
Testing Periodicity
Extended Abstract

Oded Lachish
University of Haifa

Haifa, Israel
loded@cs.haifa.ac.il

Ilan Newman
University of Haifa

Haifa, Israel
ilan@cs.haifa.ac.il

Abstract

A string α ∈ Σn is called p-periodic, if for every i, j ∈ {1, . . . , n}, such that i ≡ j mod p,
αi = αj , where αi is the i-th place of α. A string α ∈ Σn is said to be period(≤ g), if there
exists p ∈ {1, . . . , g} such that α is p-periodic.

An ε property tester for period(≤ g) is a randomized algorithm, that for an input α distin-
guishes between the case that α is in period(≤ g) and the case that one needs to change at least
ε-fraction of the letters of α, so that it will become period(≤ g). The complexity of the tester
is the number of letter-queries it makes to the input. We study here the complexity of ε testers
for period(≤ g) when g varies in the range 1, . . . , n

2
. We show that there exists a surprising

exponential phase transition in the query complexity around g = log n. That is, for every δ > 0
and for each g, such that g ≥ (log n)1+δ, the number of queries required and sufficient for testing
period(≤ g) is polynomial in g. On the other hand, for each g ≤ logn

4
, the number of queries

required and sufficient for testing period(≤ g) is only poly-logarithmic in g.
We also prove an exact asymptotic bound for testing general periodicity. Namely, that

1-sided error, non adaptive ε-testing of periodicity (period(≤ n
2
)) is Θ(

√
n log n) queries.

1 Introduction

Periodicity in strings plays an important role in several branches of CS and engineering applications.
It is being used as a measure of ’self similarity’ in many application regarding string algorithms (e.g
pattern matching), computational biology, data analysis and planning (e.g analysis of stock prices,
communication patterns etc.), signal and image processing and others. On the other hand, sources
of very large streams of data are now common inputs for strategy-planning or trend detection
algorithms. Typically, such streams of data are either too large to store entirely in the computer
memory, or so large that even linear processing time is not feasible. Thus it would be of interest
to develop very fast (sub-linear time) algorithms that test whether a long sequence is periodic or
approximately periodic, and in particular, that test if it has a very short period. This calls for
algorithms in the framework of Combinatorial Property Testing [1]. In this framework, introduced
initially by Rubinfeld and Sudan [2] and formalized by Goldreich et al. [1], one uses a randomized
algorithm that queries the input at very few locations and based on this, decides whether it has a
given property or it is ’far’ from having the property. Indeed related questions to periodicity have
have already been investigated [3, 4, 5], although the focus here was somewhat different.

In [6], the author constructs an algorithm that approximates in a certain sense the DFT (Discrete
Fourier Transform) of a finite sequence in sub linear time. This is quite related but not equivalent
to testing how close is a sequence to being periodic. In [3], the authors study some alternative

1

Electronic Colloquium on Computational Complexity, Report No. 92 (2004)

ISSN 1433-8092

parametric definitions of periodicity that intend to ’capture the distance’ of a sequence to being
periodic. They mainly relate the different definitions of periodicity. They also show that there
is a tolerant tester for periodicity. That is, they show a simple algorithm, that given 0 ≤ ε1 <
ε2 ≤ 1, decides whether a sequence is ε1-close to periodic or ε2-far from being periodic, using
O(

√
n · poly(log n)) queries.

There are other works on sequences sketching [4] etc. but none of those seems to address directly
periodicity testing.

The property of being periodic is formalized here in a very general form: Let Σ be a finite
alphabet. A string α ∈ Σn is said to be p-periodic for an integer p ∈ [n], if for every i, j ∈ [n],where
i ≡ j(modp), αi = αj , where αi is the i-th character of α. We say that α is in period(≤ g), where
g ∈ [n2], if it is p-periodic for some p ≤ g. We say a string is periodic if it is in period(≤ n

2).

We study here the complexity of ε testing the property period(≤ g) when g varies in the
range 1, . . . , n

2 . An ε-tester for period(≤ g) is a randomized algorithm, that for an input α ∈ Σn

distinguishes between the case that α is in period(≤ g) and the case that one needs to change at
least an ε-fraction of the letters of α, so that it will be in period(≤ g). The complexity of the tester
is the number of letter-queries it makes to the input.

We show that there exists a surprising exponential phase transition around g = log n. That
is, for every δ > 0 and for each g, such that g ≥ (log n)1+δ, the number of queries required and
sufficient for testing period(≤ g) is polynomial in g. On the other hand, for each g ≤ logn

4 , the
number of queries required and sufficient for testing period(≤ g) is only poly-logarithmic in g. We
also settle the exact complexity of non-adaptive 1-sided error test for general periodicity (that is,
period(≤ n/2)). We show that the exact complexity in this case is θ(

√
n log n). The upper bound

that we prove is an improvement over the result of [3] and uses a construction of a small random
set A ⊆ [n] of size

√
n log n for which the multi-set A − A = {a − b|a, b ∈ A} contains at least

log n copies of each member of [n/2]. This can be trivially done with a set A of size
√

n log n.
We improve on the natural bound by using non-independence of the samples, but still retain the
property that the probability of the log n copies of each number in A − A behave as if being not
too far from independent. This problem has occurred in various other situation, (e.g [7, 8]) and
thus could be interesting in its own.

The rest of the paper is organized as follows. In section 2 we introduce the necessary notations
and some very basic observations. Section 3 contains an ε-test for period≤ g that uses

√
g log g

queries. In section 4 we construct an ε-test for period(≤ g), g ≤ log n
4 that uses only Õ((log g)6)

queries. Sections 5 and 6 contain the corresponding lower bounds, thus showing the claimed phase
transition. Finally, the special case of g = θ(n) is treated in Section 7 which contains a proof that
any 1-sided error non adaptive tester for periodicity (period(≤ n

2)) requires Ω(
√

n log n) queries.
This implies that the tester in section 3 is asymptotically optimal when g = n/2.

2 Preliminaries

For a string α ∈ Σn and an integer i ∈ [n], ([n] = {1, . . . , n}) we denote by αi the i-th symbol of
α, that is α = α1 . . . αn. Given a set S ⊆ [n] such that S = {i1, i2, . . . , im} and i1 < i2 < · · · < im
we define αS = αi1αi2 . . . αim . In the following Σ will be fixed. Also, unless otherwise stated, all
strings are in Σn.

For two strings α, β we denote by dist(α, β) the Hamming distance between α and β. Namely,
dist(α, β) = |{i| αi 6= βi}|. For a property P ⊆ Σn and a string α ∈ Σn, dist(α, P) =
min{dist(α, β)| β ∈ P} denotes the distance from α to P. We say that α is ε-far from P if
dist(α,P) ≥ εn, otherwise we say that α is ε-close to P.

2

Definition 2.1. For a string α and a subset S ⊆ [n] we say that αS is homogeneous if for all
i, j ∈ S, αi = αj.

Property Testing
The type of algorithms that we consider here are ’property-testers’ [1, 9, 10]. These are ran-

domized algorithms that access the input string via a ‘location-oracle’ which it can query: A query
is done by specifying one place in the string to which the answer is the value of the string in the
queried location. The complexity of the algorithm is the amount of queries it makes to the string
in the worst case. Such an algorithm is said to be an ε-test for a property P of strings of length
n, if it distinguishes with success probability at least 2/3 between the case that the input string
belongs to P, and the case that it is ε-far from P.
Periodicity

Definition 2.2. A string α ∈ Σn has period p (denoted p-periodic), if αi = αj for every i, j ∈ [n],
such that i ≡ j mod p.

Note that a string α is homogeneous if and only if α is 1-periodic.

Definition 2.3. We say that α has the property period(≤ g) if it is p-periodic for some p ≤ g.
We say that α is periodic if it has the property period(≤ n

2).

Definition 2.4. A witness that a string α is not p-periodic, denoted as p-witness, is an unordered
pair {i, j} ⊆ [n], such that i ≡ j(mod p) and αi 6= αj.

According to the definition of periodicity a string α has a period p ≤ n
2 if and only if there

does not exist a p-witness. In the same manner a witness for not having period(≤ g) is defined as
follows:

Definition 2.5. A witness that a string α is not in period(≤ g) is a set of integers Q ⊆ [n] such
that for every p ≤ g there are two integers i, j ∈ Q that form a p-witness.

Fact 2.6. A string α has period(≤ g), if and only if there does not exist a witness that the string
is not in period(≤ g).

Fact 2.7. If a string α ∈ Σn does not have a period in (g
2 , g], where g ≤ n

2 , then it has no period
of at most g

2 . If a string α ∈ Σn is ε-far from having a period in (g
2 , g], where g ≤ n

2 , then it is
ε-far from having the property period(≤ g).

Proof. Observe that if a string α ∈ Σn has period p ≤ g
2 , then it also has period q for every q that

is a multiple of p. Note also that there must exist such q ∈ (g
2 , g].

Definition 2.8. For α ∈ Σn, p ∈ [n] and 0 ≤ i ≤ p − 1, let Z(p, i) = {j| j ≡ i(mod p)}. We call
αZ(p,i) the i-th p-section of α.

The following obvious fact relates the distance of a string to p-periodic and the homogeneity of
its p-sections.

Fact 2.9. For each α, dist(α, p − periodic) = Σp−1
i=0 dist(αZ(p,i), homogeneous).

In further sections we use the following basic ε-test for p-period.

Algorithm p-test
Input: a string α ∈ Σn, the string length n, a period p ∈ [n

2] and a distance parameter
0 < ε < 1;

3

1. Select 1
ε random unordered pairs (with repetitions) {i, j} ⊂ [n] such that i ≡ j(modp).

2. Reject if one of the selected pairs is a p-witness (namely a witness for being non-p-periodic).
Otherwise accept.

Proposition 2.10. Algorithm p-test is a 1-sided error, non-adaptive ε-test for p-periodic. Its
query complexity is 2

ε .

Proof. The query complexity is obvious. The test is 1-sided error since it rejects only if it finds a
p-witness. To estimate its error probability let α be such that dist(α, p − periodic) ≥ εn.

Assume that p divides n (the general case is the same except for some d e addition which make
no essential difference). With this assumption |Z(p, i)| = n/p = m. For every 0 ≤ i ≤ p − 1 set
dist(αZ(p,i), homogeneous) = di. For fixed i and every σ ∈ Σ let nσ be the number of occurrences
of σ in Z(p, i). Assume also that we have renumbered the letters in Σ so that n1 ≥ n2, . . . ≥ nk.
Then di = n−n1 as it is easy to see that the closest homogeneous string is obtained by changing all
letters different from σ1 to σ (exactly m − n1 letters). Hence the number of p-witnesses in Z(p, i),
Wi, is Wi = 1

2(Σnj)
2 − Σn2

j . It is easy to see that Wi ≥ m · di/2. Now, according to Fact 2.9 we
get that, dist(α, p − periodic) =
Σp−1

i=0 dist(αZ(p,i), homogeneous) = Σp−1
i=0 di ≤ 2

mΣWi ≤ 2
mW where W is the total number of p-

witnesses.
It follows that W ≥ m

2 dist(α, p − periodic) ≥ εn2

2p . Note however that the total number of

unordered pairs i, j such that j ≡ i(mod p) is n2

2p . Thus we conclude that the probability that a
random such pair is a p-witness is at least ε and the result follows.

We will need the following proposition in a number of lower bound proofs. Let m < n/8,
S ⊂ [n], |S| = m and an assignment a : S −→ {0, 1}. We define the following distribution U/S on
strings of length n. We choose every letter αi = ai if i ∈ S. For all places i /∈ S we choose αi to
be ‘1’ with probability 1/2 and ‘0’ with probability 1/2, independently between different i’s. Note
that U/S is just the uniform distribution on all binary strings conditioned on the event that the
projection on S is a. We have,

Proposition 2.11. Let m,S, a be as above and let G(g) be the event that a string selected according
to U/S is 1

16 -far from having period(≤ g). Then ProbU/S(G(g)) ≥ 1 − 1
g .

Proof: Let U be the uniform distribution over Σn. Note that if a string is 1
16 -far from having

period(≤ n
2) then for every g ≤ n

2 the string 1
16 -far from having period(≤ g). Hence it is sufficient

to prove the proposition only in the case that g = n
2 . According to Fact 2.7, it is enough to prove

that the probability that a string selected according to U is 1
16 -far from having a period in

(

n
4 , n

2

]

,
is at least 1− 1

n . We prove that for each p ∈
(

n
4 , n

2

]

the probability that a string selected according
to U , is 1

16 -close to being p-periodic, is at most 4
n2 , and therefore by the union bound we are done.

Indeed let p ∈
(

n
4 , n

2

]

, and let α be a string selected according to U . Then for every i ∈ [p]−m,
ProbU (dist(αZ(p,i), homogeneous) ≥ 1) ≥ 1

2 . Thus, since the Z(p, i)’s are mutually disjoint and
p − m > n

8 , Chernoff bound implies that,

ProbU

(

∑

i∈[p] dist(αZ(p,i), homogeneous) ≤ n
16

)

≤ e−
n
16 ≤ 4

n2 .

3 Upper Bound for Testing period(≤ g)

In this section we construct a 1-sided error, non adaptive ε-test for period(≤ g) that uses
O(

√
g log g/ε2) queries. The construction consists of two stages. We first show a 1-sided error,

4

non adaptive algorithm, PT , for testing periodicity (period(≤ n
2)), that uses O(

√
n log n
ε2) queries.

Then we show how to use algorithm PT in order to construct the claimed algorithm for testing
period(≤ g).

The intuition behind the algorithm PT is simple. We first explain it by hinting to a test for

period(≤ n
2) that uses O(

√
n log n
ε2

) queries. By Fact 2.7 α is ε-far from period(≤ n) if and only if α
is ε-far from being p-periodic for every p ∈ (n

4 , n
2]. We show that if α is ε-far from period(≤ n

2), we
can find a p-witness for each p ∈ (n

4 , n
2] with probability at least 1

n . This is sufficient since by the
union bound we will be done.

Suppose we can construct a set Q ⊆ [n] of size O(
√

n log n), such that Q contains at least log n
p-witnesses for each p ∈ (n

4 , n
2]. Then obviously we achieve the above goal. Indeed such a set Q

can be constructed (e.g by choosing for every p ∈ (n
4 , n

2] log n random pairs i, j such i ≡ j(modp)).
To reduce the size of Q, we construct such a set Q of size

√
n log n with the above properties

while giving up the independence between the log n pairs for each p. In turn we will have to show
that the probability that none will be a p-witness is still low enough.

We next present the ε-test for g = n
2 (periodicity).

Definition 3.1. Let ` =
√

n log n and let J = {Ii}`
i=1 be the set of pairwise disjoint intervals

Ii =
(

(i − 1)
√

n
log n , i

√

n
log n

]

.

We now present the ε-test for period(≤ n
2).

Algorithm PT
Input: a string α ∈ Σn, the string length n and a distance parameter 0 < ε < 1;
Let `, J be as in Definition 3.1.

1. Select a set of integers T = {t1, . . . , t`} by choosing one random point from each I ∈ J .

2. Repeat the following independently m = 210·log n
ε2 times: uniformly select an interval I ∈ J .

Let J∗ be the set of intervals that where selected and let H = ∪I∈J∗I.

3. Reject if for every p ∈ (n
4 , n

2] the set H ∪ T contains a p-witness. Otherwise accept.

Theorem 3.2. Algorithm PT is a 1-sided error, non-adaptive ε-test for periodicity. Its query
complexity is O(

√
n log n/ε2).

Proof: The query complexity is obvious. The test is 1-sided error since it rejects only if it finds
a p-witness for every p ∈ (n

4 , n
2] and thus by Facts 2.6 and 2.7 it can’t reject a periodic string. The

error probability estimate follows directly using the union bound and Lemma 3.3 below.

Lemma 3.3. Let p ∈ (n
4 , n

2] and α ∈ Σn be ε-far from p-periodic. Then with probability at most 1
n

the set H ∪ T of algorithm PT does not contain a p-witness for α.

In the proof of Lemma 3.3 we use the following simple facts about the interval set J .

Fact 3.4.

1. The intervals in J are pairwise disjoint, each of size
√

n
log n and ∪I∈JI = [n].

2. For every p ∈ (n
4 , n

2] and t ∈ [n] there is an interval I ∈ J such that there exists a unique
s ∈ I for which s ≡ t(mod p).

3. Fix p ∈ (n
4 , n

2] and let T ⊂ [n] be any set of ` points such that |T ∩ I| = 1 for every I ∈ J .
Then for any fixed interval I ∈ J there are at most 8 points s for which there exists t ∈ T
such that s ≡ t(mod p).

5

The proof of Lemma 3.3 is in the Appendix at subsection 8.1.

Theorem 3.5. For any g ≤ n
2 there is a 1-sided error, non-adaptive ε-test for period(≤ g). Its

query complexity is O(
√

g log g/ε2).

Proof (idea): Let α ∈ Σn. We think of α as being composed of n
2g pieces of length n′ = 2g

each. We now run the ε-test for periodicity for strings of length n′ and for each query q ∈ [n′]
we query q in one the pieces that is chosen randomly and independently for each query. We avoid
further details here.

4 Upper Bound for Testing period(≤ g), where g ≤ log n
4

In this section we describe an algorithm for testing whether a string has period(≤ g), where
g ≤ log n

4 that has query complexity poly(log g). The technicalities are somewhat involved, however,
the intuition is simple and motivated by the following reasoning: Our goal is to find a witness for
not being r-periodic for every r ∈ [g]. One thing that we could do easily is to check whether α is
q-periodic where q is the product of all numbers in [g] (this number would be a actually too big, but
for understanding the following intuition this should suffice). Now if α is not q-periodic then it is
certainly not in period(≤ g) and we are done. Yet as far as we know α maybe far from period(≤ g)
and q-periodic. Our goal is to show that if a α is far from p-periodic, where p ≤ g, then there exists
q′ >> g, such that, α is far from q’-periodic and p divides q ′. Indeed it follows form Lemma 4.6 that
if α is far form p then there exists such a q ′ as above. This together with the following definition
enables us to construct our ε-test.

Definition 4.1. For integers n,g ∈ [n], a gcd-cover of [g] is a set E ⊆ [n] such that for each ` ≤ g,
there exists a subset I ⊆ E, that satisfies ` = gcd(I).

The importance of a gcd-cover of [g] is the following: We prove that if ` = gcd(I) for an integer
` and a subset I, then, the assumption that α is far from being `-periodic implies that it is also
sufficiently far from being t-periodic for some t ∈ I. Using this, let E be a gcd-cover of [g]. Then
we are going to query for each t ∈ E enough pairs i, j ∈ [n] such that i ≡ j mod t. We say that
such pairs i, j cover t. Now for each ` ≤ g there is a set I` ⊆ E such that ` = gcd(I`). The pairs
of queries that cover I` cover `. Thus if α is ‘far’ from being `-periodic then, as gcd(I`) = `, there
exists a period t, t ∈ I`, such that the string is far from from t-periodic. We thus expect that this
t will distinguish between strings that are `-periodic and those that are k`-periodic but far from
being `-periodic.

As the complexity of the test will depend crucially on the size E (the gcd-cover of E, we need
to guarantee the existence of a small gcd cover. This is done in the following Lemma, which also
brings in an additional technical requirement.

Lemma 4.2. For every integers n and g ∈
[

log n
4

]

, there exists a set E ⊆ [
√

n], of size |E| =

O((log g)3), that is a gcd-cover of [g].

The proof of Lemma 4.2 is in the Appendix at subsection 8.1.
A gcd-cover of [g] as in the Lemma is called an efficient gcd-cover of [g]. We prove lemma 4.2

in the Appendix at subsection 8.2. We next describe our algorithm.

Algorithm SPT
Input: a string α ∈ Σn, a distance parameter 0 < ε < 1 and a threshold period g ≤ log n

4 ;

6

1. Set E to be an efficient gcd-cover of [g].

2. Let M = |E|·log(8|E|)
2ε . For each ` ∈ E select M pairs of integers uniformly and with repetitions

from the set {{x, y} | x ≡ y mod ` and x, y ∈ [n]}. Let Q be the resulting (multi)set.

3. Reject if for each ` ∈ [g] the set Q contains a witness that α is not in `-periodic. Otherwise
accept.

Theorem 4.3. Algorithm SPT is a 1-sided error, non-adaptive ε-test for period(≤ g), where

g ≤ log n
4 . Its query complexity is Õ

(

(log g)6

ε

)

.

Proof: Since for every member of E we used M queries and |E| = O((log g)3) the estimate
on the query complexity follows. The fact that the algorithm never rejects a `-periodic string, for
` ≤ g is immediate, as the algorithm rejects only when it finds a witness the input string is not in
period(≤ g), where g ≤ log n

4 .
In order to compute the success probability of algorithm SPT we first need the following

definition.

Definition 4.4. A string α ∈ Σn is called ε-bad if for every ` ≤ g and every S ⊆ E, where
` = gcd(S), there exists s ∈ S for which α is ε

2|E|-far from being s-periodic.

Note: if α is ε-bad and s, ` as in the definition, then a witness for it showing that it is not
s-periodic is also a witness that it is not `-periodic.

The proof of the Theorem now follows from Lemma 4.5 and Lemma 4.6.

Lemma 4.5. Algorithm SPT rejects every α that is ε-bad with probability at least 3
4 .

Proof. Let α ∈ Σn be ε-bad. Let B ⊆ E be the set that contains every b ∈ E such that α is ε
2|E|-far

from being b-periodic. By Definition 4.4, for every ` ≤ g there exists a b ∈ B such that ` | b, and
hence if we find a b-witness for each b ∈ B - this is also a witness that α is not in period(≤ g).
Thus, it is enough to prove that for each b ∈ B, the probability that there is no b-witness in Q is
at most 1

8|E| , as then by the union bound we are done.

Let δ = ε
2|E| and let b be a member of B, namely α is δ-far from being b-periodic. By Corollary

2.10, for a random x, y ∈ [n], such that x ≡ y mod b we have that Prob(αx 6= αy) ≥ δ. Since
M random pairs are being queried for each ` ∈ E and in particular for b, the probability that a
b-witness is not found is at most (1 − δ)M ≤ 1

(8|E|) .

Lemma 4.6. If a string α ∈ Σn is ε-far from having short period(≤ g), where g ≤ (log n)/4 then
it is a ε-bad string.

The proof of Lemma 4.6 is in the Appendix at subsection 8.3.

5 Lower Bound for Testing period(≤ g)

In this section we prove that every adaptive, 2-sided error, 1
32 -test for period(≤ g) uses

Ω(
√

g/(log g · log n)) queries. We prove this for Σ = {0, 1}. This implies the same bound for every
alphabet that contains at least two symbols.

Theorem 5.1. Any adaptive 2-sided, error 1
32 -test for period(≤ g), uses Ω(

√

g/(log g · log n))
queries.

7

Proof. Fix g ≤ n/2. We prove the theorem by using Yao’s principle. That is, we construct a
distribution D over legitimate instances (strings that are either in period(≤ g), or strings that
are 1

32 -far from period(≤ g)) and prove that any adaptive deterministic tester, that uses m =

o(
√

g/(log g · log n)) queries, gives an incorrect answer with probability greater than 1
3 .

In order to define D we use auxiliary distributions DP ,DN and the following notation. Let
Primes = {p | p is a prime such that p ≤ g} and let r = |Primes|. According to the Prime
Number Theorem [11, 12, 13], |Primes| = θ(g

log g).
We now define distributions DP ,DN .

• DN is simply the uniform distribution over Σn.

• An instance α of length n is selected according to distribution DP as follows. Uniformly select
p ∈ Primes, then uniformly select ω ∈ Σp and finally set α = (ω)

n
p .

We next define distribution D. Let G be the event that α is 1
16 -far from having period(≤ g).

Let DN/G be the distribution DN given that event G is true. A string α is selected according
to distribution D by choosing one of the distributions DP ,DN/G with equal probability and then

selecting α according to the distribution chosen. Namely D = 1
2DP + 1

2DN/G .
We don’t work directly with D but rather with a simpler distribution D ′ which approximates

D well enough and is defined as follows D ′ = 1
2DP + 1

2DN . Let B be the event that the tester
gives an incorrect answer. We prove that ProbD′(B) ≥ 2

5 . This is indeed sufficient as ProbD(B) ≥
ProbD′(B) − ProbDN

(G). Using Proposition 2.11, ProbD(B) ≥ 1−o(1)
2 − 1

g > 1
3 .

We assume with out loss of generality that for any string of length n the tester uses the same
number of queries. Hence we can view the tester as a full binary decision tree of depth m which
is labeled as follows. Each node of the tree represents a query location, for each internal node one
of the outgoing edges is labeled by 1 and the other by 0, where 0, 1 represent the answers to the
query, and each leaf is labeled either by “accept” or by “reject” according to the decision of the
algorithm.

For each leaf l in the tree we associate a pair Ql, fl, where Ql is the set of queries on the path
from the root to the leaf l and fl : Ql −→ {0, 1} is a mapping between each query and its answer,
that is the labellings on the edges of the path from the root to the leaf l. Let L be the set of all
leaves, L0 be the set of all leaves that are labeled by “reject” and let L1 be the set of all leaves that
are labeled by “accept”.

Let h` : Σn −→ {0, 1} be a function that is 1 only on strings α ∈ Σn such that for every q ∈ Q`

we have αq = f`(q). That is h`(α) = 1 if and only if α coincides with Q`, f`. Let far : Σn −→ {0, 1}
be a function that is 1 only on strings α ∈ Σn such that are 1

16 -far from period(≤ g)). Thus the
ProbD′(B) is at least

1

2
Σ`∈L0

probDP
[h`(α) = 1] +

1

2
Σ`∈L1

probDN
[far(α) = 1

∧

h`(α) = 1]

We will prove that for each ` ∈ L0, probDP
[h`(α) = 1] ≥ 1−o(1)

2m , and for each ` ∈ L1, probDN
[far(α) =

1
∧

h`(α) = 1] ≥ 1−o(1)
·2m . This implies that ProbD′(B) ≥ 1

2Σ`∈L
1−o(1)
·2m ≥ 1−o(1)

2 .
Indeed, recall that a string is selected according to DP by first selecting z ∈ Primes and

then selecting a z-periodic string. For Q ⊂ [n], |Q| = m let A(Q) be the event that for α selected
according to DP , there exists no j, k ∈ Q such that j ≡ k mod z. For any fixed i < j ∈ Q there are at

most log n prime divisors of j − i. Hence for each ` ∈ L0, probDP
[A(Q`)] ≥ 1 − m2·log n

r ≥ 1 − 0(1).
Observe that for any fixed ` if A(Q`) occurs then according to the definition of DP , for each
q ∈ Ql, αq is selected uniformly and independently of any other q ′. Hence, probDP

[h`(α) = 1] ≥
probDP

[h`(α) = 1 ∧A(Q`)] ≥ probDP
[h`(α) = 1 | A(Q`)] · ProbDP

[A(Q`)] ≥ 1
2m (1 − o(1)).

8

Observe that for each ` ∈ L1, ProbDN
[far(α) = 1

∧

h`(α) = 1] ≥ ProbDN
[far(α) = 1 | h`(α) =

1]·ProbDN
[h`(α) = 1]. By the definition of DN , ProbDN

[h`(α) = 1] = 1
2m . Also, using the definition

just before Proposition 2.11 we see that ProbDN
[far(α) = 1 | h`(α) = 1] = probU(Q`)[far(α) =

1] ≥ 1 − 1
g (where the last inequality is by Proposition 2.11).

6 Lower Bound for Testing period(≤ g), where g ≤ log n
4

In this section we prove that every 2-sided error, 1
16 -test for period(≤ g), where g ≤ log n

4 , uses

Ω((log g)
1
4) queries. We prove this for Σ = {0, 1}. This implies the same bound for every alphabet

that contains at least two symbols. This also shows that the test presented in Section 4 cannot be
dramatically improved.

Theorem 6.1. Any 2-sided error 1
16 -test for period(≤ g), where g ≤ log n

4 , requires Ω((log g)
1
4)

queries.

Proof. The proof is very similar to the proof of Theorem 5.1. We just describe here the two
probabilities DP and DN that are concentrated on positive inputs (those that have period(≤ g))
and negative inputs (those that are 1

16 -far from being period(≤ g)) respectively.

Let S = {p1, . . . , pk} where k = 1 +
√

log g and each pi is a prime such that 2
√

log g−0.9 ≤ pi ≤
2
√

log g. According to the Prime Number Theorem [11, 12, 13] there exists at least 1
8
√

log g
· 2

√
log g >

2 +
√

log g such primes. Hence the set S is well defined. Let t =
∏

p∈S p and let Z = { t
p | p ∈ S}.

Note that t > g while z ≤ g for every z ∈ Z.

We now define distributions DP , DN (we assume w.l.o.g that t divides n).

• We use an auxiliary distribution U in order to define DN . To select an instance according to
U , select a random string ω ∈ Σt and then set α = (ω)

n
t . Let G be the event that α is 1

16 -far
from being period(≤ g). Then DN is defined as the distribution U|G, namely U given G.

• An instance α of length n is selected according to distribution DP as follows. Uniformly a
select z ∈ Z , select uniformly a string ω ∈ Σz and then set α = (ω)

n
z .

We omit further details from this extended abstract.

7 Lower Bound for Testing Periodicity

Let Σ = {0, 1}, we prove the following lower bound on the number of queries that is needed
for testing period(≤ n

2) over Σ. This clearly implies the same lower bound for any alphabet that
contains at least two letter. It also shows that the test presented in Section 3 is asymptotically
optimal.

Theorem 7.1. Any non-adaptive 1-sided error 1
16 -test for periodicity requires Ω(

√
n log n) queries.

Proof: A 1-sided error test rejects only when the input string is not periodic. Therefore according
to corollary 2.6 such a test rejects only if the set of queries it uses contains a witness that the string
in not periodic. To prove the Theorem we use Yao’s principle (the easy direction). Namely, we
construct a distribution on 1/16-far inputs and show that any deterministic non-adaptive test that

queries at most
√

n log n
100 queries finds a witness for non-periodicity with probability at most 1/3.

9

Let U be the uniform distribution over Σn, and let G be the event that a string selected
according to U is 1

16 -far from being periodic. Let D be the distribution U/G (U given G). Namely,
D is uniform over strings in Σn that are 1/16-far from being periodic. Let B be the event that
the set of queries Q contains a witness. Proposition 2.11 ProbU (G) ≥ 1 − 1

n . Thus, it is enough
to prove that probU(B) < 1

4 , since probD(B) ≤ ProbU (B) + ProbU (G) ≤ 1
4 + 1

n . The proof follows
from Lemma 7.2 below.

Lemma 7.2. Let Q ⊆ [n] be a set of
√

n log n
100 queries. Then for α chosen according to U , the

probability that Q contains a witness that α is not periodic is at most 1
4 .

Proof. Let Q,U be as in the Lemma. For a given input α ∈ Σn let αq ∈ Σ be the answer to query
q ∈ Q. Let G be the complete graph on Q. We call an edge (x, y) a t-edge if p = |x− y|. For every
p ∈

(

n
4 , n

2

]

, let Lp be the event that all the vertices (queries) in G that are connected to t-edges,
t ≡ 0(modp) have the same answer σ ∈ Σ. Note that if Lp occurs for some p then Q does not

contain a witness that α is not p-periodic. Thus it is enough to prove that ProbU (∪n/2
p=n/4 Lp) ≥ 3

4 .

The events Lp are generally dependent. We are going to construct a set S∗ ⊆
(

n
4 , n

2

]

, of size

Ω(
√

n

(log n)
3
2

), for which: (a) The events Lp, p ∈ S∗ are independent. (b) For each p ∈ S∗ there exists

at most log n
25 t-edges in G such that t ≡ 0(mod p).

Given such set S∗, the proof is completed as for any fixed p ∈ S∗ all queries that are connected
with p-edges are labeled by ’1’ with probability at least 1

2log n/25 = n−1/25. Namely Lp occurs.

Hence, ProbU (∀p ∈ S∗, L̄p) ≤
(

1 − 1
n1/25

)|S∗|
, which for a large enough n is smaller than 1

n .

For each p ∈
(

n
4 , n

2

]

let Gp be the subgraph of G that is spanned by all t-edges with t ≡ 0(mod p).
Note that if for two different p, p′ ∈

(

n
4 , n

2

]

, Gp and Gp′ are vertex disjoint then Lp and Lp′ are
independent.

By our assumptions G contains at most |Q|2/2 ≤ n log n/200 edges. Note also that for each
p ∈

(

n
4 , n

2

]

there are at most 4 multiples of p. Hence, there is a set P ⊆
(

n
4 , n

2

]

, of size n/8, such
that for every q ∈ P , G contains at most (log n)/25 t-edges for which t is a multiple of p. The
set S∗ will be a subset of P and thus the second requirement above automatically holds. Further
more, the way we construct S∗ will automatically ensure that Gp, Gq are vertex disjoint for each
q, p ∈ S∗. Hence by the remark above, this will automatically ensure the first requirement.

We specify now the actual construction of S∗: We start with S∗ = φ and P as above (with n/8
elements). We add to S∗ an arbitrary p ∈ P and delete p from P . We set G′ = Gp. Next we delete
from P all q ∈ P such that there is a t-edge whose end point is in G′ and q divides t. Namely,
we avoid using all q ∈ P for which Gq vertex-intersects G′. This ensures that for the next chosen
p ∈ P , that is picked, Gp will be disjoint from G′. We now iterate the process each time picking a
new p from the new set P , set G′ := G′ ∪Gp, S∗ := S∗ ∪ {p} and deleting p and the corresponding
q’s as above form P .

We claim that we can construct this way S∗ of size |S∗| ≥
√

n

(log n)
3
2

. Indeed, each time we add a

new p ∈ P to S∗, as Gp contains at most log n/25 edges, we add at most 2 log n/25 new vertices to
G′. We then delete all q’s for which Gq intersects the current G′. This results in deleting at most
|Q| · 2 log n/25 additional members form P . Hence, this process can continue as long as P is not

empty, that is, for at least |P |/(|Q| · 2 log n/25) = Ω(
√

n

(log n)
3
2

) times.

10

References

[1] S. Goldwasser O. Goldreich and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45:653–750, 1998.

[2] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal of Computing, 25:252–271, 1996.

[3] F. Ergun, S. Muthukrishnan, and C. Sahinalp. Sublinear methods for detecting periodic trends
in data streams. In LATIN 2004, Proc. of the 6th Latin American Symposium on Theoretical
Informatics (LATIN’04), pages 16–28, 2004.

[4] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative trends in massive time
series data sets using sketches. In VLDB 2000, Proceedings of 26th International Conference
on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 363–372. Morgan
Kaufmann, 2000.

[5] R. Krauthgamer O. Sasson. Property testing of data dimensionality. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 18–27. Society for
Industrial and Applied Mathematics, 2003.

[6] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse
fourier representations via sampling. In STOC 2002, Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 152–161, 2002.

[7] Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal amortized
query complexity. pages 191–199, 2000.

[8] Johan Hästad and Avi Wigderson. Simple analysis of graph tests for linearity and pcp. Random
Struct. Algorithms, 22(2):139–160, 2003.

[9] E. Fischer. The art of uninformed decisions: A primer to property testing. The computational
complexity column of The Bulletin of the European Association for Theoretical Computer Sci-
ence, 75:97–126, 2001.

[10] D. Ron. Property testing (a tutorial). In Handbook of Randomized computing. Kluwer Press,
2001.

[11] J. Hadamard. Sur la distribution des zéros de la fonction ζ(s) et ses conséquences
arithmétiques. Bull. Soc. Math. France, 24:199–220, 1896.

[12] V. Poussin. Recherces analytiques sur la théorie des nombres premiers. Ann. Soc. Sci. Brux-
elles, 1897.

[13] D.J. Newman. Simple analytic proof of the prime number theorem. Amer. Math. Monthly,
87:693–696, 1980.

11

8 Appendix

8.1 Proof of Lemma 3.3

Fix p, α as in the Lemma. Using Fact 2.9 we get
dist(α, p − periodic) = Σp−1

i=0 dist(αZ(p,i), homogeneous) ≥ εn. Note, however, that as p > n
4 each

p-section of α is of size at most 4. Hence, there exists a set S ⊆ {0, ..., p − 1} of size at least εn
4 ,

such that for every i ∈ S, dist(αZ(p,i), homogeneous) ≥ 1. In particular, for each i ∈ S there is an
unordered pair of indexes {j, k} ⊂ [n], such that j, k ≡ i(modp) and αj 6= αk. Let W be the set of
size |S| that contains exactly one such pair for each i ∈ S. Let WR be the set of the ’right-ends’ of
pairs in W , namely WR = {j| (i, j) ∈ W, i < j}. Note that |WR| = |S|.

Recall that ∪I∈JI = [n] (Fact 3.4) and since |WR| ≥ εn
4 , there exists a set GR ⊆ J of size

|GR| ≥ ε|J |
8 = ε·√n log n

8 such that for every I ∈ GR, |I ∩ WR| ≥ ε|I|
8 .

In step 1 of algorithm PT the set T is formed by choosing a random member ti in each
I ∈ J . By the definition of GR, Prob (ti ∈ WR | Ii ∈ GR) ≥ ε

8 . Thus by the Chernoff bound

Prob
(

|T ∩ WR| < ε|GR|
16

)

≤ e−
ε|GR|

64 . Let R = T ∩ WR and let A be the event that |R| ≥ ε|GR|
16

Let L = {j| k ∈ R, (j, k) ∈ W}, namely L contains the ’left-ends’ of the pairs of W that
corresponds to the right-end points in R. Let GL = {I ∈ J | I ∩ L 6= φ}. Namely, an interval I is
GL if it contains a point from L. In step 2 algorithm PT uniformly selects a set of intervals J ∗ by
repeatedly selecting a random interval I ∈ J . If I ∈ J ∗ ∩ GL, then I ∪ T contains a p-witness as
I contains a left-end of a p-witness whose right-end must be (by definition) in R ⊆ T . Thus it is
enough to show that with probability at most 1

n , J∗ ∩ GL = φ.

Indeed, assuming that the event A is satisfied. |GL| ≥ ε2|J |
210 . This is true as each member of L

is a left-end of a p-witness for different t ∈ T , thus by Fact 3.4 each interval in GL can contain at
most 8 points from L. However, |L| = |R| ≥ ε|GR|

16 ≥ ε2n
26 hence |GL| ≥ |L|

8 as claimed.

Finally, we conclude that for one randomly chosen interval I ∈R J Prob(I /∈ GL) ≤ 1 − ε2

210 .
Thus by selecting m independent I ′s the probability that none of the I ′s is in GL is at most
(1 − ε2

256)m < 1
n .

8.2 Proof of Lemma 4.2

Let n, g be fixed with g ≤ log n
4 . We use the following notations.

Let Primes = {p | p is a prime such that p ≤ g} and let m = |Primes|. According to the prime
number theorem m ≤ g/ log g. For an integer t let the unique prime decomposition of t, UPD(t)
be the unique set of pairs UPD(t) = {(pi, ηi)|(pi, ηi)| i = 1, . . . ,m}, such that pi, i = 1, . . . ,m are
distinct members of Primes and t =

∏

pi∈Primes pηi
i . Let P (t) be the set of prime divisors of t.

Note that in UPD(t) we include also the primes that do not divide t.
The following gives a characterization of a gcd cover of [g], from which we need only the sufficient

part.

Proposition 8.1. A set E ⊆ [n] is a gcd-cover of [g] if the following condition is satisfied.
For every t ∈ [g] and every (pi, ηi) ∈ UPD(t) (including those pi’s for which ηi = 0), there

exists e ∈ E such that (pi, ηi) ∈ UPD(e) and t divides e.

Proof. Assume that the premises of the Proposition hold. Fix t with unique prime decomposition
UPD(t) = {(pi, ηi)| i = 1, . . . ,m}. For each (pi, ηi) ∈ UPD(t) let ei denote the appropriate
member of E for which (pi, ηi) ∈ UPD(ei) and such that t divides ei. Then it is easy to see that
gcd({e1, . . . , em}) = t.

12

The way to construct a gcd-cover will be via the construction of the following set which we call
prime cover of [g].

Definition 8.2. [Prime Cover of [g]] We say that a collection of subsets of Primes, R ⊆ 2Primes

is a prime cover of [g] if for every t ∈ [g] and every p ∈ Primes there exists an R ∈ R such that
p ∈ R and R ∩ P (t) ⊆ {p}.

Given a small size collection, in which all sets have small cardinality gives an immediate con-
struction of an efficient gcd cover. This is asserted by the following Claim.

Claim 8.3. Let R ⊆ 2Primes be a prime cover of [g] then there is a set E ⊆ [n] that is a gcd-cover
of [g] of size at most |R| log g. Moreover, for every e ∈ E, e < g(c0·g)/ log g where c0 is a universal
constant.

Proof: For each p ∈ Primes let κ(p) be the maximum integer such that pκ(p) ≤ g.
Assume that R is a prime cover of [g]. For each R ∈ R we define the following set of at most

log g numbers.

E(R) = {
∏

r∈R

rmin{i,κ(r)} ∏

q∈Primes\R
qκ(q)| i = 0, . . . , log g}.

Note that each such number is of size g(c0·g)/ log g as each multiplier is at most g and there are at
most (c0 · g)/ log g primes up to g. Now let E = ∪R∈RE(R). We claim that E is a gcd cover of [g].
To see this fix any t ∈ [g] and let (p, η) ∈ UPD(t). Let R be such that p ∈ R and R ∩ P (t) ⊆ {p}.
Then e = pη

∏

q∈Primes−{p} rκ(r)} is in E(R) and meets the conditions of Proposition 8.1 for t and
(p, η). Note that the upper bound on the size of E is as asserted.

We are left now with the task of constructing an ‘efficient’ prime cover of [g] in terms of the
collection size and the cardinality of its members.

Proposition 8.4. For every g there exists a set of size 2(log g)2, that is a prime cover of [g].

Proof. We prove the proposition as follows. We show a probabilistic construction of a family of
2(log g)2 sets, and prove that with strictly positive probability it is a prime cover of [g]. This implies
that there must exist a set of size 2(log g)2, that is a prime cover of [g].

We choose a set R ⊆ Primes in the following way. For each p ∈ Primes we put p in R with
probability 1

log g . For specific t ∈ [g] and p ∈ Primes, the probability that p ∈ R and R∩P (t) ⊆ {p},
is at least 1

log g (1 − 1
log g)log g ≥ 1

2 log g . If we repeat this process for 2(log g)2 independently random
R’s the probability that every one of them fails to have p ∈ R and R ∩ P (t) ⊆ {p}, is at most
(1 − 1

2 log g)2(log g)2 ≤ 1
g2 . As there are at most m · g pairs of p ∈ Primes and t ∈ [g], then with

probability at least 1−m/g > 1− 1/ log g there must be a collection of 2(log g)2 sets that succeeds
for every pair.

8.3 Proof Of Lemma 4.6

In order to prove the Lemma 4.6 we first need two claims that relate dist(α, ` − periodic) and
dist(α, q − periodic),where ` 6= q.

Claim 8.5. For every α ∈ Σn, and every `, q ∈ [n], such that gcd(`, q) = 1 and `q ≤ n the
following inequality is satisfied.

dist(α, homogeneous) ≤ 2dist(α, ` − periodic) + dist(α, q − periodic).

13

Proof: For simplicity of the calculations we assume in the proof that `q|n. Note first that for `, q
as above and every i ≤ ` − 1, i′ ≤ q − 1 the intersection of the i’th `-section and the i′ q-section
satisfies |Z(`, i) ∩ Z(q, i′)| = n

`q . This is obvious as for any interval of integers [s, s + `q − 1] those
two section intersect in exactly one place (Chinese remainder).

Assume that α is ε1-close to being `-periodic and ε2-close to being q-periodic. We show that
dist(α, homogeneous) ≤ (2ε1+ε2). As dist(α, `−periodic) ≤ ε1n there is a `−periodic string β ∈ Σn

for which dist(α, β) ≤ ε1n and hence, by the triangle inequality, dist(β, q − periodic) ≤ (ε1 + ε2)n.
By Fact 2.9
dist(β, q − periodic) = Σq−1

i=0 dist(Z(q, i), homogeneous) ≤ (ε1 + ε2)n. Hence there must be an
i ∈ {0, .., q − 1} for which dist(αZ(q,i), homogeneous) ≤ (ε1 + ε2)

n
q . Namely, Z(q, i) contains a

sub-string γ ⊆ Z(q, i) that is homogeneous, of length |γ| ≥ (1 − (ε1 + ε2))
n
q . As the intersection of

Z(q, i) and every `-section is of size n
`q , it follows that γ intersects at least s = (1−(ε1+ε2))

n
q ·(n

`q)−1

`-sections. However, since β is `-periodic all of its `-sections are homogeneous. As γ is homogeneous
too, it follows that β is homogeneous on all of its `-sections that intersect γ. Since the union of
at least s `-sections that intersect γ is of size at least s · n

` ≥ (1 − (ε1 + ε2))n, it follows that
β is (ε1 + ε2)-close to homogeneous and hence by the triangle inequality α is (2ε1 + ε2)-close to
homogeneous.

Claim 8.6. Let α ∈ Σn and let t1, t2 ∈ [
√

n] with r = gcd(t1, t2). Then

dist(α, r − periodic) ≤ 2dist(α, t1 − periodic) + dist(α, t2 − periodic).

Proof: For t1, t2 co-primes this follows directly from Claim 8.5, as dist(α, homogeneous) =
dist(α, 1 − periodic). Assume then that gcd(t1, t2) = r and t1 = s1 · r, t2 = s2 · r. For each
i ∈ [0, r − 1] let β(i) = αZ(r,i). By Fact 2.9 we have

dist(α, r − periodic) = Σr−1
i=0dist(αZ(r,i), homogeneous) = Σr−1

i=0 dist(β(i), homogeneous) (1)
As s1, s2 are co-primes, Claim 8.5 implies that for each i = [0, r − 1],

dist(β(i), homogeneous) ≤ 2dist(β(i), s1 − periodic) + dist(β(i), s2 − periodic).
Plugging this into equation (1) we get,

dist(α, r − periodic) ≤ Σr−1
i=0 (2dist(β(i), s1 − periodic) + dist(β(i), s2 − periodic)) (2)

By applying Fact 2.9 twice we get, dist(α, t1 − periodic) =
= Σr−1

i=0 Σs1−1
j=0 dist(αZ(t1 ,i·r+j), homogeneous) = Σr−1

i=0 dist(αZ(r,i), s1 − periodic).
The last equality is true as for each fixed i ∈ [0, r−1] the (i ·r+j)-section of α with respect to t1

is exactly the j-section of αZ(r,i) with respect to s1. Plugging this (and the analogue expression for
t2) into equation (2) we get: dist(α, r − periodic) ≤ 2dist(α, t1 − periodic) + dist(α, t2 − periodic)
as required.

We next prove Lemma 4.6. Let α ∈ Σn be ε-far from period(≤ g). In order to prove that α is a
ε-bad string we need to prove that for every ` ∈ [g] and every S ⊆ E, where ` = gcd(S), there exists
s ∈ S for which α is ε

2|E|-far from being s-periodic. Let ` be a period in [g] and S ⊆ E, be a set such

that ` = gcd(S). By induction, using Claim 8.6, we have, dist(α, ` − periodic) ≤ Σs∈S2dist(α, s −
periodic). Hence by averaging there must be a s ∈ S for which dist(α, s − periodic) ≥ εn

2|E| as

|S| ≤ |E|.

14

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

