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Abstract

Using a new statistical embedding of words which has similarities with the Parikh mapping, we first construct a
tolerant tester for the equality of two words, whose complexity is independent of the string size, where the distance
between inputs is measured by the normalized edit distance with moves. As a consequence we get an approximation
algorithm for the normalized distance, the first such algorithm whose complexity does not depend on the string size.

Then we extend our embedding to languages, and get a geometrical approximate description of regular languages
by finite unions of polytopes. As an application, we have a new tester for regular languages whose complexity does
not depend on the automaton. The automaton is only required in a preprocessing step, whose time is polynomial in
the automaton size for a fixed threshold distance. The remaining complexity is a constant depending on the threshhold
distance but not on the automaton.

Last, we introduce the notion of equivalence testing. Using the above geometrical description, we exhibit an
equivalence tester for regular languages. The tester is deterministic and of polynomial time, for a fixed threshold
distance. In contrast, the problem of deciding the exact equivalence of finite automata requires exponential space.

1 Introduction

We consider the approximation of several classical combinatorial problems on strings in the context of Property Test-
ing. Inspired by the notion of Self-Testing [4, 5, 17], Property Testing has been initially defined and studied for graph
properties [9]. It has been successfully extended for various classes of finite structures. Let K be a class of finite
structures together with a distance. An ε-tester for a class K0 ⊆ K is a randomized algorithm which takes a structure
Un ∈ K of size n as an input and decides with high probability if Un ∈ K0 or if Un is ε-far from K0. A class K0 is
testable if for every ε > 0 there exists an ε-tester for K0 whose time complexity depends only on ε, i.e. is independent
of the size n.

Property Testing of regular languages was first considered in [1] for the Hamming distance and then extended
to branching programs [13], where the Hamming distance between two words is the minimal number of character
substitutions required to transform one word into the other. Then two words of size n are ε-far if they are at distance
greater than εn.

The edit distance is a more relaxed natural distance measure for strings than the Hamming distance. The edit
distance between two words is the minimal number of insertions, deletions and substitutions required to transform one
word into the other. Computing the edit distance between two words is an important subproblem of many applications
like text processing, genomics, web search, etc. Behind the difficulty to get a significant subquadratic time algorithm
(the best known algorithm is in O(n2/ log n) [11]), several approximation algorithms have been proposed. Neverthe-
less, to get a linear or sublinear time algorithm, one has to consider more drastic relaxations. One can distinguish two
possible approaches. The first one is a weak version of approximation based on Property Testing, and the second one
considers an extension of the distance: the edit distance with moves, where arbitrary substrings can be moved in one
step.

Concerning the Property Testing approach, in [3] a sublinear tester is constructed such that it accepts with high
probability pairs of words of size n that are at edit distance O(nα), for some 0 < α < 1, and it rejects with high
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probability pair of words at distance Ω(n). The running time is in Õ(nmax(α/2,2α−1)). These testers can be understood
as a weak approximation of the edit distance, since it leads to efficient approximation algorithms whenever the distance
is large [15]. Nonetheless no sublinear time testers exist for the case α = 1. Moreover, there is no hope to get a tester
whose running time is size independent (even for 0 < α < 1) since a lower bound Ω(nα/2) on the query complexity
has been proven [3]. Results of same kind were proven in the sketching model [2], where a sketch (or a fingerprint)
is associated to each string, which is succinct yet rich enough to approximate the edit distance. Nonetheless the
complexity of computing a sketch is usually not sublinear. For instance, a near linear time algorithm is constructed to
distinguish between strings at distance O(k) from the ones at distance Ω(k2), for any k ≥ 1.

The edit distance with moves has been considered and approximated efficiently in [7, 6]. This is one of many
interesting variations of the edit distance that has many applications, for instance in genomics. Whereas computing
the edit distance with moves is NP-hard [18], it can be approximated within a Õ(log n) factor under near linear
time [7]. If one allows other operations in the distance such as copy of subwords, then there is a linear time and
constant approximation algorithm [8, 19]. In the context of property testing, the edit distance with moves has been
used in [10] for testing regular languages, where the tester is more efficient and simpler than the one of [1], and can be
generalized to tree regular languages.

In this paper, we develop a new statistical embedding of words which has similarities with the Parikh mapping [14].
Based on this embedding, we develop a tester (Theorem 3.8) for the equality between two words whose complexity
is O( log|Σ|

ε4 ), where |Σ| is the alphabet size, which is also tolerant, that is it is not only an ε-tester, but it also accepts
with high probability words that are ε2-close. This notion of tolerance, initially present in Self-Testing, was firstly
not considered in Property Testing. Recently, coming back to this notion, a relation between tolerant property testing
and approximation was pointed out in [15]. Based on this observation and our tolerant tester, we directly get an
approximation algorithm for the normalized distance ε between two words (Corollary 3.9), whose complexity is
O( log(|Σ|/ε)

ε4 ). To our knowledge this is the first approximation algorithm whose complexity is size independent. It is
interesting to note that the edit distance without moves, that lies between the Hamming distance (for which there is
a trivial tolerant tester) and the edit distance with moves (for which we prove the existence of a tolerant tester), is in
itself hard for tolerant testing (recall the lower bound above from [3] with α = 1).

Then we extend our embedding to languages. This leads us to an approximate geometrical description of regular
languages by finite unions of polytopes, which is robust (Theorem 4.7). Discretizing this representation gives us
(Theorem 4.10) a new tester for regular languages whose query complexity is O( log|Σ|

ε4 ) and time complexity is

2|Σ|O(1/ε)

. Whereas the complexity of previous testers for regular languages depended (exponentially) on the number
of states of the corresponding automaton, here the automaton is only used in a preprocessing step to build the tester.
The tester construction requires time m|Σ|O(1/ε)

, where m is a bound on the number of states of the automaton.
Last, we introduce the notion of an equivalence tester between classes of structures. Intuitively, two classes K1,K2

are ε-equivalent if every but finitely many structures of K1 is ε-close to K2 and conversely. An equivalence ε-tester
accepts equivalent classes and rejects classes which are not ε-equivalent with high probability. Using the previous
discretization, we construct an equivalence ε-tester for regular languages (Theorem 4.11) (where the exact decision
version of this problem requires exponential space [12]) in deterministic time m|Σ|O(1/ε)

, where m is an upper bound
of the number of states of the corresponding automata.

2 Preliminaries

2.1 Words, Languages, and Distance

We fix a finite alphabet Σ, a positive integer k and ε =1
k . We call Σk the block alphabet and its elements the block

letters. Any word of w of size n over Σ is also a word over Σk where the last (n−kbn
k c) letters are deleted. To simplify

notation, we always assume that k divides the size of the considered words. Thus, the words and the languages can be
considered over both Σ and Σk. For a word w over Σ we denote by |w| its size on Σ and by |w|b its size on Σk. Note
that these quantities satisfy |w| = 1

ε × |w|b = k × |w|b. We also denote by w[i] the i-th letter of w, for i ≥ 1, and by
w[j]b the j-th block letter of w, i.e. the subword w[(j − 1)k + 1]w[(j − 1)k + 2] . . . w[jk] of w, for j ≥ 1.

A subword of a word w is a sequence of consecutive letters of w. An elementary operation on a word w over Σ is
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either an insertion of a letter, a deletion of a letter, a substitution of a letter by another one, or the move of a subword
of w into another position of w. The edit distance with moves dist(w, w′) between two words w, w′ over Σ is the
minimal number of such elementary operations on w to obtain w′.

Define the block Parikh equivalence from the Parikh mapping [14] of a word on the block alphabet. Namely, let
w and w′ be two words of same size, then w ≡k w′ iff w′ is obtained by a permutation of the block letters of w. The
block Parikh equivalence preserves the distance in the following way.

Proposition 2.1. Let w, w′ be two words of size n. If w ≡k w′ then dist(w, w′) ≤ εn.

Proof. Using the definition of the block Parikh equivalence, one can permute the block letters of w to reach w′. Such
a permutation can be decomposed into at most |w|b = εn move operations.

Note that if k does not divide n, then we just need to add k = 1
ε to the previous upper bound, due to the last

(n − kbn
k c) remaining letters of w and w′ that we may have to modify.

For two real vectors V, V ′ of dimension d, we denote by |V − V ′| the `1-distance between V and V ′, that is
|V − V ′| =

∑d
i=1|V [i] − V ′[i]|, where V [i] (resp.V ′[i]) denotes the i-th coordinate of V (resp. of V ′). If the vectors

V, V ′ denote probability distributions, then the `1-distance coincides with twice the total variation distance.

2.2 Property Testing

Recall the notion of Property Testing [9] on a class K of finite structures for which a distance function between
structures has been defined. We say that two structures Un, Vm ∈ K, whose domains are respectively of size n and
m, are ε-close if their distance is less than ε × max(n, m). They are ε-far if they are not ε-close. The domain size is
appropriate to structures such as words or trees. But for classes such as graphs, one may define the closeness relatively
to the representation size (e.g., εn2 for graphs) instead of the domain size.

Every word w over a finite alphabet Σ is a finite structure (n, [n], l : [n] → Σ), where [n] denote the set {1, . . . , n}.
The class K is the set of all such structures. We will denote a subclass K0 of K as a subset L ⊆ Σ∗. In this context, a
query i to some word w asks the letter w[i] = l(i).

Definition 2.2 (Tester). Let ε > 0 be a real number. An ε-tester for a class K0 ⊆ K is a randomized algorithm A
such that, for any U ∈ K as input:

(1) If U ∈ K0, then A accepts with probability at least 2/3;
(2) If U is ε-far from K0, then A rejects with probability at least 2/3.

If in addition the algorithm is guaranteed to always accept if U ∈ K0, then we call it a one-sided error ε-tester.

Definition 2.3 (Tolerant tester [15]). Let 0 < ε1 < ε2 be reals. A tolerant (ε1, ε2)-tester for a class K0 ⊆ K is a
randomized algorithm A such that, for any U ∈ K as input:

(1) If U is ε1-close to K0, then A accepts with probability at least 2/3;
(2) If U is ε2-far from K0, then A rejects with probability at least 2/3.

In [15], it was shown how to derive an approximation algorithm when a family of tolerant testers is given. We will
adapt their construction for our particular family of tolerant testers.

Definition 2.4 (Approximation). Let α, β : R → R. An (α, β)-approximation of a real function f is a randomized
algorithm that on input U ∈ K, outputs a value z such that Pr[α(f(U)) ≤ z ≤ β(f(U))] ≥ 2/3.

The query complexity is the number of queries made to the structure U of K. The time complexity is per the usual
definition, where we assume that the following operations are performed in constant time: arithmetic operations, a
uniform random choice of an integer from a range given by the algorithm, and making a query to the input. A class
K0 ⊆ K is testable if for every ε > 0, there exists an ε-tester whose time complexity depends only on ε.

In this paper, we introduce the new notion of equivalence testing for whole languages. For this, we first define the
notion of ε-equivalence.

Definition 2.5. Let ε ≥ 0. Let K1,K2 ⊆ K be two classes.
K1 is ε-contained in K2, if every but finitely many structures of K1 are ε-close to K2.
K1 is ε-equivalent to K2, if both K1 is ε-contained in K2 and K2 is ε-contained in K1.
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Definition 2.6 (Equivalence tester). Let ε > 0, and let R be a family of finite representations of classes. A deter-
ministic (resp. probabilistic) ε-equivalence tester for R is a deterministic (resp. probabilistic) algorithm A such that,
given as input representations R1, R2 from R of classes K1,K2:

(1) If K1 = K2, then A accepts (resp. with probability at least 2/3);
(2) If K1 and K2 are not ε-equivalent, then A rejects (resp. with probability at least 2/3).

3 Approximating the Edit Distance with Moves

We will first study useful properties, like robustness, of our first statistics, the block statistics. Then we will extend the
robustness to the uniform statistics, which have the advantage of being also sound. These two properties will directly
give us a tolerant tester, based on the uniform statistics and their `1-distances. We then obtain an approximation
algorithm for the normalized edit distance with moves.

3.1 Block Statistics

In this section, w and w′ are two words of size n over Σ, such that k divides n. Let ε = 1
k . We denote the statistics of

the block letters of w by b-stat(w), that is the vector of dimension |Σ|k such that its u-coordinate, for u ∈ Σk, satisfies

b-stat(w)[u]
def
= Pr

j=1,...,n/k
[w[j]b = u].

We call the vector b-stat(w) the block statistics of w.
Another equivalent and sometimes more convenient way to define the block statistics is to use the underlying

distribution on words over Σ of size k, that is on block letters of Σk. We call the uniform distribution on block letters
w[1]b, . . . , w[n

k ]b of w (with some possible repetitions), the block distribution of w. Let X be the random vector
of size |Σ|k where all coordinates are 0 except its u-coordinate which is 1, where u is the index corresponding to a
random word of size k that was chosen according to the block distribution of w. Then the expectation of X satisfies
E(X) = b-stat(w).

Last, note that b-stat(w) is related to the Parikh mapping [14] of w where we compute the probabilities of a block
letter to occur instead of the number of occurrences of a letter. In particular, w ≡k w′ iff b-stat(w) = b-stat(w′),
when w and w′ have same size.

We relate the distance between two words to the `1-distance of their respective block statistics. This establishes
the robustness of the block statistics construction (the notion of robustness was initially introduced for functional
equations by Rubinfeld and Sudan [16, 17]). Then we will show how to efficiently estimate block statistics.

Lemma 3.1. dist(w, w′) ≤ ( 1
2 |b-stat(w) − b-stat(w′)| + ε) × n.

Proof. If b-stat(w) = b-stat(w′), then the distance dist(w, w′) is at most εn as we only need to move εn block letters.
Otherwise, we will construct a word w′′ from w such that b-stat(w′′) = b-stat(w′), using at most n

2 |b-stat(w) −
b-stat(w′)| substitutions. Applying the triangle inequality and the previous case, we obtain the desired result.

Collect in X+ the positions i of block letters w[i]b such that b-stat(w)[w[i]b] > b-stat(w′)[w[i]b], and in X− the
positions j such that b-stat(w)[w′[j]b] < b-stat(w′)[w′[j]b]. Note that X+ and X− have the same cardinality, which
is n

2k |b-stat(w) − b-stat(w′)|. Initially we let w′′ = w. Until X+ 6= ∅ repeat the following: take any i ∈ X+ and
j ∈ X−; replace in w′′ the letters of w′′[i]b = w[i]b with those of w′[j]b (using at most k substitutions); remove i from
X+ and j from X−. The resulting word w′′ satisfies the required conditions.

In order to approximate b-stat(w), we will sample N subwords of w according to its block distribution, that is

N random blocks letters, and we will compute a random vector b̂-statN (w), defined below, which will be close to
b-stat(w) with high probability. Let Xi be the random vector of size |Σ|k whose u-coordinate is one and others are
zero, where u is corresponds to a block letter chosen randomly and independently according to the block distribution
of w. Recall that E(Xi) = b-stat(w). We define

b̂-statN (w)
def
= 1

N

∑

i=1,...,N

Xi.

4



We wish to bound Pr[|b-stat(w) − b̂-statN (w)| ≥ ε]. There are several methods which can be used to obtain
a Chernoff bound type on vectors. We could use the method of bounded differences. In our simple case, the use of
Chernoff bound together with a direct union bound is enough.

Lemma 3.2. There exists N ∈ O( log|Σ|
ε3 ) for which Pr[|b-stat(w) − b̂-statN (w)| ≥ ε] ≤ 1

3 .

Proof. For any block letter u ∈ Σk, Pr[|b-stat(w)[u] − b̂-statN (w)[u]| ≥ t · b-stat(w)[u]] ≤ 2−8Nt2 , for any t > 0,

by the Chernoff bound. Using a union bound, we conclude that: Pr[|b-stat(w)− b̂-statN (w)| ≥ t] ≤ |Σ|k × 2−8Nt2 .
If we set t = ε, we get the result using an appropriate coefficient for N ∈ O(log|Σ|

ε3 ).

3.2 Uniform Statistics

In this section, w and w′ are again two words of size n over Σ. We want to construct a tolerant tester (as per the
definition of [15]), which is not only an ε-tester, but also accepts words that are ε′-close, for some ε′ < ε. We fix
some integer k and let ε = 1

k . We consider three different statistics: the original statistics of blocks b-stat(w), the
block uniform statistics bu-stat(w), and the uniform statistics u-stat(w). Any of those probabilities can be efficiently
approximated as in Lemma 3.2.

We define these new statistics like the block statistics, using variants of the block distribution. The uniform
distribution of w corresponds to a uniform and random choice of a subword of size k of w. Equivalently, the uniform
statistics u-stat(w) is defined for its u-coordinate, where u ∈ Σk, by

u-stat(w)[u]
def
= Pr

j=1,...,n−k+1
[w[j]w[j + 1] . . . w[j + k − 1] = u].

To define the block uniform distribution of w we need to partition w in bigger consecutive blocks of size K, where
K = b ε3n

log|Σ|c. To simplify the discussion, we assume that k divides (K − k − 1), that n is divisible by K, and that

n = Ω( log|Σ|
ε5 ). We call the new blocks the big blocks. Now the block uniform distribution is defined by the following

two-step procedure: First, in each big block choose uniformly a random 0 ≤ t ≤ k − 1, and delete the first t letters
and the last k− 1− t letters; then take uniformly a random block letter in the remaining subword of the original word.
The block uniform statistics bu-stat(w) is therefore just the expectation of block statistics of the big blocks where the
t first letters and the k − 1 − t last letters are first removed, for a randomly chosen 0 ≤ t ≤ k − 1.

We will prove that u-stat is both robust and sound, which leads to an estimator of the distance for far away
instances, whereas b-stat is only robust. For instance, the words (01)n and (10)n are 1

2n -close, whereas their block
statistics are Ω(1)-far. The proof of the robustness of u-stat will use in an intermediate step the robustness of the block
uniform statistics bu-stat. For the soundness of u-stat, the proof is much simpler.

Lemma 3.3 (Soundness). If dist(w, w′) ≤ ε2n then |u-stat(w) − u-stat(w′)| ≤ 6ε.

Proof. Assume that dist(w, w′) = 1. In case of a simple edit operation (insertion, deletion, substitution) on a letter,
|u-stat(w)−u-stat(w′)| ≤ 2× k

n . For a move operation, if w = A ·B ·C ·D and w′ = A ·C ·B ·D where a subword
B has been moved, there are three border areas where we may choose a word of length k in w which does not exist in
w′. Conversely, there are similar borders in w′. For each border, there are k possible subwords that intersect it, hence
|u-stat(w) − u-stat(w′)| ≤ 2 × 3k

n .
If dist(w, w′) ≤ ε2n then by the triangle inequality |u-stat(w′)− u-stat(w′)| ≤ ε2n× 6k

n = 6ε, since k = 1
ε .

We show that the robustness for b-stat(w) implies the robustness for bu-stat(w), which then will imply the ro-
bustness for u-stat(w). For a big block Bi, where i = 1, . . . , n

K , we denote by vi,ti the subword of Bi after deleting
the first ti letters and the last k − 1 − ti letters of Bi. Let v be the concatenations of the words vi,ti . Then by the
definition of bu-stat(w) we have

bu-stat(w) =
K

n

n/K
∑

i=1

E
ti=0,...,k−1

(b-stat(vi,ti )) = E
v
(b-stat(v)).
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Intuitively one would like to use this equation directly for extending the robustness of b-stat to bu-stat. Nonetheless,
this will not work since one would need to use a triangle inequality in the wrong direction. Instead we use a more
elaborate proof based on a Chernoff bound argument.

Lemma 3.4. Let w be a word over Σ of size n. There exists a word v obtained from w after deleting O( log|Σ|
ε4 ) letters,

so that |bu-stat(w) − b-stat(v)| ≤ ε
2 .

Proof. Fix a coordinate u ∈ Σk. For every i = 1, . . . , n
K , let Xi be the random variable Xi

def
= b-stat(vi,ti)[u], where

ti is chosen uniformly in {0, . . . , k−1}. We denote by v the random word obtained by the concatenation of the words
vi,ti . Note that v is obtained from w after deleting (k − 1) × n

K = O( log|Σ|
ε4 ) letters.

The variables (Xi)i are independent random variables such that 0 ≤ Xi ≤ 1 and Ev(b-stat(v)[u]) =
K
n

∑

i E(Xi) = bu-stat(w)[u]. By the Chernoff bound we then get that, for any t > 0,

Pr[|bu-stat(w)[u] − b-stat(v)[u]| ≥ t · bu-stat(w)[u]] ≤ 2−8(
n
K )t2 .

We repeat the same argument for every u-coordinate, and using a union bound, we conclude that:

Pr[|bu-stat(w) − b-stat(v)| ≥ t] ≤ |Σ|k × 2−8(
n
K )t2 .

If we set t = ε
2 = 1

2k , and use the fact that K = b ε3n
log|Σ|c, we conclude that there exists with non zero probability a

word v that satisfies the required property about the statistics, completing the proof.

The following simple result is well known and easy to check.

Proposition 3.5. Let A ⊆ B be two finite subsets and let µA, µB be their respective uniform distributions. Then
|µA − µB | = 2 |B|−|A|

|B| .

Lemma 3.6. Let w be a word over Σ of size n. Then |bu-stat(w) − u-stat(w)| = O( log|Σ|
ε4n ).

Proof. The proof consists in proving that both underlying block distributions are at `1-distance at most O( log|Σ|
ε4n ).

Then the definitions of the vectors u-stat and bu-stat directly imply the result.
The uniform distribution consists in choosing uniformly at random a subword u of w of length k, that is an integer

z ∈ {1, 2, . . . , n − k − 1}. The block uniform distribution consists in choosing uniformly at random a big block, an
integer 0 ≤ t ≤ k−1, and then a subword u of length k at position i in the big block that satisfies (i−1) = t mod k.
In an equivalent way, the block uniform distribution is the uniform distribution over all subwords of size k that are
inside some big block.

The number of subwords of size k that cross boundaries of big blocks is (k − 1) × ( n
K − 1). Therefore using

Proposition 3.5, the `1-distance between the distributions is upper bounded by 2×(k−1)( n
K −1)× 1

n−k = O( log|Σ|
ε4n ).

Combining the previous lemmas and the robustness of block statistics, we get our robustness lemma.

Lemma 3.7 (Robustness). Let n = Ω( log|Σ|
ε5 ). If dist(w, w′) ≥ 5εn then |u-statk(w) − u-statk(w′)| ≥ 6.5ε.

Proof. We assume that n/( log|Σ|
ε5 ) is large enough so that the O( log|Σ|

ε4 ) of Lemma 3.4 is upper bounded by εn
16 , and

the O( log|Σ|
ε4n ) of Lemma 3.6 is upper bounded by ε

8 .
Using Lemmas 3.4 and 3.6, we get subwords v and v′ that respectively come from w and w′ after deleting at most

εn
16 letters from each, so that |u-stat(w) − b-stat(v)| ≤ ε

2 + ε
8 and |u-stat(w′) − b-stat(v′)| ≤ ε

2 + ε
8 .

From the hypothesis on w and w′, and using the triangle inequality on dist, we obtain that dist(v, v ′) ≥ 5εn− εn
8 .

Therefore, using Lemma 3.1, we get that |b-stat(v) − b-stat(v′)| ≥ 8ε − ε
4 , which implies from the construction of

v, v′ that |u-stat(w) − u-stat(w′)| ≥ 8ε − ε
4 − 2( ε

2 + ε
8 ) = 6.5ε.

Using the Soundness and Robustness Lemmas, we can construct a one-sided error tester for the equality of two
words which is also (ε2, 5ε)-tolerant:
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Uniform Tester(w, w′, ε):
Let N = Θ( log|Σ|

ε3 ), and k = 1
ε

Compute û-statN (w) and û-statN (w′) using the same N random and uniform indices in {1, . . . , n−k+1}
Accept if |û-statN (w) − û-statN (w′)| ≤ 6.25ε
Reject otherwise

From the above lemmas it is clear that this algorithm satisfies the requirements of the following theorem.

Theorem 3.8. For any ε > 0, and two words w, w′ of the same size of order Ω( log|Σ|
ε5 ), the previous test,

(1) accepts if w = w′ with probability 1,
(2) accepts if w and w′ are ε2-close with probability at least 2/3,
(3) rejects if w and w′ are 5ε-far with probability at least 2/3.

Moreover its query and time complexities are in O( log|Σ|
ε4 ).

From this (ε2, 5ε)-tolerant tester, one can derive an ( ε2

25 , 5
√

ε)-approximation algorithm of the distance following the
approach of [15].

Corollary 3.9. There exists a randomized algorithm A such that, given two words w, w′ of the same size of order
Ω( log|Σ|

ε5 ), A outputs ε′ satisfying ε′ ∈ [ ε2

25 , 5
√

ε] with probability at least 2/3, where ε = dist(w,w′)
|w| . Moreover the

query and time complexities of A are in O( log(|Σ|/ε)
ε4 ).

4 Geometric Embedding of a Language

4.1 General Observations

In this section, we want to use the notion of block statistics in order to efficiently characterize a language. We choose
this statistics vector not only since it is the simplest to manipulate, but it is also the most appropriate one for our
purpose as we will see below.

Using the previous section, we can embed a word w into its block statistics b-stat(w) ∈ R|Σ|1/ε

. This character-
ization is approximately one-to-one from Lemma 3.1 if the size of the words is fixed. It is not the case for words of
different lengths as b-stat(w0) = b-stat(wt

0) for every positive integer t, if w0 is any word of size k = 1
ε .

This means that the set of block statistics b-stat(w) of all the elements w ∈ L is not a good characterization of a

general language L. For instance, the word w3×2s−1

0 is (1 − 1/k2s−1

)-far from the language {w2t

0 : t ≥ 1}, for every
positive integer s.

This example shows that one might consider only block statistics of loops of a language. This characterization
makes sense when any word of a language can be decomposed into loops up to few remaining letters. Such languages
are essentially the regular languages. Observe also that the fact that any iteration of the same loop is mapped into one
point of R|Σ|1/ε

is a property of the block statistics which does not hold for uniform statistics.

4.2 Regular Languages

We fix a finite alphabet Σ, and an automaton A (possibly non deterministic) on Σ with a set of states Q of size m,
that recognizes a regular language L. Let k be a positive integer and ε = 1

k . We consider only words whose size is
divisible by k, as any word of length n of L, for n large enough, is close to such a word. Define Ak, the k-th power
of A, the automaton on Σk with set of states Q such that transitions of Ak are exactly k consecutive transitions of A.
Then A and Ak recognize the same language. In the general case, one can modify Ak such that Ak recognizes the
language of words of L where the last (|w| − kb |w|

k c) letters are deleted.
We will characterize L by the block statistics of its loops on the block alphabet. We remark that the statistics of

Ak-loops basically only depend on L and k, from Proposition A.2 in Appendix A.
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Definition 4.1. A word v over Σk is an Ak-loop if there exist two words u, w over Σk and an accepting path of Ak

for uvw, such that the state of the automaton after reading u (following the above accepting path) is identical to the
state after reading uv.
A finite set of Ak-loops is Ak-compatible if all the loops can occur one after the other (in any order) in one accepting
path of Ak.

We define the geometric embedding of L by the union of convex hulls of every compatible set of loops.

Definition 4.2.
H def

=
⋃

v1,...,vt:

Ak-compatible loops
t≥0

Convex-Hull(b-stat(v1), . . . , b-stat(vt)).

This definition is motivated by a standard result on finite automata: one can rearrange any word of a regular
language into a sequence of small compatible loops. We formulate this fact in our context.

Proposition 4.3. Let w ∈ L. Then w ≡k vu1u2 . . . ul, where |v|b, |u1|b, . . . , |ul|b ≤ m and {u1, u2, . . . , ul} is an
Ak-compatible set of Ak-loops (non necessarily pairwise distinct).

A consequence of this proposition is that if a word w ∈ L, then it has to satisfy approximately b-stat(w) ∈ H
(Lemma 4.5 below). The converse is also approximately true (Theorem 4.7 below).

Another consequence together with Caratheodory’s theorem is that one can equivalently define H when the loop
sizes and the number of compatible loops are bounded (see Appendix B for the proof). Recall that even if this new
characterization explicitly depends on Ak (that is on A and ε), the set H only depends on L and ε (see Appendix A).

Proposition 4.4.
H =

⋃

v1,...,vt:

Ak-compatible loops
t=|Σ|1/ε+1,|vi|b≤m

Convex-Hull(b-stat(v1), . . . , b-stat(vt)).

The following lemma gives one direction in the correspondence between L and H that we are looking for. It can be
understood as an approximate Parikh classification of regular languages, whereas the original Parikh characterization
was for context-free languages [14].

Lemma 4.5. For every w ∈ L there exists w′, so that

0 ≤ |w| − |w′| ≤ m
ε , dist(w, w′) ≤ m

ε ,

|b-stat(w) − b-stat(w′)| ≤ 2m
ε|w| , and b-stat(w′) ∈ H.

Proof. First, recall that the block statistics b-stat(w) is invariant under block letter permutations. Moreover, if w ′ is
w on which one block letter has been either deleted or inserted then |b-stat(w) − b-stat(w′)| ≤ 2

ε|w| .
Let w ∈ L. Applying Proposition 4.3, we can delete less than m block letters from w so that the resulting

word is a concatenation w′ ≡k u1u2 . . . ul, where the ui are Ak-compatible Ak-loops. Since w′ is obtained from w
using at most m deletions of block letters, we have |b-stat(w) − b-stat(w′)| ≤ 2m

ε|w| . This concludes the proof since
b-stat(w′) ∈ H.

Lemma 4.6. For every X ∈ H and every n there exists w ∈ L, such that

0 ≤ |w| − n ≤ (|Σ|1/ε + 3) 2m
ε , and |X − b-stat(w)| ≤ (|Σ|1/ε + 2) 3m

εn .

Proof. Let X ∈ H, that is X =
∑l

i=1 λi · b-stat(ui), where l = |Σ|k + 1, |ui|b ≤ m, 0 ≤ λi ≤ 1 and
∑

i λi = 1.
Fix any integer n. We choose non negative integers (ri)i=1,2,...,l that respectively approximate λi

εn
|ui|b

, that is satisfy
0 ≤ |ri − λi

εn
|ui|b

| ≤ 1, and such that 0 ≤ ∑

i ri|ui|b − εn ≤ m. It is always possible to satisfy this last condition due
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to the degree of freedom on the choices of ri and the upper bound |ui|b ≤ m: We let j ≥ 0 be the minimum integer so
that

∑j
i=1dλi

εn
|ui|b

e|ui|b +
∑l

i=j+1bλi
εn

|ui|b
c|ui|b ≥ 0, and set ri = dλi

εn
|ui|b

e for i ≤ j and ri = bλi
εn

|ui|b
c for i > j.

Define the word w′ = ur1
1 ur2

2 . . . url

l . Then its block length is close to εn: 0 ≤ |w′|b − εn ≤ m. Moreover its
block statistics satisfies

|b-stat(w′) − X | =

∣

∣

∣

∣

∣

∑

i

(

ri
|ui|b
|w′|b

− λi

)

b-stat(ui)

∣

∣

∣

∣

∣

≤
∑

i

|ri
|ui|b
|w′|b

− λi|

≤
∑

i

|ri
|ui|b
|w′|b

− ri
|ui|b
εn | +

∑

i

|ri
|ui|b
εn − λi|

≤
∑

i

ri|ui|b × | 1
|w′|b

− 1
εn | +

∑

i

m
εn

≤ (m + εn) × ( 1
εn − 1

m+εn ) + l m
εn = m

εn + l m
εn .

Using Ak-compatibility, we can get a word of L from w′ by inserting few block letters. Let
v0ui1v1ui2v2 . . . uil

vl ∈ L be the witness of the Ak-compatibility of the loops u1, . . . , ul, such that |vj |b ≤ m

for every j, and where (i1, . . . , il) is a permutation of (1, . . . , l). Then the word w = v0u
ri1

i1
v1u

ri2

i2
v2 . . . u

ril

il
vl ∈ L

by construction. Moreover 0 ≤ |w|b−|w′|b ≤ (l+1)m, and |b-stat(w′)−b-stat(w)| ≤ 2(l+1)m
εn , so we conclude.

Theorem 4.7. Let w ∈ Σn and X ∈ H be such that |b-stat(w) − X | ≤ δ. Then

dist(w, L) ≤
(

δ
2 +

(

1 + O(m|Σ|1/ε

ε2n )
)

ε
)

n.

Proof. Let n = |w|. For simplicity, we assume that k divides n, otherwise we just delete at most k−1 letters from w so
that the new length is dividable by k. From Lemma 4.6, there exists a word w′ ∈ L, such that 0 ≤ |w′|−n ≤ (l+2) 2m

ε
and |b-stat(w′) − X | ≤ (l + 1) 3m

εn , where l = 1 + |Σ|k. We again assume that k divides |w′|.
Assume that |w| = |w′|. Then, using Lemma 3.1, we get that dist(w, w′) ≤ ( 1

2 (δ + (l + 1) 3m
εn ) + ε)n.

If w and w′ have different sizes, we artificially increment the size of w by adding at most (l + 2)2m block letters
at the end of w (recall that adding a block letter adds k to the word size). The deviation of its block statistics is then at
most (l + 2)2m × 2

εn , so we asymptotically get the same bound.

4.3 Construction of H
One of the remaining tasks is to efficiently construct H for a given automaton A with m states. One could try to
enumerate all Ak-loops of size at most m over Σk. This is not efficient enough due to the possible large number
of loops, O(|Σ|km). Nevertheless, the number of possible corresponding block statistics is exponentially smaller,
O(m|Σ|k ), since a block statistics of a word v of size at most m over Σk has at most |v|b ≤ m nonzero coordinates of
the form a

|v|b
, where a = 1, . . . , |v|b. We now explain how to enumerate such block statistics.

We proceed recursively on the length t of paths between two possible states of Ak, for t = 1, . . . , m. Let Pt be an
m×m matrix where the entry (i, j) is the set of block statistics corresponding to a path of length t between the states
i and j. Let us consider the algebra of sets of distributions over Σk with the operations ∪,�t, where �t is distributive
over ∪ and defined for singletons by {−→x } �t {−→y } = { 1

t+1
−→x + t

t+1
−→y }. If we denote by ◦t the matrix multiplication

over this algebra, then the matrices Pt satisfy the following simple inductive equation, where P1 is directly given by
Ak (by setting each non-empty entry of P1 to be the set of unit vectors corresponding to the block letters labeling the
corresponding arcs in Ak):

Pt+1 = P1 ◦t Pt.

Lemma 4.8. Given A and ε, a set H of (|Σ|1/ε + 1)-tuples of vectors can be computed in time m|Σ|O(1/ε)

such that

|H | ≤ m|Σ|O(1/ε)

and H =
⋃

S∈H

Convex-Hull(S).
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Proof. We first compute as we explained above the matrices (Pt)t=1,...,m. At the end of the process, the diagonals of
those matrices contain the block statistics of all Ak-loops of length at most m. Then, a tuple of (|Σ|1/ε + 1) loops
is compatible if and only if there exists an accepting path of the automaton which passes through all states of the
respective origins of the loops, a condition that can also be checked in polynomial time by using matrix multiplication
over an appropriate algebra. Using Proposition 4.4, we know that including in H the statistics of the corresponding
compatible sets is sufficient. The upper bounds on the size and the time complexity of the decomposition come from
the previous observation that at most m|Σ|k block statistics are considered.

For a regular language, the set H is a subset of the unit ball of R|Σ|k for the `1-norm. Let us consider the grid
Gε = {0, ε

|Σ|k
, 2ε
|Σ|k

, . . . , 1}|Σ|k of the cube [0, 1]|Σ|k with step ε
|Σ|k

. Let Hε be the set of points of Gε that are at

distance at most ε
2 from H (for the `1-distance). Since |Gε| = (k|Σ|k + 1)|Σ|k = 2|Σ|O(1/ε)

, then |Hε| = 2|Σ|O(1/ε)

.
Moreover, one can easily construct it from H .

Proposition 4.9. Given A and ε, the set Hε can be computed in time m|Σ|O(1/ε)

.

4.4 Applications

Theorem 4.10. For every real ε > 0 and regular language L over a finite alphabet Σ, there exists an ε-tester for L

whose query complexity is in O( log|Σ|
ε4 ) and time complexity is in 2|Σ|O(1/ε)

.

Moreover, given an automaton with m states that recognizes L, the tester can be constructed in time m|Σ|O(1/ε)

.

Proof. We fix ε > 0, and automaton A with m states that recognizes L. We will construct a 3ε-tester for L. Let w be

a word given as input. We assume that |w|/(m|Σ|1/ε

ε2 ) is large enough, otherwise we just run the automaton on w.
The tester is in two steps: a preprocessing step and the testing step itself. Given A and ε, one can compute Hε

in time m|Σ|O(1/ε)

from Proposition 4.9. Now the testing part consists in computing the estimation b̂-statN (w) of

b-stat(w) as in Lemma 3.2, where N = Θ( log|Σ|
ε3 ), using O( log|Σ|

ε4 ) queries to w. Then if b̂-statN (w) is at distance at
most 2ε from Hε, the tester accepts, and otherwise it rejects.

From Lemma 3.2, b̂-statN (w) is at `1-distance at most ε from b-stat(w), with high probability. Now, if w ∈ L,
using Lemma 4.5, b-stat(w) is at `1-distance at most 0.25ε from H and at most 0.75ε from Hε, and therefore the
tester accepts w with high probability. If w is 3ε-far from L, then by the contraposition of Theorem 4.7, b-stat(w) is
at `1-distance at least (4−0.25)ε from H and at least 3.25ε from Hε, so the tester rejects w with high probability.

We end with the existence of a deterministic equivalence tester for regular languages.

Theorem 4.11. There exists a deterministic algorithm T such that, given two automata A and B over a finite alphabet
Σ with at most m states and a real ε > 0, T (A, B, ε)

(1) accepts if A and B recognize the same language,
(2) rejects if A and B recognize languages that are not ε-equivalent.

Moreover the time complexity of T is in m|Σ|O(1/ε)

.

Proof. Fix an ε > 0. The algorithm simply computes the respective discrete approximations HA,ε and HB,ε of HA

and HB corresponding to the automata A and B. If they are equal, the tester accepts, and otherwise it rejects.
If A and B recognize the same language, then one can verify that their respective sets HA and HB are equal (see

for instance Proposition A.4 in Appendix A), and so their discrete approximation HA,ε and HB,ε are also identical.
Therefore the algorithm accepts.

Assume now that A and B are not 2ε-equivalent. For instance assume that A is not 2ε-contained in B. Let (wn)
be an infinite sequence of words accepted by A but 2ε-far from B. We only consider just one word wn such that

|wn| = Ω(m|Σ|1/ε

ε2 ). Then from Lemma 4.5, b-stat(wn) is at most 0.25ε from HA and at most 0.75ε from HA,ε. Now
by the contraposition of Theorem 4.7, since wn is 2ε-far from the language that B recognizes, we get that b-stat(wn)
is at `1-distance at least (2 − 0.25)ε from HB,ε and at least 1.25ε from HB,ε. Therefore the algorithm rejects.
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A Automata Independence Proofs

We show that loops in different automata for the same language are related, by correlating them with a definition that
only depends on the language itself.

Definition A.1. A word v over Σk is an (L, k)-loop if there exist two words u, w over Σk such that uvtw ∈ L for
every integer t.

One can remark that Ak-loops and (L, k)-loops are nearly the same, and in particular share the same statistics,
according to the following result.

Proposition A.2. Every Ak loop is also an (L, k)-loop, and on the other hand for every (L, k)-loop v there exists
t ≥ 1 such that vt is an Ak loop. In particular, the set of statistics of loops of an automaton deciding the language L
depends only on L and k.

Proof. The first direction is clear.
The second direction requires some indications. Let us now consider the family of L words (uvtw)t≥1, and in

particular let us consider one of the accepting paths for uvmw. By a counting argument, there exist 0 ≤ t < t′ ≤ m,
such that this accepting path reaches the same state after both |uvt|b steps and |uvt′ |b steps. Hence the automaton
contains some loop that corresponds to vt′−t. Moreover, there is an accepting path that contains this loop, namely the
one for uvmw, and so it is indeed an Ak-loop.

However, for our purpose we need to consider not only loops, but sets of compatible loops. Here is the correspond-
ing definition that depends on the language.

Definition A.3. A sequence of words v1, . . . , vl over Σk is a compatible (L, k)-loop sequence if there exists a per-
mutation σ : {1, . . . , l} → {1, . . . , l}, and words u0, u1, . . . , ul over Σk, such that for every t1, . . . , tl we have
u0v

t1
σ(1)u1v

t2
σ(2)u2 . . . ul−1v

tl

σ(l)ul ∈ L (note that this in particular implies that v1, . . . , vl are (L, k)-loops).

Proposition A.4. Every compatible sequence of Ak-loops is also a compatible sequence of (L, k)-loops. On the other
hand, for every compatible sequence v1, . . . , vl of (L, k)-loops there exist t1, . . . , tl ≥ 1 such that vt1

1 , . . . , vtl

l is a
compatible sequence of Ak-loops. In particular, the geometric set H, constructed from any automaton Ak deciding
the language L, depends only on L and k.

Proof. The proof follows the very same methods of the proof of Proposition A.2.

B Proof of Proposition 4.4

Proof of Proposition 4.4. The inclusion ⊇ is straightforward.
For the ⊆ inclusion, let us first state Caratheodory’s theorem: In dimension d, any convex hull of N points

p1, . . . , pN can be decomposed into the union of convex hulls of (d + 1) points pi1 , . . . , pid+1
(with some possible

repetitions), where the union is over every possible choices of these points. Hence this inclusion would have been
also straightforward without the length assumption on the loops as the dimension d = |Σ|k. To overcome the length
constraint we use the fact that any loop v = vi of size |v|b > m can be decomposed into v = u1u2, where u1 and
u2 are loops which are also compatible with the other loops vj . Repeating this argument inductively, we first prove
that H is not smaller if we upper bound the loop sizes by m. Then applying Caratheodory’s theorem, we conclude the
proof.
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