is thus tractable by Theorem 2.

For the following two lemmas, it is useful to recall that in an orthodox union
of groups S the idempotents form a subsemigroup E(S). If S is also a strong
band of groups then E(S) ≡ S/H is the image of the homomorphism φ : s 7→ sω.
If E is a system of equations over S and φ : S → T is a homomorphism, we can
naturally construct a system φ(E) over T by replacing every constant c appearing
in E by φ(c). If E has a solution then of course so does φ(E).

Lemma 23. If S is in SL ∨Ab then EQN∗
S is computable in polynomial-time.

Proof. Let E be a system of equations over S in n variables. We know that S is a
strong semilattice of Abelian groups and if E is satisfiable, then the corresponding
system over S/H ≡ E(S) is also satisfiable. It is useful to note that the system
over E(S) can be obtained from E by raising every variable and constant to its
ω power. Using the algorithm of Lemma 19, we can find the J -minimal solution
(e1, . . . , en) of the system over E(S). If (u1, . . . , un) is an arbitrary solution of E
then we have ui ≥J ei and thus eiuiJ ei (and in fact eiui H ei since J = H for
S ∈ SL ∨ Ab). Furthermore, (e1u1, . . . , enun) is also a solution of the system E :
say x1x2 = x3 is some equation of E , then because S is a commutative we have

(e1u1)(e2u2) = (e1e2)(u1u2) = e3u3.

Also, sωs = s for every s ∈ S since it is a union of groups and so equations
xs = s are also satisfied.

So if E has a solution, it has a solution (u1, . . . , un) such that ui H ei or, in
other words such that ui belongs to the subgroup Gi whose identity element is



ei. Note that if we know the group in which each variable lies, we consequently
know the group in which a product of them lies and we can associate to each
equation Ej of E a subgroup Hj in which both its right-hand and left-hand sides
will sit.

Suppose for simplicity that each group is cyclic (the more general case can
easily be handled by decomposing the groups into their cyclic factors). We write
the group operations additively and for every variable xi of E introduce an integer
variable yi such that xi = yigi where gi is the generator of Gi. Each equation Ej

of E can be viewed as an equation over Hj : using the homomorphism mapping
the relevant Gi to Hj , we can thus rewrite each Ej as a linear equation modulo
some integer qj over variables yi’s. Clearly, E has a solution iff the resulting
instance of LEQNQ has a solution and we can check this in polynomial time. ut

This upper bound technique combines ideas from two classes of polynomial
time algorithms for CSP’s. This has lead to the identification of an apparently
new “island of tractability” [7] which supersedes both Theorems 1 and 2: if
S is a block group (i.e. a semigroup in which the idempotents generate a J -
trivial subsemigroup) and Γ is a set of relations over S closed by the operation
t(x, y, z) = xyω−1z then CSP(Γ ) is tractable. The latter is a so-called Taylor
operation and an easy exercise shows that it indeed closes the relations defined
by equations over a semigroup in SL ∨ Ab.

Lemma 24. If S is in RB ∨ Ab then T-EQN∗
S is computable in polynomial-

time.

Proof. We proceed exactly as in the previous proof: if E is our system of target-
equations over S, we begin by considering the corresponding system over S/H ≡
E(S) and running the algorithm of Lemma 20: if it has no solution then E is
also unsolvable. If (e1, . . . , en) is a solution over E(S) then let (u1, . . . , un) be
a solution to E : by our remark following Lemma 20 we have ei ≤J ui and thus
eiuiei H ei.

We can adapt Lemma 21 to show that if S is a strong regular band of Abelian
groups and x1 . . . xk = s and yω

1 . . . y
ω
l = sω then for any shuffle K of x1 . . . xk

and yω
1 . . . y

ω
l we haveK = sω+1 = s. Therefore (e1u1e1, . . . , enunen) is a solution

to E .
So if E has any solution then it has a solution (u1, . . . , un) such that uω

i = ei.
Once again, this means that we have identified in polynomial time the subgroup
to which each ui will belong and the rest of the proof is identical to that of
Lemma 23. ut

5 Three Dichotomy Theorems

In this section we combine the results obtained so far to characterize the com-
plexity of EQN∗

M and T-EQN∗
M for every finite monoid M and the complexity

of T-EQN∗
S for every regular semigroup S.



Theorem 4. If M is a finite monoid then T-EQN∗
M is computable in polynomial

time if M lies in RB ∨ Ab and is NP-complete otherwise.

Proof. The upper bound is provided by Lemma 24. For the lower bound, if M is
not a union of Abelian groups then EQN∗

M is NP-complete by Lemmas 11 and 15.
If M is a union of groups but is not orthodox then it must have a completely
simple unorthodox subsemigroup [13] and NP-completeness follows from Lemma
18. If M is an orthodox union of Abelian groups then the inducible subsemigroup
E(M) is a band and Lemma 17 insures the NP-hardness of T-EQN∗

M if this band
is not regular. Finally, if M is an orthodox union of Abelian groups over which H
is not a congruence, we can use Lemma 16. By Lemma 8, our proof is complete.

ut

Theorem 5. If S is a finite regular semigroup then T-EQN∗
S is computable in

polynomial time if S lies in RB ∨ Ab and is NP-complete otherwise.

Proof. Once again, Lemma 24 yields the upper bound. For the lower bound, note
that if a regular semigroup S is not a union of groups then it must lie outside
DS. In that case, the NP-completeness of T-EQN∗

S follows from Lemma 14. If
S is a union of groups, we can argue as in Theorem 4. ut

Theorem 6. If M is a finite monoid then EQN∗
M is computable in polynomial

time if M lies in SL ∨ Ab and is NP-complete otherwise.

Proof. The upper bound is simply Lemma 23. For the lower bound: if M lies
outside RB ∨Ab then EQN∗

M is NP-complete by Theorem 4. Otherwise, M is
a strong band of groups and if the underlying band E(M) is not a semilattice,
NP-completeness follows from Lemma 13. ut

B. Larose and L. Zádori recently showed that the NP-completeness half of
this result can be obtained alternatively using universal algebra [18]. They show
that if the set of relations defined by equations over M is closed under a so-called
Taylor operation then M is a commutative union of groups (i.e. lies in SL ∨ Ab)
and this yields the lower bound. The converse of this statement is also true, a
fact we implicitly exploited to obtain the matching upper bound.

6 Obstacles for more General Dichotomies

Ideally, we would want to prove that such dichotomies hold for EQN∗ and
T-EQN∗ for all finite semigroups but our results in this section indicate that
this is as difficult as obtaining a dichotomy for all CSP’s.

Theorem 7. For every set of relations Γ , there exists a semigroup SΓ satisfy-
ing the identity xyz = uvw such that CSP(Γ ) is polynomial-time equivalent to
T-EQN∗

SΓ
.



Proof. By Theorem 3, we can assume that Γ contains a single binary relation
R and all constants, i.e. all unary relations consisting of a singleton. In other
words, every constraint of the CSP(Γ ) instance either sets a variable to some
constant value or constrains a pair of variables to lie in R.

We construct the semigroup SΓ from generators d1, . . . , dk corresponding to
the k elements of Γ ’s domain. Furthermore, we add a semigroup element 〈didj〉
for every pair of domain elements such that (di, dj) 6∈ R. The last two elements
of SΓ are r and 0 and the multiplication is given by
- didj = 〈didj〉 if (di, dj) 6∈ R and didj = r otherwise;
- xy = 0 unless x and y are among the k generators.
In particular, the product of any three elements of the semigroup is 0 so SΓ

satisfies the identity xyz = uvw.
The reduction from CSP(Γ ) to T-EQN∗

SΓ
is now quite transparent: for every

variable yi of the CSP instance, we create a variable xi. If the CSP variable yi

is bound to the domain value ds then we correspondingly impose xi = ds in the
system and for each constraint (yi, yj) ∈ R we introduce the equation xixj = r.
The correctness of the reduction is clear.

Conversely, consider a system of target-equations over SΓ . We can assume
that the left-hand side of each equation contains no constants (for we can intro-
duce dummy variables xc = c) and no more than two variables (since xyz = 0
for all x, y, z ∈ SΓ ). Furthermore, we can replace any equation of the form
xy = 〈didj〉 by the pair x = di, y = dj . In any solution to the system, a variable
x that occurs in a target-equation of the form xy = r, yx = r, or x = di must be
one of the generators. Consider an equation of the form xy = 0: if both x and
y are forced to be generators, then the system will be unsatisfiable. Otherwise,
this equation can be removed without affecting the system’s satisfiability. Hence,
we can assume that our system of equations contains only equations of the form
x = di and xy = r and the reduction to CSP(Γ ) is obvious. ut

On the other hand, T-EQN∗
Sk

is computable in polynomial time for the semi-
group6 Sk generated by the k element set D = {d1, . . . , dk} and subject to
xyz = 0 for all x, y, z ∈ S.

Indeed, we can assume that each target equation of a system E over Sk in-
volves at most two variables and that no constants appear on the left. Moreover,
equations of the form xixj = d for some d ∈ D have no solution so we can
assume they do not occur in the system. To solve E we consider the set F of
variables that are not bound by an equation xi = c, with c ∈ Sk. If F is empty,
the satisfiability of E is trivial to verify and our algorithm can replace any equa-
tion of the form xixj = ab with a, b ∈ D by the pair xi = a and xj = b. Once
all such equations have been removed, every variable xi remaining in F occurs
only in equations of the form xixj = 0 or xjxi = 0 so we can safely set it to 0
and delete the corresponding equations: the solvability of the remaining system
is trivial to check.

The existence of such a polynomial time algorithm for T-EQN∗
Sk

is surprising
since we have just shown that arbitrary CSP’s are equivalent to T-EQN∗

T for some

6 In semigroup jargon, Sk is the free nilpotent semigroup of threshold 3 on k generators.



T in the variety generated by the Sk’s and so the class of semigroups S for which
T-EQN∗

S (and as we will see EQN∗
S) lies in P does not form a variety.

Theorem 6 describes the complexity of EQN∗
M for every monoid M and

in light of Theorem 5 we would expect that is also possible to describe the
complexity of EQN∗

S for every regular S. Our results already allow us to show
two basic results in this direction.

Lemma 25. If S is regular but is not in NB ∨ Ab then EQN∗
S is NP-complete.

Proof. We already know from Theorem 5 that EQN∗
S is NP-complete unless S

lies in RB ∨ Ab. If S does lie in RB ∨ Ab, then E(S) (an inducible subsemi-
group of S) must form a band which is not normal and the NP-completeness
follows from Lemma 13. ut

Lemma 26. If S lies in NB ∨ Ab, then EQN∗
S is polynomial-time equivalent

to EQN∗
E(S).

Proof. Only one direction requires proof since E(S) is an inducible subsemigroup
of S. For the converse, note that every band K in NB and every group G in Ab
satisfy the identity uxyv = uyxv so this also holds in S. Consider the relation ∼
on S defined by x ∼ y when xωyxω = x and yωxyω = y. In fact, we claim that
x ∼ y iff uxv = uyv for any u, v ∈ S. The right to left implication is clear since
xω+1 = x in a union of groups. For the converse, we get first

yωxωyω = yω2

xωyω2

= (yωxyω)ω = yω

and thus

uxv = uxωyxωv = uxωyωyωyv = uyωxωyωyv = uyω+1v = uyv.

Hence, ∼ is an equivalence relation and in fact a congruence. Also xy ∼ yx so
the quotient semigroup Q = S/ ∼ is commutative and since it is also a union of
groups then Q ∈ SL∨Ab [13]. For q ∈ S, we will denote by [q] the ∼-class of q.

Let E be a system of equations over S: if E is satisfiable, then the two corre-
sponding systems over E(S) and Q must also be satisfiable. We claim that the
converse statement also holds: let e = (e1, . . . , en) and q = ([q1], . . . , [qn]) be the
respective solutions of these systems. We show that s = (e1q1e1, . . . , enqnen) is
a solution to E . Every equation of E is either of the form xixj = xk or xi = c.
In the first case, we have:

eiqieiejqjej = eiejqiqjeiej Since S satisfies uxyv = uyxv

= eiejqkeiej Since qiqj ∼ qk

= ekqkek Since eiej = ek

= ekqkek.

For the second case, we get ei = cω and qi ∼ c so eiqiei = c.
Since we can check in polynomial time the solvability of the system over Q,

we can reduce the solvability of E to that of the system over the normal band
E(S). ut



It thus remains to understand the complexity of EQN∗
S when S is a normal

band. We will first consider the a priori simpler problem of systems over right-
normal bands which satisfy x2 = x and xyz = yxz. An important consequence
of these identities is that if S is a right normal band and s and t are J -related
then su = tu for each u ∈ S. Also, all L-classes of S are trivial, i.e. J = R.

Theorem 8. For every domain D and every set of relations Γ over D, there
exists a right-normal band SΓ such that CSP (Γ ) is polynomial-time equivalent
to EQN∗

SΓ
.

Proof. Again, we can assume w.l.o.g. that Γ contains a single binary relation R
and the constant relations. Let r = |R| and d = |D| with D = {t1, . . . , td}. We
construct a semigroup SΓ with 7 J -classes {α, β, γ, δ, ε, ρ, 0} as in the egg-box
picture of Figure 2. These J -classes form a semilattice S/J also represented in
the figure. The α, β, γ, δ and ε classes all have d elements and we think of the
elements αi, βi, γi, δi, εi as “representing” the element ti of D. The ρ-class has
r elements and we similarly think of each element of ρ as representing a pair
(ti, tj) ∈ R.

We want SΓ to be a right-normal band so for any x, x′, y with xJ x′ we have
xy = x′y. To stress this, we will abuse notation and when x lies, say in the
J -class γ, write xy = γy.

The multiplication is described by the following equalities. First,

βαi = εαi = αβi = εβi = αεi = βεi = εi

αγi = γαi = ραi = ργi = γi

βδi = δβi = ρβi = ρδi = δi

for every 1 ≤ i ≤ d. Next, if ρk is associated to the pair (ti, tj) we have

αρk = γρk = γi and βρk = δρk = δj

so that multiplying ρk on the left by γ and δ respectively “extracts” the informa-
tion about the first and second component of the pair (ti, tj) that ρk represents.
Also, for any xJ y we have xy = y because each J -class is a single R-class.

The element x lies in the J -class, say, γ if and only if γ1x = x and xγ1 = γ1.
We will abbreviate this pair of equations by simply writing x ∈ γ and similarly
for the other J -classes.

To get a reduction from CSP (Γ ) to EQN∗
SΓ

, we create, for each CSP variable
vi two variables xi and yi and include equations:

(1) xi ∈ α (2) yi ∈ β (3) εxi = εyi.

Since we have xi ∈ α and yi ∈ β, Equation (3) imposes that xi = αj iff yi = βj

and thus “synchronizes” the two variables. If our CSP instance uses the constant
relation vi = tj then we further set xi = αj (which also forces yi = βj). Next, for
each constraint (vp, vq) ∈ R we create a variable zp,q and include in our system
the equations
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Fig. 2. Egg-box representation of SΓ . Lines indicate the order in the semilattice of
J -classes.

(4) zp,q ∈ ρ (5) γzp,q = γxp (6) δzp,q = δyq.

If xp = αi and yq = βj then our multiplication rules show that there is a
zp,q satisfying these equations iff (ti, tj) ∈ R. It is now clear that this system is
satisfiable if and only if the CSP(Γ ) instance is.

Conversely, suppose we start with a system E of equations over SΓ and
assume w.l.o.g. that all equations are of the form x = s or xixj = xk. We will
show that we can construct in polynomial time a system F which is exactly in
the form we have just described and which has a solution if and only if E does.
It is then easy to reconstruct a CSP(Γ ) instance which is satisfiable if and only
if F is.

As in Lemma 26, if E has a solution, then the corresponding system over the
semilattice consisting of elements {α, β, γ, δ, ε, ρ, 0} must also have a solution.
We can check this in polynomial time and if a solution exists, we can obtain
the minimal one ē = (e1, . . . , en) with each ei ∈ {α, β, γ, δ, ε, ρ, 0}. Once again,
it can be shown that if E has any solution (u1, . . . , un) then it has one, namely
(e1u1, . . . , enun) where xi lies in the J -class ei.

Therefore, we do not affect the solvability of E if we add for each xi the pair
of equations equivalent to xi ∈ ei. Furthermore, we can replace every equation
xixj = xk by eixiejxj = ekxk. Furthermore, because eixiejxj = eiejxj and
since we must have eiej = ek in the semilattice, the equation can be rewritten
as exj = exk with e ∈ {α, β, γ, δ, ε, ρ, 0}.

We are thus left with solving a system, say E ′, where every variable is con-
strained by some condition xi ∈ ei and every other equation is of the form x = c
for c a constant or exi = exj . Moreover, if the system contains an equation
exi = exj then ei ≥J e. Of course every equation of the form 0x = 0y is trivially
satisfied and can be discarded.

Suppose a variable x is constrained by x ∈ γ. In every equation of the form
ex = ey in which x occurs, we have e ≤J γ and this means in fact e = γ since
we removed equations with e = 0. Suppose that in E ′ we replace the requirement
x ∈ γ by x ∈ α and the equation x = γi (if such an equation exists) by x = αi:
we claim that the solvability of the system will be unaffected. Indeed, whenever
we had a solution with x = γi, we will have a solution with x = αi since for any



1 ≤ i ≤ d we have γγi = γαi. By the same token, we can replace requirements
x ∈ δ or x ∈ ε by x ∈ β without affecting the solvability of the system.

These observations allow us to assume that every variable in our system is
constrained by xi ∈ ei where ei is one of {α, β, ρ}.

Let ri, rj be variables of the system constrained by ri ∈ ρ and rj ∈ ρ. We can
assume that our system does not contain an equation of the form γri = γrj since
it is equivalent to the equations γri = γz, γrj = γz with z ∈ α and where z is
a new variable. Symmetrically, we can replace equations of the form δri = δrj .

In the same way, for any constant ρs there are unique constants αu and βv

such that γρs = γαu and δρs = δβv so we can replace ri = ρs by the equations
x = αu, y = βv, γri = γx and δri = δy. Also, if we have xi ∈ α and xj ∈ α
then the equation εxi = εxj (and similarly γxi = γxj) forces xi = xj . In the
same way, for z ∈ ρ (resp. y ∈ β) and xi, xj ∈ α the pair of equations γxi = γz
and γxj = γz (resp. εxi = εy and εxj = εy) yields xi = xj . Symmetrical results
hold for yi and yj in β.

In the system F thus obtained, we can view each variable as being one of
three types X,Y, Z where each xi ∈ X is constrained by xi ∈ α, each yi ∈ Y
by yi ∈ β and each zi ∈ Z by zi ∈ ρ. For each zk ∈ Z, there is at most one
(exactly one if we use dummy variables) xi ∈ X and one yj ∈ Y such that the
system contains γxi = γzk and δyj = δzk. Also, for each xi ∈ X, there exists
exactly one yj ∈ Y such that the system contains εxi = εyj . All other equations
are xi = αs or yj = βs for some s. By construction, F has a solution if and only
if E had one and F ’s solvability easily reduces to a CSP(Γ ) instance. ut

In contrast, an easy exercise can show that solving a system of equations over
the free right-normal band or even the free normal band on any finite number k of
generators is doable in polynomial time. This also is part of more general results
of one of the authors [16]. So the class of semigroups for which EQN∗

S lies in P
is not closed under morphic images. It is not closed under taking subsemigroups
either. Indeed, the right-normal band SΓ that we constructed is a subsemigroup
of the right-normal band that we would obtain when R consists of all pairs in
D ×D but the latter CSP clearly lies in P.

If S is not regular, then our partial results allow us to show that EQN∗
S and

T-EQN∗
S are NP-complete unless S lies in the variety DO ∩ Ab of semigroups

whose regular J -classes are orthodox unions of Abelian groups and which has
already been shown of particular relevance in computational complexity con-
texts [23, 24].

7 Conclusion

Although the complexity of EQN∗
S or T-EQN∗

S for semigroups is a question
that will not find a resolution until we can settle the CSP conjecture, we are
able to give complete dichotomies in the case of monoids and the classes of
monoids for which each problem is tractable form varieties. We do not have
a good explanation for this phenomenon and it would be interesting to see,



for instance, whether one can get a simple and direct proof (in the case of
monoids) that the tractability of EQN∗

M implies the tractability of EQN∗
S for

every subsemigroup S ⊆M . As we noted, B. Larose and L. Zádori have reproved
using universal algebra that EQN∗

M is NP-complete if M is not in SL∨Ab and
their proof crucially depends on the presence of an identity element [18].

Reducing every CSP to the problem of solving systems of equations over a
finite semigroup might be useful given that so many of the successful machinery
to study CSP is of algebraic nature. In any case, it would be surprising if equa-
tions over such simple classes of semigroups defined problems whose complexity
form a very wide spectrum and in that sense, these results constitute additional
if weak evidence in favor of the CSP conjecture.

Finally, let us note that EQN∗
G for a finite group can be solved well within

NC (and thus has a very efficient parallel algorithm) but EQN∗
S is P-hard as

soon as S contains two idempotents e 6= f such that ef = fe = f . Indeed,
Lemma 1 essentially shows that in this case the P-complete problem Horn-sat

has a logspace reduction to EQN∗
S . In particular, the semigroup SΓ which we

construct in Theorem 8 is such that EQN∗
SΓ

will be P-complete, even if CSP(Γ )
has much lower complexity.
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satisfiability and program satisfiability for finite monoids. In Proc. Math. Founda-
tions of Comp. Sci (MFCS’00), pages 172–181, 2000.

3. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proc.
of 43rd Foundations of Comp. Sci. (FOCS’02), pages 649–658, 2002.

4. A. Bulatov, P. Jeavons, and M. Volkov. Finite semigroups imposing tractable
constraints. In G. Gomez, P. Silva, and J-E.Pin, editors, Semigroups, Algorithms,
Automata and Languages. WSP, 2002.

5. A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction problems and finite
algebras. In Proceedings 27th International Colloquium on Automata, Languages
and Programming—ICALP’00, volume 1853 of Lecture Notes in Computer Science,
pages 272–282, 2000.

6. V. Dalmau. Computational Complexity of Problems over Generalized Formula.
PhD thesis, Universita Politécnica de Catalunya, 2000.
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Appendix

We present here detailed proofs for the hardness results which were omitted in
Section 3 and for the semigroup theoretic lemmas stated throughout the paper.

Additional Hardness Results

Lemma 16. If S is a union of groups such that H is not a congruence on S,
then T-EQN∗

S is NP-complete.

Proof. If H is not a congruence, then it either is not a right-congruence or is
not a left congruence. We can without loss of generality assume the first case,
i.e. that there exist a, b, c such that aHb but ac 6H bc, since the other case can be
handled symmetrically. The reduction that we will use is almost exactly that of
Example 1 and this will be made possible by the following technical construction.

Lemma 27. If S is a union of groups such that H is not a right congruence on
S, then there are a, e ∈ S with a >J e such that

1. e2 = e and aωe = e = eaω;
2. ae 6H e (and in fact ae 6R e);
3. For all x with a >J x >J e, we have xe 6= e.

Proof. Recall that since S is a union of groups we have sω+1 = s for all s ∈
S and J is a congruence over S. There are a, b, c ∈ S such that aH b but
ac 6H bc and we can choose a, b to be J -minimal with this property. Since S is
a union of groups we have aω = bω so either aωc 6H ac or bωc 6H bc for otherwise
acHaωc = bωcHbc contradicting our initial hypothesis. Let us thus assume that
aωc 6H ac: because of Green’s Lemma, we cannot have aJ c and in fact we can
assume that c lies J -below a (otherwise, we can choose d = aωc and obtain
aωd = aωc 6H ac = aω+1c = ad). Let us pick c as a J -maximal element lying
below a with the property ac 6H aωc: because S is a union of groups we in fact
have cJ acJ aωc. If f is the idempotent (aωc)ω then f H aωc and by Green’s
Lemma af H ac 6H aωcH f . In fact, since af and aωf = f are L-related they
cannot be R-related. Finally, choosing e = (faω)ω, we get aωe = e = eaω and,
again using Green’s Lemma, aeR af 6R f R e so in particular ae 6R e.

If a >J x >J e then we have, from our initial choice of c above axH aωx.
Similarly, because we earlier chose a, b to be J -minimal, we must have axeH aωxe.
Hence, xe 6= e for otherwise this last expression simplifies to aeH e. ut

Note that in Example 1, a and e exactly had these properties. When building
our reduction, we work over the inducible subsemigroup of elements lying J -
below a and, as in the example, introduce for every Boolean variable Xi the
equations

(1) xie = e (2) x̄ie = e
(3) vixisie = e (4) viax̄itie = e



where vi, si, ti are constrained to be H-related to a.
Just as before, we also include for each 3sat clause, e.g. X1 ∨X2 ∨X3 the

equation

(5) x1x̄2x3 = e.

Given an assignment to the Boolean literals satisfying the 3sat formula, one
can verify that this system has a solution by setting xi = e, x̄i = aω, ti = aω−1

and vi = si = aω whenever Xi is true and xi = aω, x̄i = e, si = a, ti = aω and
vi = aω−1 whenever Xi is false. Furthermore, each equation of type (5) will be
satisfied since at least one of the three terms is e while the others are aω and
since we have e = aωe = eaω.

Conversely, suppose that there exists a solution to the constructed system.
Equations (1,2) show that xi and x̄i are J related either to e or to a because of
condition 3 in Lemma 27. On the other hand if both values are J -related to e the
because of Eqn. (1) we have xi ≥R e and thus xi R e since xi J e and similarly
x̄iRe. Also vixisie = e so vixi ≥R e and in fact get vixi R e when xi J e.
Similarly viax̄i R e. Since R is a left-congruence we have also vieR vixi R e and
viaeR viax̄i R e. But this leads to a contradiction for if veR vae then multiplying
both sides on the left by vω−1, we get e = vωeR vωae = ae.

Hence, if we set Xi (resp. Xi) to True when xi J e (resp. x̄i J e) then a
litteral and its complement are never both true. Finally, if x1x̄2x3 = e, one of
those three variables must be J -related to e since their product will otherwise
lie in the J -class of a. ut

Before proving Lemma 17, we recall some useful properties of bands, all of
which can be obtained from results mentioned in our introduction, and provide
a useful characterization of regular bands.

Lemma 28 ([13]). Let S be a band and a, b, c ∈ S arbitrary elements. Then
(i) a ≤L b ⇐⇒ ab = a,
(ii) a ≤R b ⇐⇒ ba = a,
(iii) a ≤J b ⇐⇒ aba = a,
(iv) a ≤J b =⇒ ac ≤J bc, ca ≤J cb.

Lemma 29. Let S be a band. Then it is a regular band if and only if the fol-
lowing two (dual) conditions are satisfied:

(∀x, y, z ∈ S) xR y, x ≥J z =⇒ xz = yz,

(∀x, y, z ∈ S) xL y, x ≥J z =⇒ zx = zy.

Proof. Let S be a regular band and x, y, z ∈ S such that xR y, x ≥J z. From
the assumption xR y we have xy = y and from x ≥J z we can deduce zxz = z.
Hence yz = xyzxz and if we use regularity (i.e. xyzx = xyxzx) we obtain
yz = xyzxz = xyxzxz. Because xyx = x and S is a band we finally obtain
yz = xzxz = xz. The second condition can be obtain dually.



Conversely, let S be a band which satisfies both conditions and let a, b, c ∈ S
be arbitrary elements. If we let x = ab, y = aba and z = caabca then these
elements satisfy the assumptions of the first condition and we have abca = abca ·
abca = xz = yz = abaca ·abca. Hence abacaRabca. Dually we obtain abacaLabca
and alltogether we have abacaH abca which means that abaca = abca as S is a
band. ut

Lemma 17. If S is a band but is not a regular band, then T-EQN∗
S is NP-

complete.

Proof. If S is a band but not a regular band, it must violate one of the two
conditions of Lemma 29 and we will w.l.o.g. assume that S violates the first
one. The following construction will now allow us to present a reduction closely
related to the one of Example 2.

Lemma 30. Let S be a band which does not safisfy the first condition of Lemma 29.
Then there exist elements a, b, c ∈ S such that ab = b, ba = a (i.e. a R b), ca = c,
ac 6= bc, c <J a and satisfying the following condition

∀s ∈ S : c <J s ≤J a =⇒ as = bs. (1)

Proof. Let x, y, z be elements which disprove the condition of Lemma 29 and
such that z is J -maximal with respect to this property. By Lemma 5 and the
aperiodicity of S we can see that xR yJ z implies xz = xyz = yz. Hence z <J x
and we can put a = x, b = y and c = zx. Assume for a moment that ac = bc.
Then xyx = ac = bc = yzx and if we multiply this equality by z then we obtain
xzxz = yzxz which is xz = yz because zxz = z. This is a contradiction so
ac 6= bc. The equalities are easy to see and property (1) is a consequence of the
J -maximality of z in the counterexample. ut

We can now obtain the following reduction from 3sat to T-EQN∗
T where

T is the (inducible) semigroup of elements lying J -below a. For each Boolean
literal Xi in the formula, we introduce the variables xi, x̄i, yi and construct the
equations

(1) cxi = c (2) cx̄i = c
(3) axiax̄i = ac (4) bxibx̄i = bc
(5) yixiac = ac (6) yix̄ibc = bc
(7) yia = a

Moreover for any q which is R-related to a we add the equations

(8) qxiqc = qc (9) qx̄iqc = qc.

Note that in any solution to these equations we know from Eqs. (1,2) that
both xi and x̄i lie J -above c. Suppose that both lie strictly J -above c then



axi = bxi and ax̄i = bx̄i by Lemma 30. But then axiax̄i = bxibx̄i and this
contradicts Eqs. (3,4).

Suppose on the other hand that both xi and x̄i are J -related to c: by
Eqs. (1,2) we get xi L x̄i L c. We thus have xi = xiac and in fact xitc = xi

(as well as x̄itc = x̄i) for any t ≥J c. Since Eq. (7) imposes yi R a we deduce
from Eqs. (8,9) that

yixiac = yixi = yixiyic = yic = yix̄iyic = yix̄ibc.

This, however contradicts Eqs. (5,6). Hence, exactly one of xi, x̄i is J -related to
c and the other lies strictly J -above c.

We complete our reduction by introducing, for each of clause of the 3sat

formula, e.g. X1 ∨X2 ∨X3, the pair of the equations:

(10) ax1ax̄2ax3 = ac (11) bx1bx̄2bx3 = bc

One can verify that if the 3sat instance is satisfiable, then we can satisfy
the system obtained through our reduction by letting xi = c, x̄i = a, yi = a
whenever Xi is True, and xi = a, x̄i = c, yi = b whenever Xi is False.

Conversely, suppose the system of the equations is satisfiable. Since exactly
one of xi, x̄i is J -related to c, we get a consistent truth assignment to the literals
by setting Xi (resp. Xi) to True if and only if xi J c (resp. x̄i J c). This assign-
ment satisfies every clause of the original formula for if the variables occurring in
Eq. (11) all lie strictly J -above c we have ax1 = bx1 ax̄2 = bx̄2 and ax3 = bx3

so that
ax1ax̄2ax3 = bx1bx̄2bx3

in violation of Eqs. (11,12). ut

To present the complete proof of Lemma 18, we need to introduce semigroup
theoretic tools which allow a deep understanding of the structure of completely
simple semigroups. We seek a refinement of Lemma 5 in order to understand the
structure of multiplication within such semigroups.

Let G denote some finite group with multiplication ◦ and m,n be positive
integers. A complete Rees matrix is an m by n matrix R with entries in G and
the corresponding complete Rees semigroup is the completely simple semigroup
with elements in ([n]×G× [m]) and where the multiplication of elements is given
by:

(i1, g1, j1) · (i2, g2, j2) = (i1, g1 ◦Rj1,i2 ◦ g2 , j2).

Note that this semigroup has n R-classes given for each 1 ≤ l ≤ n by
Rl = {(l, g, j)|g ∈ G; 1 ≤ j ≤ m} and similarly has m L-classes.

Theorem 9. [13] Every completely simple semigroup with n R-classes and m
L-classes is isomorphic to a complete Rees semigroup. The corresponding Rees
matrix is m× n and its first row and first column entries can be assumed to all
be the group identity 1G. Moreover, the semigroup is orthodox if and only if all
the Rees matrix entries are 1G.



In particular the m idempotents in the first R-class and the n idempotents in
the first L-class are {(1, 1G, j)|1 ≤ j ≤ m} and {(i, 1G, 1)|1 ≤ i ≤ n} respectively.
Note also that the egg-box picture of the complete Rees semigroup corresponding
to an m × n complete Rees matrix has n rows (R-classes) and m columns (L-
classes).

Lemma 18. If S contains a J -class T forming a completely simple but un-
orthodox semigroup then T-EQN∗

S is NP-complete.

Proof. First note that the subsemigroup T≤ of elements lying J -below T is
inducible in S. Furthermore, for any t ∈ T , the target-equation (txt)ω = tω

defines (in T≤) the semigroup T . We can thus assume without loss of generality
that S is itself completely simple unorthodox semigroup.

We consider the m × n complete Rees matrix R associated to S: we can
assume that the first row and first column entries of R are all 1G.

We can recursively reorder the rows and columns of R: suppose row s is such
that Rs,i = 1G for every i ≤ t. We choose the row (s + 1) as the one with the
most number of 1G entries among Rs+1,i with i ≤ t and reorder the columns
such that all these entries appear first in the row.

Because we assumed that the semigroup is not orthodox, there is some non-
identity entry in R so after reordering, we can, as shown in Figure 3, find indices

0

B

B

B

B

B

B

B

B

B

B

@

1G 1G . . . . . . . . . . . . . . . . . . 1G

1G 1G . . . . . . . . . . . . . . . . . . 1G

1G 1G . . . . . . 1G Ra,b ∗ ∗ ∗

1G 1G . . . . . . 1G ∗ ∗ ∗ ∗

1G . . . 1G ∗ ∗ Rc,b ? ? ?

1G 1G ∗ ? ? ? ? ? ?

1G ∗ ? ? ? ? ? ? ?

1

C

C

C

C

C

C

C

C

C

C

A

Fig. 3. Rees matrix of S after reordering: all entries above the dotted line are 1G. The
∗’s represent entries which must be unequal to 1G.

a, b, c with 1 < b ≤ n and 1 < a < c ≤ m+ 1 and such that
- Ra,b 6= 1G;
- if 1 ≤ j < a then Rj,i = 1G for all 1 ≤ i ≤ n;
- if a ≤ j < c then Rj,i = 1G if and only if i < b.

We now mimic the reduction from 1-3sat of Example 3: for each Boolean
Xk we create variables xk, x̄k, force them to be idempotent and impose

(1) xkx̄k = (1, 1G, 1) (2) xk(b, 1G, a)x̄k = (1, Ra,b, 1).



In any solution to the system, we must have xk = (1, 1G, sk) for some 1 ≤
sk ≤ m since it is an idempotent and, by Eq. (1), lies in the first R-class.
Similarly, x̄k = (tk, 1G, 1) for some 1 ≤ tk ≤ n. Eq. (1) thus also forces Rsk,tk

=
1G and from Eq. (2) we have Rsk,b · Ra,tk

= Ra,b. Similarly we require that
Rsk,i = 1G for all 1 ≤ i < b by using equations of the form:

(3) xk(i, 1G, 1) = (1, 1G, 1).

We thus have insured that sk < c and in fact that either sk < a or tk < b for
otherwise Rsk,tk

6= 1G.

For a clause X1∨X2∨X3 we wish to add the requirement Rs1,b ·Ra,t2 ·Rs3,b =
Ra,b. This can be encoded as an equation such as:

(4) x1(b, 1G, a)x̄2(1, 1G, 1)x3(b, 1G, 1) = (1, Ra,b, 1).

If the 1-3sat is satisfiable, then the system can be satisfied by setting xk =
(1, 1G, a) and x̄k = (1, 1G, 1) whenever Xk is True and xk = (1, 1G, 1) and
x̄k = (b, 1G, 1) whenever Xk is False.

For the converse, we assume w.l.o.g. (see Example 3) that Ra,b does not have
order 2. Note that if sk < a then Rsk,b = 1G and so Ra,tk

= Ra,b whereas if
tk < b then Ra,tk

= 1G so Rsk,b = Ra,b. So we can choose Xk to be True if
Rsk,b = Ra,b and Ra,tk

= 1G and Xk to be False if Rsk,b = 1G and Ra,tk
= Ra,b.

For any 1-3sat clause, say X1 ∨X2 ∨X3, we have Rs1,b ·Ra,t2 ·Rs3,b = Ra,b and
so exactly one of Rs1,b, Ra,t2 , Rs3,b is Ra,b and the other two are 1G so exactly
one literal per clause is True. ut

Other Technical Results

Lemma 8. For a semigroup S, a variety of bands B and a variety of groups H,
the following are equivalent:

1. S is a strong B-band of H-groups;

2. S belongs to B ∨ H.

3. S is an orthodox union of groups all of which lie in H, such that E(S) is
a band in B and H is a congruence. In particular, the idempotents form a
subsemigroup and S/H ≡ E(S).

Proof. (1 ⇒ 2) Suppose S is a strong B-band of H-groups with an underlying
band E = {e1, . . . , ek} and a family of groups {Ge|e ∈ E}. Let H =

∏
e∈E Ge

and consider the subset T of E ×H consisting of elements (f, ge1
, . . . , gek

) such
that gei

= φf,ei
(gf ) for all ei ≤J (E) f . One can show that T is subsemigroup of

E ×H. We claim that S is a morphic image of T . Indeed, define ψ : T → S as

ψ(f, g1, . . . , gk) = gf .



Obviously, ψ is surjective. Moreover, it is a well-defined morphism since we can
show that ψ(f, g1, . . . , gk) · ψ(f ′, g′1, . . . , g

′
k) is:

= gf · g′f ′

= φf,ff ′(gf ) · φf ′,ff ′(g′f ′)

= gff ′ · g′ff ′

= ψ(ff ′, g1g
′
1, . . . , gkg

′
k)

Note that we are using the fact that gff ′ = φf,ff ′(gf ).
(2 ⇒ 3) If E is a band in B and G is a group in H then clearly E×G satisfies

(3). One can easily show that any divisor of S of E×G is also an orthodox union
of groups and that E(S) divides E so that indeed E(S) ∈ B. It is easy to see
that H is a congruence over E×G and that this property is preserved by taking
morphic images. Suppose S is a submonoid of E ×G with a, b, c ∈ S and aH b.
Then a and b are also H-related in E × G so we have acHbc in E × G. The
latter is a union of groups so we have (ac)ω = (bc)ω. So bc = ac(ac)ω−1bc and
bc = bc(ac)ω−1ac and since (ac)ω−1bc and bc(ac)ω−1 lay in S we indeed have
acH bc in S.

(3 ⇒ 1) For any a, b ∈ S we have (ab)ω = aωbω since H is a congruence
and S is orthodox. We denote E = E(S) and Ge = He for any e ∈ E. For any
idempotent e ∈ S and any x, y ∈ S with xω = yω we have

exeye = exxωe(ye)ωye = exyωeyωeye = exyωeye = exye.

Thus if e and f are idempotents with f ≥J (E) e the map φf,e : Gf → Ge given
by φf,e(x) = exe is a well defined group homomorphism. Of course, φe,e = idGe

and for any idempotents d ≥J (E) e ≥J (E) f we have for any x ∈ Gd

φe,f ◦ φd,e(x) = fexef = fe(xef)ωxef = fexωefxef = fxef

since ede = e and fef = f hence

φe,f ◦ φd,e(x) = fx(fx)ωef = fxfdef = fxf = φd,f (x).

Clearly, S is the union of the groups Ge. Multiplication in S for x ∈ Ge and
y ∈ Gf is thus given by

x · y = xωyωxxωyωyxωyω = efxefefyef = φe,ef (x) · φf,ef (y).

ut

Lemma 12. A band S is normal if and only if all its local monoids are semi-
lattices.

Proof. If S is a normal band then for any a, b, c we have (aba)(aca) = abaca =
acaba = (aca)(aba) and so aSa is a semilattice.



Conversely, every band whose local monoids are semilattices is a regular band
because we have

abca = abababcacaca = (aba)(aba)(abca)(aca)(aca) (Using idempotency)

= aba(cab)(cab)aca = (Since aSa is commutative)

= abacaabaca = abaca (By idempotency).

Thus if S is a band with commutative local monoids, we have

abca = abaca = abaaca = acaaba = acaba = acba

which proves our claim. ut
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