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Abstract

We investigate property testing and related questions, where instead of the usual Hamming and edit distances
between input strings, we consider the more relaxed edit distance with moves. Using a statistical embedding of words
which has similarities with the Parikh mapping, we first construct a tolerant tester for the equality of two words,
whose complexity is independent of the string size, and we derive an approximation algorithm for the normalized edit
distance with moves.

We then consider the question of testing if a string is a member of a given language. We develop a method to
compute, in polynomial time in the representation, a geometric approximate description of a regular language by a
finite union of polytopes. As an application, we have a new tester for regular languages given by their nondetermin-
istic finite automaton (or regular expressions), whose complexity does not depend on the automaton, except for a
polynomial time preprocessing step.

Furthermore, this method allows us to compare languages and validates the new notion of equivalent testing that
we introduce. Using the geometrical embedding we can distinguish between a pair of automata that compute the same
language, and a pair of automata whose languages are not ε-equivalent in an appropriate sense. Our equivalence tester
is deterministic and has polynomial time complexity, whereas the non-approximated version is PSPACE-complete.

Last, we extend the geometric embedding, and hence the tester algorithms, to infinite regular languages and to
context-free grammars as well. For context-free grammars the equivalence test has now exponential time complexity,
but in comparison, the non-approximated version is not even recursively decidable.

1 Introduction

We consider the approximation of several classical combinatorial problems on strings in the context of property testing.
Inspired by the notion of self-testing [5, 6, 21], Property testing has been initially defined and studied for graph
properties [13]. It has been successfully extended for various classes of finite structures. Consider finite words over a
finite alphabet Σ for which a distance function has been defined. An ε-tester for a language L ⊆ Σ∗ is a randomized
algorithm which takes a word w of size n as an input, and distinguishes with high probability between the case that
w ∈ L and the case that w is ε-far from L. A language L is testable if for every ε > 0 there exists an ε-tester for L
whose time complexity depends only on ε, i.e. is independent of the size n.

Property testing of regular languages was first considered in [1] for the Hamming distance and then extended to
languages recognizable by bounded width read-once branching programs [17], where the Hamming distance between
two words is the minimal number of character substitutions required to transform one word into the other. Then two
words of size n are ε-far if they are at distance greater than εn.

The edit distance is a more relaxed natural distance measure for strings than the Hamming distance. The edit
distance between two words is the minimal number of insertions, deletions and substitutions of a letter required to
transform one word into the other. Computing the edit distance between two words is an important subproblem of many
applications like text processing, genomics, web search, etc. Behind the difficulty to get a significant subquadratic time
algorithm (the best known algorithm is in O(n2/ ln n) [15]), several approximation algorithms have been proposed.
Nevertheless, to get a linear or sublinear time algorithm, one has to consider more drastic relaxations. One can
distinguish two possible approaches. The first one is a weak version of approximation based on property testing, and
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the second one considers an extension of the distance: the edit distance with moves, where arbitrary substrings can be
moved in one step.

Concerning the property testing approach, in [3] a sublinear tester is constructed such that it accepts with high
probability pairs of words of size n that are at edit distance O(nα), for some 0 < α < 1, and rejects with high proba-
bility pairs of words at distance Ω(n). The running time is in Õ(nmax(α/2,2α−1)). These testers can be understood as
a weak approximation of the edit distance, since it leads to efficient approximation algorithms whenever the distance
is large [19]. Nonetheless no sublinear time testers exist for the case α = 1. Moreover, there is no hope to get a
tester whose running time is independent of the input size (even for 0 < α < 1) since a lower bound of Ω(nα/2) on
the query complexity has been proven [3]. Results of the same kind were proven in the sketching model [2], where a
sketch (or a fingerprint) is associated to each string, which is a succinct yet rich enough description to approximate the
edit distance. Nonetheless the complexity of computing a sketch is usually not sublinear. For instance, a near linear
time algorithm is constructed to distinguish between strings at distance O(k) and strings at distance Ω(k2), for any
k ≥ 1.

The edit distance with moves has been considered and approximated efficiently in [11, 10]. This is one of many
interesting variations of the edit distance that has many applications, for instance in genomics. Whereas computing
the edit distance with moves is NP-hard [22], it can be approximated within an Õ(ln n) factor under near linear
time [11]. If one allows other operations in the distance such as copying subwords, then there is a linear time and
constant approximation algorithm [12, 23]. In the context of property testing, the edit distance with moves has been
used in [14] for testing regular languages, where the tester is more efficient and simpler than the one of [1], and can be
generalized to tree regular languages.

In this paper, we develop a new statistical embedding of words which has similarities with the Parikh mapping [18].
Based on this embedding, we develop a tester (Theorem 3.8) for the equality between two words whose complexity

is O( (ln|Σ|)|Σ|2/ε

ε4 ), where |Σ| is the alphabet size, which is also tolerant, that is it is not only an ε-tester, but it also
accepts with high probability words that are ε2-close. This notion of tolerance, initially present in self-testing, was
firstly not considered in property testing. Recently, coming back to this notion, a relation between tolerant property
testing and approximation was pointed out in [19]. Based on this observation and our tolerant tester, we directly get
an approximation algorithm for the normalized distance ε between two words (Corollary 3.9), whose complexity is

O( (ln(|Σ|/ε))|Σ|2/ε

ε4 ). To our knowledge this is the first such approximation algorithm whose complexity is independent
of the size n. It is interesting to note that the edit distance without moves, that lies between the Hamming distance (for
which there is a trivial tolerant tester) and the edit distance with moves (for which we prove the existence of a tolerant
tester), is in itself hard for tolerant testing (recall the lower bound above from [3] with α = 1).

Then we extend our embedding to languages. This leads us to an approximate geometrical description of regular
languages by finite unions of polytopes, which is robust (Theorem 4.8). Discretizing this representation gives us a

new tester (Theorem 4.11) for regular languages whose query complexity is O( (ln|Σ|)|Σ|2/ε

ε4 ) and time complexity is

2|Σ|O(1/ε)

. Whereas the complexity of previous testers for regular languages depended (exponentially) on the number
of states of the corresponding automaton, here the automaton is only used in a preprocessing step to build the tester.
The tester construction requires time m|Σ|O(1/ε)

, where m is the number of states of the automaton.
Last, we go beyond the testing of strings to the question of comparing (in an approximate manner) whole languages.

We introduce the notion of an equivalence tester between classes of structures. Intuitively, two finite representations
R1, R2 of languages L1, L2 are ε-equivalent if every but finitely words of L1 is ε-close to L2 and conversely. An ε-
equivalence tester accepts equivalent representations and rejects representations which are not ε-equivalent with high
probability. Using again discretization, we construct an ε-equivalence tester (Theorem 4.12) for nondeterministic
finite automata in deterministic time m|Σ|O(1/ε)

, where m is the number of states in the larger of the two corresponding
automata (the exact decision version of this problem is PSPACE-complete by [24]). We then extend this result to the ε-
equivalence testing of Büchi automata (Theorem 4.14) (after generalizing our definitions to deal also with languages of
infinite words), and an exponential algorithm for the ε-equivalence testing of context-free grammars (Theorem 4.19)
(for which the exact decision version is not even recursively computable).
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2 Preliminaries

We fix a finite alphabet Σ, a positive integer k and ε =1
k . We call Σk the block alphabet and its elements the block

letters. Any word w of size n over Σ is also a word over Σk where the last (n− kbn
k c) letters are deleted. To simplify,

we will assume that k divides n. Therefore the words and the languages will be considered over both Σ and Σk. For a
word w over Σ we denote by |w| its size on Σ and by |w|b = ε|w| its size on Σk. We also denote by w[i] the i-th letter
of w, and by w[j]b the j-th block letter of w, i.e. the subword w[(j − 1)k + 1]w[(j − 1)k + 2] . . . w[jk] of w.

A subword of a word w is a sequence of consecutive letters of w. An elementary operation on a word w is either
an insertion, a deletion or a substitution of a letter, or the move of a subword of w into another position. The edit
distance with moves dist(w, w′) between w and w′ is the minimal number of elementary operations on w to obtain w′.

Define the block Parikh equivalence from the Parikh mapping [18] of a word on the block alphabet. Namely, if w
and w′ are two words of same size, then w ≡k w′ iff w′ is obtained by a permutation of the block letters of w.

Proposition 2.1. Let w, w′ be two words of size n (such that k divides n). If w ≡k w′ then dist(w, w′) ≤ εn.

For two real vectors V, V ′ of dimension d, we denote by |V − V ′| the `1-distance between V and V ′, that is
|V − V ′| =

∑d
i=1|V [i] − V ′[i]|, where V [i] (resp.V ′[i]) denotes the i-th coordinate of V (resp. of V ′). If the vectors

V, V ′ denote probability distributions, then the `1-distance coincides with twice the total variation distance.
Recall now the notion of property testing [13] on strings for any distance, although we will only consider the

distance dist between strings in the rest of the paper. We say that two words w, w′, of respective sizes n and m, are
ε-close if their distance is at most ε ×max(n, m). They are ε-far if they are not ε-close. For simplicity, we will often
only consider words of the same size. We say that w is ε-far from a language L, if w is ε-far from any word of L.

Definition 2.2 (Tester). Let ε > 0 be a real number. An ε-tester for a language L is a randomized algorithm A such
that, for any word w as input:

(1) If w ∈ L, then A accepts with probability at least 2/3;
(2) If w is ε-far from L, then A rejects with probability at least 2/3.

If in addition the algorithm is guaranteed to always accept if w ∈ L, then we call it a one-sided error ε-tester.

Definition 2.3 (Tolerant tester [19]). Let 0 < ε1 < ε2 be reals. A tolerant (ε1, ε2)-tester for a language L is a
randomized algorithm A such that, for any word w as input:

(1) If w is ε1-close to L, then A accepts with probability at least 2/3;
(2) If w is ε2-far from L, then A rejects with probability at least 2/3.

We will also consider approximation algorithms which are related to tolerant testers [19].

Definition 2.4 (Approximation). Let α, β : R → R. An (α, β)-approximation of a real function f is a randomized
algorithm that, for any word w as input, outputs a value z such that Pr[α(f(w)) ≤ z ≤ β(f(U))] ≥ 2/3.

A query to some word w is asking for the value of w[i], for some i. The query complexity is the number of queries
made to the word w ∈ Σ∗. The time complexity is the usual definition, where we assume that the following operations
are performed in constant time: arithmetic operations, a uniform random choice of an integer from any finite range,
and a query to the input.

In this paper, we introduce the new notion of equivalence testing for finite representations of languages, such as
automata or pushdown automata. First we define the notion of ε-equivalence for finite structures.

Definition 2.5. Let ε ≥ 0. Let L1, L2 be two languages.
L1 is ε-included into L2, if every but finitely many words of L1 are ε-close to L2.
L1 is ε-equal to L2, if both L1 is ε-contained in L2 and L2 is ε-contained in L1.
Let R1 and R2 be two finite representations of the languages L1 and L2 respectively. R1 is ε-equivalent to R2, if L1

is ε-equal to L2.

Definition 2.6 (Equivalence tester). Let ε > 0, and let R be a family of finite representations of languages. A
deterministic (resp. probabilistic) ε-equivalence tester for R is a deterministic (resp. probabilistic) algorithm A such
that, given as input finite representations R1, R2 from R:

(1) If R1 and R2 define the same language, then A accepts (resp. with probability at least 2/3);
(2) If R1 and R2 are not ε-equivalent, then A rejects (resp. with probability at least 2/3).
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3 Embedding of a String by Statistics

We will define several statistics over words and study their robustness [20, 21] and soundness. Robustness means
that far words have far statistics, and soundness means that close words have close statistics. Despite the difficulty of
computing the edit distance with moves, one can efficiently approximate the statistics of a word. This will directly
give us a tolerant tester and then an approximation algorithm for the normalized edit distance with moves.

We will first study the robustness of our first statistics, the block statistics. Then we will extend the robustness to
the uniform statistics, which have the advantage of being also sound.

3.1 Statistics, Robustness and Soundness

3.1.1 Block statistics

In this section, w and w′ are two words of size n over Σ, such that k divides n. Let ε = 1
k . We define the block

statistics the statistics of the block letters of w, that is the vector b-stat(w) of dimension |Σ|k whose u-coordinate, for

u ∈ Σk, is b-stat(w)[u]
def
= Prj=1,...,n/k[w[j]b = u].

The block distribution of w is the uniform distribution on block letters w[1]b, . . . , w[n
k ]b (with some possible

repetitions). Let X be the random vector of size |Σ|k whose coordinates are 0 except the u-coordinate which is 1, for
a randomly chosen u according to the block distribution of w. The expectation of X satisfies E(X) = b-stat(w).

Last, note that when w and w′ have same size, w ≡k w′ iff b-stat(w) = b-stat(w′). We relate the distance
between two words to the `1-distance of their respective block statistics.

Lemma 3.1 (Robustness). dist(w, w′) ≤ ( 1
2 |b-stat(w) − b-stat(w′)| + ε) × n.

Proof. If b-stat(w) = b-stat(w′), then the distance dist(w, w′) is at most εn as we only need to move εn block letters.
Otherwise, we will construct a word w′′ from w such that b-stat(w′′) = b-stat(w′), using at most n

2 |b-stat(w) −
b-stat(w′)| substitutions. Applying the triangle inequality and the previous case, we obtain the desired result.

Collect in X+ the positions i of block letters w[i]b such that b-stat(w)[w[i]b] > b-stat(w′)[w[i]b], and in X− the
positions j such that b-stat(w)[w′[j]b] < b-stat(w′)[w′[j]b]. Note that X+ and X− have the same cardinality, which
is n

2k |b-stat(w) − b-stat(w′)|. Initially we let w′′ = w. Until X+ 6= ∅ repeat the following: take any i ∈ X+ and
j ∈ X−; replace in w′′ the letters of w′′[i]b = w[i]b with those of w′[j]b (using at most k substitutions); remove i from
X+ and j from X−. The resulting word w′′ satisfies the required conditions.

3.1.2 Uniform Statistics

In this section, w and w′ are again two words of size n over Σ. We want to construct a tolerant tester, which is not
only an ε-tester, but also accepts words that are ε′-close, for some constant 0 < ε′ < ε. We fix some integer k and let
ε = 1

k . We consider three different statistics: the original statistics of blocks b-stat(w), the block uniform statistics
bu-stat(w), and the uniform statistics u-stat(w).

We define these new statistics like the block statistics, using variants of the block distribution. The uniform
distribution of w corresponds to a uniform and random choice of a subword of size k of w. This is very much
related to the previous work of [8], where the subwords of length k were referred to by the term “shingles”.

To define the block uniform distribution of w we first partition w into bigger consecutive blocks of size K, where
K = b ε3n

8 ln(|Σ|)|Σ|2/ε c. To simplify, we assume that k divides (K − k − 1), that n is divisible by K, and that n =

Ω( (ln|Σ|)|Σ|2/ε

ε5 ). We call the new blocks the big blocks. Now the block uniform distribution is defined by the following
two-step procedure: First, in every big block choose uniformly a random 0 ≤ t ≤ k − 1, and delete the first t letters
and the last k− 1− t letters; then take uniformly a random block letter in the remaining subword of the original word.

We will prove that u-stat is both robust and sound, which leads to an estimator of the distance for far away
instances, whereas b-stat is only robust. For instance, the words (01)n and (10)n are 1

2n -close, whereas their block
statistics are Ω(1)-far. The proof of the robustness of u-stat will use in an intermediate step the robustness of the block
uniform statistics bu-stat. For the soundness of u-stat, the proof is much simpler.

Lemma 3.2 (Soundness). Let n = Ω( 1
ε ). If dist(w, w′) ≤ ε2n then |u-stat(w) − u-stat(w′)| ≤ 6.1ε.
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Proof. First, remember that there are at most n−k +1 subwords of size k in w. Assume that dist(w, w ′) = 1. In case
of a simple edit operation (insertion, deletion, substitution) on a letter, |u-stat(w) − u-stat(w′)| ≤ 2 × k

n−k+1 . For a
move operation, if w = A ·B ·C ·D and w′ = A ·C ·B ·D where a subword B has been moved, there are three border
areas where we may choose a word of length k in w which does not exist in w′. Conversely, there are similar borders in
w′. For each border, there are k − 1 possible subwords that intersect it, hence |u-stat(w)− u-stat(w ′)| ≤ 2× 3(k−1)

n−k+1 .

If dist(w, w′) ≤ ε2n and n = Ω( 1
ε ), then by the triangle inequality |u-stat(w′)−u-stat(w′)| ≤ ε2n× 6.1k

n = 6.1ε,
since k = 1

ε .

We now show that the robustness for b-stat(w) implies the robustness for bu-stat(w), which then will imply the
robustness for u-stat(w). For a big block Bi, where i = 1, . . . , n

K , we denote by vi,ti the subword of Bi after deleting
the first ti letters and the last k − 1 − ti letters of Bi. Let v be the concatenations of the words vi,ti . Then by the

definition of bu-stat(w) we have bu-stat(w) = K
n

∑n/K
i=1 Eti=0,...,k−1(b-stat(vi,ti)) = Ev(b-stat(v)).

Intuitively one would like to use this equation directly for extending the robustness of b-stat to bu-stat. However,
this will not work since one would need to use a triangle inequality in the wrong direction. Instead we use a more
elaborate proof based on a Chernoff-Hoeffding bound argument.

Lemma 3.3. There exists a word v obtained from w after deleting O( (ln|Σ|)|Σ|2/ε

ε4 ) letters, so that |bu-stat(w) −
b-stat(v)| ≤ ε

2 .

Proof. Fix a coordinate u ∈ Σk. For every i = 1, . . . , n
K , let Xi be the random variable Xi

def
= b-stat(vi,ti)[u], where

ti is chosen uniformly in {0, . . . , k − 1}. We denote by v the random word obtained from the concatenation of the

words vi,ti . Note that v is obtained from w after deleting (k − 1) × n
K = O( (ln|Σ|)|Σ|2/ε

ε4 ) letters.
The variables (Xi)i are independent random variables such that 0 ≤ Xi ≤ 1 and Ev(b-stat(v)[u]) =

K
n

∑
i E(Xi) = bu-stat(w)[u]. By the Chernoff-Hoeffding bound we then get that, for any t ≥ 0,

Pr[|bu-stat(w)[u] − b-stat(v)[u]| ≥ t] ≤ 2e−2(
n
K )t2 .

We repeat the same argument for every u-coordinate, and using a union bound, we conclude that:

Pr[|bu-stat(w) − b-stat(v)| ≥ |Σ|k × t] ≤ |Σ|k × 2e−2(
n
K )t2 .

If we set t = ε
2|Σ|k

= 1
2k|Σ|k

, and use the definition of K, we conclude that there exists with non zero probability a
word v that satisfies the required property about the statistics, completing the proof.

Combining the robustness of block statistics, the previous lemma, and the next lemma, which easily relies bu-stat
to u-stat, we get our robustness lemma (proofs are in Appendix A.1).

Lemma 3.4. |bu-stat(w) − u-stat(w)| = O( (ln|Σ|)|Σ|2/ε

ε4n ).

Lemma 3.5 (Robustness). Let n = Ω( (ln|Σ|)|Σ|2/ε

ε5 ). If dist(w, w′) ≥ 5εn then |u-statk(w) − u-statk(w′)| ≥ 6.5ε.

3.2 Approximating the Edit Distance with Moves

In order to construct an efficient tolerant tester of the distance between two words, we need to efficiently approximate
u-stat(w). We will also need to approximate b-stat(w) for the second part of the paper. For this, we state a more
general result that implies the approximability of our statistics. There are several methods which can be used to obtain
a Chernoff-Hoeffding type bound on vectors. In our simple case, the use of Chernoff-Hoeffding bound together with
a direct union bound is polynomially tight using an argument similar to the one of [4].

Lemma 3.6. Let f be a function from {1, . . . , M} to RD , such that f(x) has non-negative coordinates and has unit
`1-norm, for every x. Let {Y1, . . . , YN} be random variables over {1, . . . , M} independently distributed according to
the same probabilistic distribution d. Then for every t > 0,

Pr[|Ed(f(Y )) − 1
N

∑N
i=1 f(Yi)| ≥ D × t] ≤ D × 2e−2Nt2 .

Proof. Let µ = Ed(f(Y )) and µ̂N = 1
N

∑N
i=1 f(Yi). For every coordinate u ∈ {1, . . . , D}, Pr[|µ[u] − ûN [u]| ≥

t] ≤ 2e−2Nt2 , by the Chernoff-Hoeffding bound for the random variables Xi = f(Yi)[u] which are between 0 and 1
and whose expectation is µ[u]. We conclude using a union bound.
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As a corollary we can approximate both block and uniform statistics using a number of samples independent of
n. The variables Yi denote the position of the selected block letters u of w, and Xi denote the corresponding vectors
of size |Σ|k whose u-coordinate is one and others are zero. Let stat denote either b-stat or u-stat. Then we define

ŝtatN (w)
def
= 1

N

∑
i=1,...,N Xi.

Corollary 3.7. There exists N ∈ O( (ln|Σ|)|Σ|2/ε

ε3 ) for which Pr[|stat(w) − ŝtatN (w)| ≥ ε] ≤ 1
3 , where stat denotes

either b-stat or u-stat.

Using the Soundness and Robustness Lemmas, we can construct a one-sided error tester for the equality of two
words which is also (ε2, 5ε)-tolerant:

Uniform Tester(w, w′, ε):

Let N = Θ( (ln|Σ|)|Σ|2/ε

ε3 ), and k = 1
ε

Compute û-statN (w) and û-statN (w′) using the same N uniformly random indices in {1, . . . , n−k+1}
Accept if |û-statN (w) − û-statN (w′)| ≤ 6.25ε
Reject otherwise

Theorem 3.8. For any ε > 0, and two words w, w′ of the same size of order Ω( (ln|Σ|)|Σ|2/ε

ε5 ), the above test:
(1) accepts if w = w′ with probability 1;
(2) accepts if w and w′ are ε2-close with probability at least 2/3;
(3) rejects if w and w′ are 5ε-far with probability at least 2/3.

Moreover its query and time complexities are in O( (ln|Σ|)|Σ|2/ε

ε4 ).

From this (ε2, 5ε)-tolerant tester, one can derive an ( ε2

25 , 5
√

ε)-approximation algorithm of the distance following
the approach of [19].

Corollary 3.9. There exists a randomized algorithm A such that, given two words w, w′ of the same size of order

Ω( (ln|Σ|)|Σ|2/ε

ε5 ), A outputs ε′ satisfying ε′ ∈ [ ε2

25 , 5
√

ε] with probability at least 2/3, where ε = dist(w,w′)
|w| . Moreover

the query and time complexities of A are in O( (ln(|Σ|/ε))|Σ|2/ε

ε4 ).

4 Geometric Embedding of a Language

4.1 General Observations

We want to use the notion of block statistics in order to efficiently characterize a language. We choose this statistics
vector because it is the simplest to manipulate.

Using the previous section, we can embed a word w into its block statistics b-stat(w) ∈ R|Σ|1/ε

. This characteri-
zation is approximately one-to-one from Lemma 3.1 if the size of the words is fixed.

This directly implies the following proposition.

Proposition 4.1. Given unbounded computation resources, every (computable) language L is ε-testable using a num-
ber of queries that is independent of the input size n.

Proof. Given the input size n and setting k = d2/εe, we can calculate (using our unbounded resources) every word
u of length n in L, and write down b-statk(u). For the input word w we can then 1

2ε-approximate b-statk(w) using

Lemma 3.6, and then check whether there is any word u as above for which | b-statk(u) − b̂-statk(w)| ≤ 1
2ε.

The above proposition is not only time inefficient but it also does not allow the computation to complete in
a preprocessing stage. The reason is that the block statistics does not characterize words of different lengths, as
b-stat(w0) = b-stat(wt

0) for every positive integer t, if w0 is any word whose size is a multiple of k.
This means that the set of block statistics b-stat(w) of all the elements w ∈ L is not a good characterization of

a general language L. For instance, the word w3×2s−1

0 is (1 − 1/k2s−1

)-far from the language {w2t

0 : t ≥ 1}, for
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every positive integer s. Moreover, it is not hard to construct using the appropriate powers a language whose testing
algorithm requires arbitrarily intensive computations.

To construct a test that works for all n using only one preprocessing stage, one might consider only block statistics
of loops of a language (as provided by an appropriate pumping lemma). This makes sense when any word of a language
can be decomposed into loops up to a few remaining letters. Regular languages have this property, and context-free
languages also share it when any permutation between block letters is allowed (see Section 4.5.2).

4.2 Regular Languages

We fix a finite alphabet Σ, and an automaton A (possibly non deterministic) on Σ with a set of states Q of size m, that
recognizes a regular language L. Let k be a positive integer and ε = 1

k . We consider only words whose size is divisible
by k, as any word of length n of L, for n large enough, is close to such a word. Define Ak , the k-th power of A, as
the automaton on Σk with set of states Q such that the transitions of Ak are exactly all sequences of k consecutive
transitions of A. Then A and Ak recognize the same language. In the general case, one can modify Ak such that Ak

recognizes the language of words of L where the last (|w| − kb |w|
k c) letters are deleted.

We will characterize L by the block statistics of its loops on the block alphabet. We remark that the statistics of
the Ak-loops basically only depend on L and k, from Proposition A.3 in Appendix A.2.

Definition 4.2. A word v over Σk is an Ak-loop if there exist two words u, w over Σk and an accepting path of Ak

for uvw, such that the state of the automaton after reading u (following the above accepting path) is identical to the
state after reading uv.
A finite set of Ak-loops is Ak-compatible if all the loops can occur one after the other (in any order) in one accepting
path of Ak.

We define the geometric embedding of L by the union of convex hulls of every compatible set of loops.

Definition 4.3. H def
=

⋃

v1,...,vt: Ak-compatible loops
t≥0

Convex-Hull(b-stat(v1), . . . , b-stat(vt)).

This definition is motivated by a standard result on finite automata: one can rearrange any word of a regular
language into a sequence of small compatible loops. We formulate this fact in our context.

Proposition 4.4. Let w ∈ L. Then w ≡k vu1u2 . . . ul, where |v|b, |u1|b, . . . , |ul|b ≤ m and {u1, u2, . . . , ul} is an
Ak-compatible set of Ak-loops (non necessarily distinct).

A consequence together with Caratheodory’s theorem is that one can equivalently define H when the loop sizes
and the number of compatible loops are bounded (see Appendix A.2 for the proof). Recall that even if this new
characterization explicitly depends on Ak (that is on A and ε), the set H only depends on L and ε (see Appendix A.2).

Proposition 4.5. H =
⋃

v1,...,vt: Ak-compatible loops
t=|Σ|1/ε+1,|vi|b≤m

Convex-Hull(b-stat(v1), . . . , b-stat(vt)).

Another consequence of this proposition is that if a word w belongs to L, then it has to satisfy approximately
b-stat(w) ∈ H (Lemma 4.6). This can be understood as an approximate Parikh classification of regular languages,
whereas the original Parikh characterization was for context-free languages [18]. The converse is also approximately
true (Theorem 4.8). Missing proofs are in Appendix A.3.

Lemma 4.6. For every w ∈ L there exists w′, so that
0 ≤ |w| − |w′| ≤ m

ε , dist(w, w′) ≤ m
ε ,

|b-stat(w) − b-stat(w′)| ≤ 2m
ε|w| , and b-stat(w′) ∈ H.

Lemma 4.7. For every X ∈ H and every n there exists w ∈ L, such that
0 ≤ |w| − n ≤ (|Σ|1/ε + 3) 2m

ε , and |X − b-stat(w)| ≤ (|Σ|1/ε + 2) 3m
εn .
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Proof. Let X ∈ H, that is X =
∑l

i=1 λi · b-stat(ui), where l = |Σ|k + 1, |ui|b ≤ m, 0 ≤ λi ≤ 1 and
∑

i λi = 1.
Fix any integer n. We choose non negative integers (ri)i=1,2,...,l that respectively approximate λi

εn
|ui|b

, that is satisfy
0 ≤ |ri − λi

εn
|ui|b

| ≤ 1, and such that 0 ≤ ∑
i ri|ui|b − εn ≤ m. It is always possible to satisfy this last condition due

to the degree of freedom on the choices of ri and the upper bound |ui|b ≤ m: We let j ≥ 0 be the minimum integer so
that

∑j
i=1dλi

εn
|ui|b

e|ui|b +
∑l

i=j+1bλi
εn

|ui|b
c|ui|b ≥ 0, and set ri = dλi

εn
|ui|b

e for i ≤ j and ri = bλi
εn

|ui|b
c for i > j.

Define the word w′ = ur1
1 ur2

2 . . . url

l . Then its block length is close to εn: 0 ≤ |w′|b − εn ≤ m. Moreover its
block statistics satisfies

|b-stat(w′) − X | =

∣∣∣∣∣
∑

i

(
ri

|ui|b
|w′|b

− λi

)
b-stat(ui)

∣∣∣∣∣ ≤
∑

i

|ri
|ui|b
|w′|b

− λi|

≤
∑

i

|ri
|ui|b
|w′|b

− ri
|ui|b
εn | +

∑

i

|ri
|ui|b
εn − λi| ≤

∑

i

ri|ui|b × | 1
|w′|b

− 1
εn | +

∑

i

m
εn

≤ (m + εn) × ( 1
εn − 1

m+εn ) + l m
εn = m

εn + l m
εn .

Using Ak-compatibility, we can get a word of L from w′ by inserting few block letters. Let
v0ui1v1ui2v2 . . . uil

vl ∈ L be the witness of the Ak-compatibility of the loops u1, . . . , ul, such that |vj |b ≤ m for ev-
ery j, and where (i1, . . . , il) is a permutation of (1, . . . , l). Then w = v0u

ri1

i1
v1u

ri2

i2
v2 . . . u

ril
il

vl ∈ L by construction.

Moreover 0 ≤ |w|b − |w′|b ≤ (l + 1)m, and |b-stat(w′) − b-stat(w)| ≤ 2(l+1)m
εn , so we conclude.

Theorem 4.8. Let w ∈ Σn and X ∈ H be such that |b-stat(w) − X | ≤ δ. Then

dist(w, L) ≤
(

δ
2 +

(
1 + O(m|Σ|1/ε

ε2n )
)
ε
)
n.

4.3 Construction of H
One of the remaining tasks is to efficiently construct H for a given automaton A with m states. One could try to
enumerate all Ak-loops of size at most m over Σk. This is not efficient enough due to the possible large number
of loops, O(|Σ|km). Nevertheless, since we only care about block statistics of compatible loops one can enumerate
them using a standard reduction to matrix multiplication over the appropriate algebra. The complexity is then just

polynomial in the number of possible corresponding block statistics,
(m+|Σ|k

|Σ|k

)
= O(m|Σ|k ), since a block statistics of

a word v of size at most m over Σk basically corresponds to a partition of m into |Σ|k parts.
We explain the procedure and prove the following lemma in Appendix A.4.

Lemma 4.9. Given A and ε, a set H of (|Σ|1/ε + 1)-tuples of vectors can be computed in time m|Σ|O(1/ε)

such that

|H | ≤ m|Σ|O(1/ε)

and H =
⋃

S∈H Convex-Hull(S).

For a regular language, the set H is a subset of the unit ball of R|Σ|k for the `1-norm. Let us consider the grid
Gε = {0, ε

|Σ|k
, 2ε
|Σ|k

, . . . , 1}|Σ|k of the cube [0, 1]|Σ|k with step ε
|Σ|k

. Let Hε be the set of points of Gε that are at

distance at most ε
2 from H (for the `1-distance). Since |Gε| = (k|Σ|k + 1)|Σ|k = 2|Σ|O(1/ε)

, then |Hε| = 2|Σ|O(1/ε)

.
Moreover, one can easily construct it from H .

Proposition 4.10. Given A and ε, the set Hε can be computed in time m|Σ|O(1/ε)

.

4.4 Applications

Theorem 4.11. For every real ε > 0 and regular language L over a finite alphabet Σ, there exists an ε-tester for L

whose query complexity is in O( (ln|Σ|)|Σ|2/ε

ε4 ) and whose time complexity is in 2|Σ|O(1/ε)

.

Moreover, given an automaton with m states that recognizes L, the tester can be constructed in time m|Σ|O(1/ε)

.
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Proof. We fix ε > 0, and automaton A with m states that recognizes L. We construct a 3ε-tester for L whose

correctness directly follows from the previous section. Let w be a word given as input. We assume that |w|/( m|Σ|1/ε

ε2 )
is large enough, otherwise we just run the automaton on w.

The tester is in two steps: a preprocessing step and the testing step itself. Given A and ε, one can compute Hε

in time m|Σ|O(1/ε)

from Proposition 4.10. Now the testing part consists of computing an estimation b̂-statN (w) of

b-stat(w) as in Corollary 3.7, where N = Θ( (ln|Σ|)|Σ|2/ε

ε3 ), using O( (ln|Σ|)|Σ|2/ε

ε4 ) queries to w. If b̂-statN (w) is at
distance at most 2ε from Hε, the tester accepts, and otherwise it rejects.

Theorem 4.12. There exists a deterministic algorithm T such that, given two automata A and B over a finite alphabet
Σ with at most m states and a real ε > 0, T (A, B, ε):

(1) accepts if A and B recognize the same language;
(2) rejects if A and B are not 2ε-equivalent.

Moreover the running time complexity of T is in m|Σ|O(1/ε)

.

Proof. Fix ε > 0. The algorithm simply computes the respective discrete approximations HA,ε and HB,ε of HA and
HB corresponding to the automata A and B. If they are equal, the tester accepts, and otherwise it rejects.

The correctness is again omitted and follows from the previous section.

One can get a tolerant equivalent tester for automata using uniform statistics following the more complex approach
of Appendix C.

4.5 Extensions

4.5.1 Infinite Regular Languages

We now consider an application to infinite words over a finite alphabet Σ. In this section, all words are infinite unless
we explicitly state otherwise. We will show how to extend our results to nondeterministic Büchi automata. A Büchi
automaton is simply a finite automaton A on which the notion of acceptance has been modified as follows. For a
word w ∈ Σω over Σ and a corresponding (infinite) path in A, we denote by InfA(w) the set of states of A which
are reached infinitely many times by the path. We say that w is accepted by A if there exists a path for w such that
InfA(w) contains an accepting state of A. We say that A recognizes the language of accepted infinite words. Such
languages are called ω-regular languages.

For every integer n, we denote by wn the prefix of w of size n. We say that two words w, w′ are ε-close if the
superior limit limn→∞ dist(w|n , w′

|n
)/n is at most ε. Similarly, we say that a word w is ε-close to a language L if

there exists a word w′ ∈ L which is ε-close to w. Last, the block statistics b-stat(w) of w is the set of accumulation
points of the sequence (b-stat(w|n))n.

If we adapt the geometric embedding H of the previous section, for this distance, an equivalence tester for two
Büchi automata follows from the one previously defined for regular languages (over finite words). In this tester (whose
correctness is in Appendix B.1), we modify the Definition 4.3 of H, by simply restricting ourselves to Ak-compatible
loops of (strongly) connected components of accepting states of Ak (we could also extend Theorem 4.11 to lasso
words as in [9]).

Definition 4.13. For every connected component C of Ak, let HC be the convex hull of the vector set {b-stat(w) :
w is a loop in C s.t. |w|b ≤ m}. We denote by H′ the union

⋃
C HC where C ranges over all connected components

of Ak that contain an accepting state and are reachable from an initial state.

Theorem 4.14. Theorem 4.12 is also valid for nondeterministic Büchi automata, with H′ taking the place of H.

4.5.2 Context-Free Languages

We construct here an exponential time test and an equivalence tester for context-free languages, given by their gram-
mar, or by their push-down automaton (the two representations are polynomially equivalent so we will switch back
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and forth between them as convenient). In comparison, the problem of whether two context-free grammars define the
same language is not decidable.

We prove this in two parts. First, we move from the original grammar to a “block grammar” that approximates the
block-statistics of the original language, just like for automata we use the k-power construction. The easiest way to
do so is through a pushdown automaton with no ε-transitions, which requires the grammar to be in Greibach Normal
Form. Fortunately, it is now known how to produce such a grammar with only a polynomial increase.

Lemma 4.15 ([7]). Every context-free grammar is equivalent to a grammar in Greibach Normal Form (for which
there exists a polynomial size equivalent pushdown automaton without ε-transitions), whose representation size is
polynomial in that of the original grammar.

Using this, we can now move from the original grammar to the “grammar of blocks” (proof in Appendix B.2).

Lemma 4.16. For every fixed k and terminal alphabet Σ, there exists a polynomial time algorithm that converts a
context-free grammar G over Σ to a context-free grammar G′ over the terminal alphabet Σk, such that a word is
recognizable by G if and only if its block representation (after appropriate “rounding” of the word if the letter count
is not divisible by k) is recognizable by G′.

We then use the original Parikh theorem about spectra of context-free languages, that provides a formula defining
a semi-linear set on the letter counts of all possible words, which we call the Parikh formula.

Lemma 4.17 ([18]). The computation of the Parikh formula can be reduced to the computation of the letter counts of
all possible productions from a nonterminal to a word whose height is at most quadratic in the grammar size (and so
the word size is at most exponential in the grammar size) and which contains at most one nonterminal character.

From the spectrum one can clearly calculate the set H that approximates the block-statistics of all large enough
words, and then construct an appropriate Hε. We are thus done using the following (proof in Appendix B.2).

Lemma 4.18. Given a nonterminal A, all letter counts of all productions of A into words of size up to l with no
nonterminals can be calculated in time polynomial in the grammar size and l (where the alphabet is fixed). Similarly
we can calculate all letter counts of all productions of A into words of size up to l containing a single nonterminal B.

With the above lemmas we can construct string testers for a context-free language (which are not possible for the
usual edit distance without moves, as the counter example in [1] works for the edit distance as well as the Hamming dis-
tance), as in Theorem 4.11. We can also construct equivalence testers for context-free grammars, as in Theorem 4.12.
We sketch here how to construct an equivalence test.

Theorem 4.19. There exists a deterministic algorithm T such that, given two context-free grammars A and B over a
finite alphabet Σ whose representation size is at most m, and a real ε > 0, T (A, B, ε):

(1) accepts if A and B recognize the same language;
(2) rejects if A and B recognize languages that are not 2ε-equivalent.

Moreover the running time complexity of T is exponential in m|Σ|O(1/ε)

.

Proof. For k = 1
ε , using Lemma 4.16 we construct the corresponding grammars A′ and B′ over Σk. Then using

Lemmas 4.18 and 4.17, we construct HA,ε and HB,ε, and accept if and only if these two sets are identical. The
exponential time is because Lemma 4.17 requires us to use an exponential l in the statement of Lemma 4.18.

Before we close we note a corollary for regular expressions with squaring. Although these recognize only regular
languages, their (exact) equivalence problem is EXPSPACE-complete by [16], so the exponential time algorithm given
here can be considered as a slight improvement (proof in Appendix B.2). Regular expressions with squaring can be
converted into equivalent pushdown automata with a polynomialy related size. Applying the previous theorem, we
obtain the following result.

Theorem 4.20. There exists a deterministic algorithm T such that, given two regular expressions with squaring A
and B over a finite alphabet Σ whose length is at most m, and a real ε > 0, T (A, B, ε):

(1) accepts if A and B recognize the same language;
(2) rejects if A and B recognize languages that are not 2ε-equivalent.

Moreover the running time complexity of T is exponential in m|Σ|O(1/ε)

.
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A Missing Proofs

A.1 Proof of Lemmas 3.4 and 3.5

The following simple result is well known and easy to check.

Proposition A.1. Let A ⊆ B be two finite subsets and let µA, µB be their respective uniform distributions. Then
|µA − µB | = 2 |B|−|A|

|B| .

Proof of Lemma 3.4. The proof consists of proving that both underlying block distributions are at `1-distance at most

O( (ln|Σ|)|Σ|2/ε

ε4n ). Then the definitions of the vectors u-stat and bu-stat directly imply the result.
The uniform distribution consists of choosing uniformly at random a subword u of w of length k, that is an integer

z ∈ {1, 2, . . . , n − k − 1}. The block uniform distribution consists of choosing uniformly at random a big block, an
integer 0 ≤ t ≤ k−1, and then a subword u of length k at position i in the big block that satisfies (i−1) = t mod k.
In an equivalent way, the block uniform distribution is the uniform distribution over all subwords of size k that are
inside some big block.

The number of subwords of size k that cross boundaries of big blocks is (k − 1) × ( n
K − 1). Therefore us-

ing Proposition A.1, the `1-distance between the distributions is upper bounded by 2 × (k − 1)( n
K − 1) × 1

n−k =

O( (ln|Σ|)|Σ|2/ε

ε4n ).

Proof of Lemma 3.5. We assume that n/( (ln|Σ|)|Σ|2/ε

ε5 ) is large enough so that the O( (ln|Σ|)|Σ|2/ε

ε4 ) of Lemma 3.3 is

upper bounded by εn
16 , and the O( (ln|Σ|)|Σ|2/ε

ε4n ) of Lemma 3.4 is upper bounded by ε
8 .

Using Lemmas 3.3 and 3.4, we get subwords v and v′ that respectively come from w and w′ after deleting at most
εn
16 letters from each, so that |u-stat(w) − b-stat(v)| ≤ ε

2 + ε
8 and |u-stat(w′) − b-stat(v′)| ≤ ε

2 + ε
8 .

From the hypothesis on w and w′, and using the triangle inequality on dist, we obtain that dist(v, v ′) ≥ 5εn− εn
8 .

Therefore, using Lemma 3.1, we get that |b-stat(v) − b-stat(v′)| ≥ 8ε − ε
4 , which implies from the construction of

v, v′ that |u-stat(w) − u-stat(w′)| ≥ 8ε − ε
4 − 2( ε

2 + ε
8 ) = 6.5ε.

A.2 Automata Independence Proofs

We show that loops in different automata for the same language are related, by correlating them with a definition that
only depends on the language itself.

Definition A.2. A word v over Σk is an (L, k)-loop if there exist two words u, w over Σk such that uvtw ∈ L for
every integer t.

One can remark that Ak-loops and (L, k)-loops are nearly the same, and in particular share the same statistics,
according to the following result.

Proposition A.3. Every Ak loop is also an (L, k)-loop, and on the other hand for every (L, k)-loop v there exists
t ≥ 1 such that vt is an Ak loop. In particular, the set of statistics of loops of an automaton deciding the language L
depends only on L and k.

Proof. The first direction is clear.
The second direction requires some indications. Let us now consider the family of L words (uvtw)t≥1, and in

particular let us consider one of the accepting paths for uvmw. By a counting argument, there exist 0 ≤ t < t′ ≤ m,
such that this accepting path reaches the same state after both |uvt|b steps and |uvt′ |b steps. Hence the automaton
contains some loop that corresponds to vt′−t. Moreover, there is an accepting path that contains this loop, namely the
one for uvmw, and so it is indeed an Ak-loop.

However, for our purpose we need to consider not only loops, but sets of compatible loops. Here is the correspond-
ing definition that depends on the language.
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Definition A.4. A sequence of words v1, . . . , vl over Σk is a compatible (L, k)-loop sequence if there exists a per-
mutation σ : {1, . . . , l} → {1, . . . , l}, and words u0, u1, . . . , ul over Σk, such that for every t1, . . . , tl we have
u0v

t1
σ(1)u1v

t2
σ(2)u2 . . . ul−1v

tl

σ(l)ul ∈ L (note that this in particular implies that v1, . . . , vl are (L, k)-loops).

Proposition A.5. Every compatible sequence of Ak-loops is also a compatible sequence of (L, k)-loops. On the other
hand, for every compatible sequence v1, . . . , vl of (L, k)-loops there exist t1, . . . , tl ≥ 1 such that vt1

1 , . . . , vtl

l is a
compatible sequence of Ak-loops. In particular, the geometric set H, constructed from any automaton Ak deciding
the language L, depends only on L and k.

Proof. The proof follows the very same methods of the proof of Proposition A.3.

Proof of Proposition 4.5. The inclusion ⊇ is straightforward.
For the ⊆ inclusion, let us first state Caratheodory’s theorem: In dimension d, any convex hull of N points

p1, . . . , pN can be decomposed into the union of convex hulls of (d + 1) points pi1 , . . . , pid+1
(with some possible

repetitions), where the union is over every possible choices of these points. Hence this inclusion would have been also
straightforward without the length assumption on the loops as the dimension here is d = |Σ|k. To overcome the length
constraint we use the fact that any loop v = vi of size |v|b > m can be decomposed (after a possible reordering of the
block letters) into v = u1u2, where u1 and u2 are loops which are also compatible with the other loops vj . Repeating
this argument inductively, we first prove that H is not smaller if we upper bound the loop sizes by m. Then applying
Caratheodory’s theorem, we conclude the proof.

A.3 Proofs of Lemma 4.6 and Theorem 4.8

Proof of Lemma 4.6. First, recall that the block statistics b-stat(w) is invariant under block letter permutations. More-
over, if w′ is w on which one block letter has been either deleted or inserted then |b-stat(w) − b-stat(w′)| ≤ 2

ε|w| .
Let w ∈ L. Applying Proposition 4.4, we can delete less than m block letters from w so that the resulting

word is a concatenation w′ ≡k u1u2 . . . ul, where the ui are Ak-compatible Ak-loops. Since w′ is obtained from w
using at most m deletions of block letters, we have |b-stat(w) − b-stat(w′)| ≤ 2m

ε|w| . This concludes the proof since
b-stat(w′) ∈ H.

Proof of Theorem 4.8. Let n = |w|. For simplicity, we assume that k divides n, otherwise we just delete at most
k − 1 letters from w so that the new length is dividable by k. From Lemma 4.7, there exists a word w ′ ∈ L, such that
0 ≤ |w′| − n ≤ (l + 2) 2m

ε and |b-stat(w′) − X | ≤ (l + 1) 3m
εn , where l = 1 + |Σ|k. We again assume that k divides

|w′|.
Assume that |w| = |w′|. Then, using Lemma 3.1, we get that dist(w, w′) ≤ ( 1

2 (δ + (l + 1) 3m
εn ) + ε)n.

If w and w′ have different sizes, we artificially increment the size of w by adding at most (l + 2)2m block letters
at the end of w (recall that adding a block letter adds k to the word size). The deviation of its block statistics is then at
most (l + 2)2m × 2

εn , so we asymptotically get the same bound.

A.4 Details of the Construction of H
We proceed recursively on the length t of paths between two possible states of Ak , for t = 1, . . . , m. Let Pt be an
m×m matrix where the entry (i, j) is the set of block statistics corresponding to a path of length t between the states
i and j. Let us consider the algebra of sets of distributions over Σk with the operations ∪,�t, where �t is distributive
over ∪ and defined for singletons by {−→x } �t {−→y } = { 1

t+1
−→x + t

t+1
−→y }. If we denote by ◦t the matrix multiplication

over this algebra, then the matrices Pt satisfy the following simple inductive equation, where P1 is directly given by
Ak (by setting each non-empty entry of P1 to be the set of unit vectors corresponding to the block letters labeling the
corresponding arcs in Ak):

Pt+1 = P1 ◦t Pt.
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Proof of Lemma 4.9. We first compute as we explained above the matrices (Pt)t=1,...,m. At the end of the process, the
diagonals of those matrices contain the block statistics of all Ak-loops of length at most m. Then, a tuple of (|Σ|1/ε+1)
loops is compatible if and only if there exists an accepting path of the automaton which passes through all states of the
respective origins of the loops, a condition that can also be checked in polynomial time by using matrix multiplication
over an appropriate algebra. Using Proposition 4.5, we know that including in H the statistics of the corresponding
compatible sets is sufficient. The upper bounds on the size and the time complexity of the decomposition come from
the previous observation that at most m|Σ|k block statistics are considered.

B Details of Extensions

B.1 Infinite Regular Languages

We now enumerate intermediate results from which Theorem 4.14 directly follows. We first state the following lemmas
whose proofs are based on the ones of Lemmas 4.6 and 4.7. We fix a Büchi automaton A that recognizes L.

Lemma B.1. Let w ∈ L. Then b-stat(w) ⊆ H′.

Proof. We consider an accepting path in Ak for w (as a block word). This path can clearly move from a (strong)
connectivity class to another only finitely many times, and hence apart from a finite number of positions this path is
fully contained in one of the connectivity classes of Ak. From this the reminder of the proof is straightforward.

Lemma B.2. Let X ∈ H′. Then there exists w ∈ L such that b-stat(w) = {X}.

If we relaxed a little bit the conclusion of the above lemma, one can remark that, for any fixed δ > 0, there exists
a lasso word w = uvω, where |v| is divisible by k, such that b-stat(w) = {b-stat(v)} and |b-stat(v) − X | ≤ δ.

Based on these lemmas and Lemma 3.1, we can state that H′ is a robust characterization of L, whenever the block
statistics have a unique accumulation point.

Lemma B.3. Let w ∈ Σω and X ∈ H′ be such that b-stat(w) is a singleton {Y } satisfying |Y − X | ≤ δ. Then w is
( δ
2 + ε)-close to L.

Now the crucial point for concluding the proof of Theorem 4.14 is the following lemma, which allows us to
consider only words whose block statistics have a unique accumulation point.

Lemma B.4. Let w ∈ L, and let w′ ∈ Σω be ε′-far from w. Then there exists another word v ∈ L such that b-stat(v)
has only one element, b-stat(v) ⊆ b-stat(w), and v is (ε′−ε)-far from w′.

Proof. Let (ni) be an increasing sequence of integers such that dist(w|ni
, w′

|ni
) has a limit at least ε′, when i → ∞.

We can extract again from (ni) a subsequence (mj) for which b-stat(w|mj
) has limit X . Note that this subsequence

still satisfies that dist(w|mj
, w′

|mj
) has a limit at least ε′, when j → ∞.

Observe that X ∈ H′ by Lemma B.1, and therefore, using Lemma B.2, there exists a word v ∈ L such that
b-stat(v) = {X}. From Lemma 3.1, we get that dist(w|mj

, v|mj
) has superior limit at most ε. Therefore, by the

triangle inequality, dist(w′
|mj

, v|mj
) has superior limit at least (ε′−ε), which concludes the proof.

B.2 Context-Free Languages

Proof of Lemma 4.16. We first use Lemma 4.15 to move from G to an equivalent grammar in Greibach Normal Form,
and then to a pushdown automaton A with no ε-transitions. Then we take the k power of A, replacing each path of k
transitions over Σ with one transition over Σk. If some of the resulting transitions consume more than one letter off
the stack, we add new states and ε-transitions as necessary. Finally, we move from this automaton to the equivalent
block grammar G′ (which by now is not necessarily in normal form). Each of the above transitions causes no more
than a polynomial blowup in the representation size, and hence we are done.
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Proof of Lemma 4.18. We provide here only the proof for finding the productions into words with no nonterminals,
as the proof for words with a single given nonterminal is an easy extension. We first move the grammar to Chomsky
Normal Form (which causes a polynomial increase in the grammar size), so that there will be no production in the
grammar with more than two nonterminals. Note that this transformation preserves the original nonterminals (while
it may also add some new nonterminals), so we can do this transition and still preserve the list of required words that
are derivable from a nonterminal A.

We maintain an array, that for every letter (nonterminal or terminal) provides a list of possible letter counts of the
words of terminals of size up to l that can be produced. The maximum size of every such list is

(
l+h
h

)
= lO(h) for

h = |Σ|k the number of possible terminals, and so it is polynomial in l. In the beginning, the list for any terminal α
contains a single vector which is ‘1’ on the coordinate corresponding to α and ‘0’ on all other coordinates, while for
any nonterminal the initial list is empty. The lists for the terminal letters will not change (and thus remain of size 1)
all throughout the algorithm.

We now repeat the following procedure, as long as we can increase the size of any of our lists: Given a production
of the grammar, say “B → u”, we look at the current lists of the nonterminals that appear in u. For every possibility
of picking a vector from the list of every such nonterminal (if the same nonterminal appears twice in u then we can
pick two vectors from its list or the same vector twice), we sum up these vectors together with the (unique) vectors of
the terminals in u, and add this vector sum to the list of B if its weight is no more than l. As we assumed that there
are no more than two nonterminals in every production, this step takes at most quadratic time in the maximum size of
a list.

The above procedure must stop after at most a number of steps that is equal to the number of nonterminals times
the maximum size of a list, and so after a polynomial number of steps we arrive at lists which can no longer be enlarged
in the above manner. It is not hard (and left to the reader) to see that at this point, the list for every nonterminal A will
be exactly the list of letter counts of all its possible productions into words of size up to l.

Proof of Theorem 4.20. A regular expression with squaring A can be converted to an equivalent pushdown automaton
whose size is polynomial in m. The conversion follows the vain of converting a regular expression without squaring
to a (normal) nondeterministic automaton, only here in addition we convert each square sign to a corresponding state
s that pushes down the stack a symbol unique to it: After pushing down the symbol s makes an ε-transition to the state
corresponding to the beginning of the subexpression that is squared, and when s is reached again and finds its symbol
already in the stack it pops the symbol and makes an ε-transition to the state corresponding to the expression element
following the squared part.

We convert A and B to their respective pushdown automata (and then to their corresponding context-free gram-
mars), and then we use Theorem 4.19.

C Tolerant equivalence testers

Considering the soundness and robustness of the uniform statistic (Lemma 3.2 and Lemma 3.5), we could make the
property testers as well as the equivalence testers for nondeterministic automata (and their extensions) tolerant, if
instead of reducing the original automaton to its “block version”, we reduce it to its “shingle version”. In other words,
we would like to construct an automaton that recognizes a word w over Σk if and only if it consists of all subwords
of size k of some word u recognizable by the original automaton. This can be done for most computational models
discussed above, and to illustrate this we sketch the construction for nondeterministic finite automata.

Lemma C.1. Given an automaton A with m states over Σ, it is possible to construct an automaton B with l =
m · |Σ|k−1 states over Σk in time polynomial in l, where B accepts a word w if and only if there exists a word u
accepted by A so that w consists of all length k subwords of u.

Proof. We assume that A contains no ε transitions. Let the “memory automaton” M denote the following automaton
consisting of |Σ|k−1 states and with no accepting state: Each state of M is labeled by a word from Σk−1. From a word
a1, . . . , ak−1 the automaton has a transition to a2, . . . , ak−1, b for every b ∈ Σ, which is labeled by a1, . . . , ak−1, b.

The automaton B consists of running in parallel the original automaton A and the automaton M , so in effect
the state set of B is the product of the state spaces of M and B. The initial states of B are the coupling of any state
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a1, . . . , ak−1 of M with any state of A reachable from an initial state by a path reading the letter sequence a1, . . . , ak−1

from the input. The accepting states of B are all couplings of a state of M with an accepting state of A.
Defining the transition function, there is a transition from a state s1 of A coupled with a state a1, . . . , ak−1 of M

to a state s2 of A coupled with a state a2, . . . , ak−1, b of M , labeled by a1, . . . , ak−1, b, for every a1, . . . , ak−1 and
b where the original automaton A contained a transition from s1 to s2 labeled by b. The proof that B is the required
automaton is straightforward and is left to the reader.

We conclude by sketching what this implies e.g. for equivalence testers.

Theorem C.2. There exists a deterministic algorithm T such that, given two automata A and B over a finite alphabet
Σ with at most m states and a real ε > 0, T (A, B, ε):

(1) accepts if A and B recognize languages that are ε2-equivalent;
(2) rejects if A and B are not 10ε-equivalent.

Moreover the running time complexity of T is in m|Σ|O(1/ε)

.

Proof. We use the same proof of Theorem 4.12, only instead of calculating the geometric embedding of the powers
Ak and Bk, we calculate the geometric embedding of the automata derived from A and B by Lemma C.1 for an
appropriate k = O(1/ε2), and accept if these are close enough. This closeness can be checked e.g. from an appropriate
discretization of the embedding.
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