
MAL’TSEV CONSTRAINTS MADE SIMPLE

VÍCTOR DALMAU

Departament de Tecnologia, Universitat Pompeu Fabra

Estació de França, Passeig de la circumval.lació, Barcelona 08003, Spain

victor.dalmau@upf.edu

Abstract. We give in this paper a different and simpler proof of the tractabil-
ity of Mal’tsev contraints.

1. Introduction

Constraint satisfaction problems arise in a wide variety of domains, such as com-
binatorics, logic, algebra, and artificial intelligence. An instance of the constraint
satisfaction problem (CSP) consists of a set of variables, a set of values (which
can be taken by the variables), called domain, and a set of constraints, where a
constraint is a pair given by a list of variables, called scope, and a relation indicat-
ing the valid combinations of values for the variables in the scope; the goal is to
decide whether or not there is an assignment of variables to the variables satisfying
all of the constraints. It is sometimes customary to cast the CSP as a relational
homomorphism problem [6], namely, the problem of deciding, given a pair (A,B)
of relational structures, whether or not there is a homomorphism from A to B.
In this formalization, each relation of A contains tuples of variables that are con-
strained together, and the corresponding relation of B contains the allowable tuples
of values that the variable tuples may take.

The CSP is NP-complete in general, motivating the search for polynomial-time
tractable cases of the CSP. A particularly useful way to restrict the CSP in order to
obtain tractable cases is to restrict the types of constraints that may be expressed,
by requiring the relations appearing in a constraint to belong to a given fixed set Γ;
denote this restriction by CSP(Γ). This form of restriction can capture and place
into a unified framework many particular cases of the CSP that have been indepen-
dently investigated – for instance, the Horn Satisfiability, 2-Satisfiability,
and Graph H-Colorability problems. Schaefer was the first to consider the class
of problems CSP(Γ); he proved a now famous dichotomy theorem, showing that for
every set Γ of relations over a two-element domain, CSP(Γ) is either tractable in
polynomial time, or is NP-complete [9]. In recent years, much effort has been di-
rected towards the program of isolating all sets Γ of relations over a finite domain,
that give rise to a class of instances of CSP, CSP(Γ), solvable in polynomial time.
Impressive progress has been made along these lines leading to the identification of
several broad conditions on Γ that guarantee tractability. One of the most promi-
nent achivements in this direction is a recent result due to Bulatov [2] stating that
every set Γ of relations on a finite set invariant with respect to a Mal’tsev operation,
that is, a ternary operation ϕ satisfying ϕ(x, y, y) = ϕ(y, y, x) = x for all x, y, gives
rise to a tractable problem class. This result encompasses and generalizes several

1

Electronic Colloquium on Computational Complexity, Report No. 97 (2004)

ISSN 1433-8092

2 VÍCTOR DALMAU

previously known tractable cases of the CSP, such as affine problems [7, 9], con-
straint satisfaction problems on finite groups with near subgroups and its cosets [6],
and paraprimal CSP [5]. Also, several recent advancements in the field, such as
the complete classification of CSP problems over a 3-element domain [1] and the
conservative CSP [3] make use of this result.

It is fair to say that the original proof of the tractability of Mal’tsev constraints
due to Bulatov [2] is very complicated. Furthermore, it makes intensive use of
the deep tame congruence theory. In this paper we give a different proof of the
tractability of Mal’tsev contraints. The proof presented in this paper is notably
simpler than the original proof due to Bulatov and does not require the use of any
previous algebraic result; indeed the proof is completely self-contained.

2. Preliminaires

Let A be a finite set and n be a positive integer. A n-ary relation on A is any
subset of An. In what follows, for every positive integer n, [n] will denote the set
{1, . . . , n}.

A constraint satisfaction problem is a natural way to express simultaneous re-
quirements for values of variables. More precisely,

Definition 1. An instance of a constraint satisfaction problem consists of:

• a finite set of variables, V = {v1, . . . , vn};
• a finite domain of values, A;
• a finite set of constraints {C1, . . . , Cm}; each constraint Cl, l ∈ [m] is a

pair ((vi1 , . . . , vikl
), Sl) where:

– (vi1 , . . . , vikl
) is a tuple of variables of length kl, called the constraint

scope and
– Sl is an kl-ary relation on A, called the contraint relation.

A solution to a constraint satisfaction problem instance is a mapping s : V → A

such that for each constraint Cl, l ∈ [m], we have that (s(vi1), . . . , s(vkl
)) ∈ Sl.

Deciding whether or not a given problem instance has a solution is NP-complete
in general, even when the constraints are restricted to binary constraints [8] or the
domain of the problem has size 2 [4]. However by imposing restrictions on the
constraint relations it is possible to obtain restricted versions of the problem that
are tractable.

Definition 2. For any set of relations Γ, CSP(Γ) is defined to be the class of
decision problems with:

• Instance: A constraint satisfaction problem instance P , in which all con-
straint relations are elements of Γ.

• Question: Does P have a solution?

In order to introduce the family of Mal’tsev constraints we need to introduce a
some algebraic concepts:

Definition 3. Let ϕ : Am → A be an m-ary operation on A and let R be a n-ary
relation over A. We say that R is invariant under ϕ if for all (not necessarily dif-
ferent) tuples t1 = (t11, . . . , t

1
n), . . . , tm = (tm1 , . . . , tmn) in R, the tuple ϕ(t1, . . . , tm)

defined as
(ϕ(t11, . . . , t

m
1), . . . , ϕ(t1n, . . . , tmn))

belongs to R.

MAL’TSEV CONSTRAINTS MADE SIMPLE 3

Given a relation R and an operation ϕ, we denote by 〈R〉ϕ the smallest relation
R′ that contains R and that it is invariant under ϕ. Very often, the operation ϕ

will be clear from the context and we will drop it writting 〈R〉 instead of 〈R〉ϕ.
Let ϕ : Am → A be any operation on A. We denote by Inv(ϕ) the set containg

all relations on A invariant under ϕ.

Definition 4. An ternary operation ϕ : A3 → A on a finite set A is called Mal’tsev
if it satisfies the following identities

ϕ(x, y, y) = ϕ(y, y, x) = x, ∀x, y ∈ A

In this paper we proof the following result:

Theorem 1. Let ϕ be a Mal’tsev operation. Then CSP(Inv(ϕ)) is solvable in

polynomial time.

This result was first proved in [2]. Our proof is given in Section 4.

3. Signatures and Representations

Let A be a finite set, let n be a positive integer, let t = (t1, . . . , tn) be a n-
ary tuple, and let i1, . . . , ij elements in [n]. By pri1,...,ij

t we denote the tuple

(ti1 , . . . , tij
). Similarly, for every n-ary relation R on A and for every i1, . . . , ij ∈ [n]

we denote by pri1,...,ij
R the j-ary relation given by {pri1,...,ij

t : t ∈ R}.

Let n be a positive integer, let A be a finite set, let t, t′ be n-ary tuples and
let (i, a, b) be any element in [n] × A2. We say that (t, t′) witnesses (i, a, b) if
pr1,...,i−1 t = pr1,...,i−1 t′, pri t = a, and pri t

′ = b. We also say that t and t′

witness (i, a, b) meaning that (t, t′) witnesses (i, a, b).
Let R be any n-ary relation on A. We define the signature of R, SigR ⊆ [n]×A2,

as the set containing all those (i, a, b) ∈ [n] × A2 witnessed by tuples in R, that is

SigR = {(i, a, b) ∈ [n] × A2 : ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)}

A subset R′ of R is called a representation of R if SigR = Sig′R. If furthermore,
|R′| ≤ 2| SigR | then R is called a compact representation of R. Observe that every
relation R has compact representations.

Example 1. Fix a set A, an element d ∈ A, and an integer n. For every (i, a) ∈
[n] × A we define the tuple ed

i,a as the only tuple satisfying

prj ed
i,a =

{

a if i = j

d otherwise

It is easy to observe that for every (i, a, b) ∈ [n] × A2, (ed
i,a, ed

i,b) witnesses (i, a, b).

Consequently, the set of tuples {ed
i,a : i ∈ [n], a ∈ A} is a representation of the

relation An. Notice also that it is indeed a compact representation.

The algorithm we propose relies on the following lemma.

Lemma 1. Let A be a finite set, let ϕ : A3 → A be a Mal’tsev operation, let R

be a relation on A invariant under ϕ and let R′ be a representation of R. Then

〈R′〉 = R

Proof. Let n be the arity of R. We shall show that for every i ∈ {1, . . . , n},
pr1,...,i〈R

′〉 = pr1,...,i R by induction on i. The case i = 1 follows easily from the
fact that for each t ∈ R, (1, pr1 t, pr1 t) is in SigR and hence in SigR′ .

4 VÍCTOR DALMAU

So, let us assume that the claim holds for i and let t be any tuple in R. We will
show that pr1,...,i+1 t ∈ pr1,...,i+1〈R

′〉. By induction hypothesis there exists a tuple
t1 in 〈R′〉 such that pr1,...,i t1 = pr1,...,i t. We have that (i + 1, pri+1 t1, pri+1 t)
belongs to SigR, and therefore, there exists some tuples t2 and t3 in R′ witness-
ing it. Consequently the tuple ϕ(t1, t2, t3) belongs to 〈R′〉. Let us see that
pr1,...,i+1 ϕ(t1, t2, t3) = pr1,...,i+1 t. First, observe that since t2 and t3 witness
(i + 1, pri+1 t, pri+1 t1) we have that pr1,...,i t2 = pr1,...,i t3. Because ϕ is Mal’tsev
we can infer that pr1,...,i ϕ(t1, t2, t3) = pr1,...,i t1 = pr1,...,i t. Also, we have that
pri+1 t1 = pri+1 t2 and pri+1 t = pri+1 t3 and consequently pri+1 ϕ(t1, t2, t3) =
pri+1 t.

4. Proof of Theorem 1

We prove Theorem 1 by giving a polynomial-time algorithm that decides cor-
rectly whether a CSP(Inv(ϕ)) instance has a solution.

Let P = ({v1, . . . , vn}, A, {C1, . . . , Cm}) be a CSP(Inv(ϕ)) instance which will
be the input of the algorithm.

For each l ∈ {0, . . . , m} we define Pl as the CSP instance that contains the first
l constraints of P , that is Pl = ({v1, . . . , vn}, A, {C1, . . . , Cl}). Furthermore, we
shall denote by Rl the n-ary relation on A defined as

Rl = {(s(v1), . . . , s(vn)) : s is a solution of Pl)

In a nutshell, the algorithm introduced in this section computes for each l ∈
{0, . . . , m} a compact representation R′

l of Rl. In the initial case (l = 0), P0 does
not have any constraint at all, and consequently, R0 = An. Hence, a compact
representation of R0 can be easily obtained as in Example 1. Once a compact
representation R′

0 of R0 has been obtained then the algorithm starts an iterative
process in which a compact representation R′

l+1 of Rl+1 is obtained from R′

l and
the constraint Cl+1. This is achieved by means of a call to procedure Next, which
constitutes the core of the algorithm. The algorithm then, goes as follows:

Algorithm Solve(({v1, . . . , vn), A, {C1, . . . , Cm}))
Step 1 select an arbitrary element d in A

Step 2 set R′

0 := {ed
i,a : (i, a) ∈ [n] × A}

Step 3 for each l ∈ {0, . . . , m − 1} do

(let Cl+1 be ((vi1 , . . . , vil+1
), Sl+1))

Step 3.1 set R′

l+1 := Next(R′

l, i1, . . . , il+1, Sl+1)
end for each

Step 4 if R′

m 6= ∅ return yes

Step 5 otherwise return no

Observe that if we modify step 4 so that the algorithm returns an arbitrary tuple
in R′

m instead of “yes” then we have an algorithm that does not merely solve the
decision question but actually provides a solution.

Correctness and polynomial time complexity of the algorithm is a direct con-
sequence of the correctness and the running time of the procedure Next: As
it is shown in Section 4.3 (Lemma 2) at each iteration of Step 3.1, the output
of the call Next(R′

l, i1, . . . , il+1, Sl+1) is a compact representation of the relation
{t ∈ Rl : pri1,...,il+1

t ∈ Sl+1} which is indeed Rl+1. Furthermore the cost of the

MAL’TSEV CONSTRAINTS MADE SIMPLE 5

call is O(n9 +(n+ |Sl+1|)4|Sl+1|n3) which gives as a total running time for the algo-
rithm polynomial on the size of the input. This finishes the proof of the correctness
and time complexity of the algorithm, and hence, of Theorem 1.

The remaining of the paper is devoted to defining and analyzing procedure Next.
In order to define procedure Next it is convenient to introduce previously a pair
of simple procedures, namely Nonempty and Fix-values, which will be intensively
used by our procedure Next.

4.1. Procedure Nonempty. This procedure receives as input a compact represen-
tation R′ of a relation R invariant under ϕ, a sequence i1, . . . , ij of elements in [n]
where n is the arity of R, and a j-ary relation S also invariant under ϕ. The output
of the procedure is either an n-ary tuple t ∈ R such that pri1,...,ij

t ∈ S or “no”
meaning that such a tuple does not exist.

Procedure Nonempty(R′, i1, . . . , ij , S)
Step 1 set U := R′

Step 2 while ∃t1, t2, t3 ∈ U such that pri1,...,ij
ϕ(t1, t2, t3) 6∈ pri1,...,ij

U do

Step 2.1 set U := U ∪ {ϕ(t1, t2, t3)}
endwhile

Step 3 if ∃t in U such that pri1,...,ij
t ∈ S then return t

Step 4 else return “no”

We shall start by studying its correctness. First observe that every tuple in U

belongs initially to R′ (and hence to R), or it has been obtained by applying ϕ to
some tuples t1, t2, t3 that previously belong to U . Therefore, since R is invariant
under ϕ, we can conlude that U ⊆ R. Consequently, if a tuple t is returned in step
3, then it belongs to R and also satisfies that pri1,...,ij

t ∈ S, as desired. It only
remains to show that if a “no” is returned in step 4 then there not exists any tuple
t in R such that pri1,...,ij

t ∈ S. In order to do this we need to show some simple

facts about U . Notice that at any point of the execution of the procedure R′ ⊆ U .
Then U is also a representation of R and hence 〈U〉 = R. Therefore we have that

〈pri1,...,ij
U〉 = pri1,...,ij

〈U〉 = pri1,...,ij
R

By the condition on the “while” of step 2 we have that when the procedure leaves the
execution of step 2 it must be case that for all t1, t2, t3 ∈ U , pri1,...,ij

ϕ(t1, t2, t3) ∈

pri1,...,ij
U and consequently pri1,...,ij

U = 〈pri1,...,ij
U〉 = pri1,...,ij

R. Hence, if

there exists some t in R such that pri1,...,ij
∈ S then it must exists some t′ in U

such that pri1,...,ij
∈ S and we are done.

Let us study now the running time of the procedure. It is only necessary to focus
on steps 2 and 3. At each iteration of the loop in step 2, cardinality of U increases
by one. So we can bound the number of iterations by the size |U | of U at the end
of the execution of the procedure.

The cost of each of the iteration is basically dominated by the cost of checking
whether there exists some tuples ∃t1, t2, t3 ∈ U such that pri1,...,ij

ϕ(t1, t2, t3) 6∈
pri1,...,ij

U done in step 2. In order to try all possible combinations for t1, t2, t3

in U , |U |3 steps suffice. Each one of these steps requires time O(|U |n), as tuples
have arity n and checking whether ϕ(t1, t2, t3) belongs to U can be do naively
by a sequential search in U . Thus, the total running time of step 2 is O(|U |4n).

6 VÍCTOR DALMAU

The cost of step 3 is the cost of finding a tuple t in U satisfying pri1,...,ij
t ∈ S

which is O(|U ||S|n). Putting all together we obtain that the complete running time
of the procedure is O(|U |5n + |U ||S|n) which we can bound by O(|U |5|S|n). Let
us bound the size of U (at the end of the execution of the procedure): At each
iteration of the loop in step 2, the size of pri1,...,ij

U increases. Hence, the number

of such iterations is bounded by | pri1,...,ij
R|. Since R′ is compact its cardinality

is bounded by 2n|A|2 wich is O(n) as |A| is fixed. Consequently the total running
time of the procedure can be bounded by O((n + | pri1,...,ij

R|)5|S|n).

4.2. Procedure Fix-values. This procedure receives as input a canonical repre-
sentation R′ of a relation R invariant under ϕ and a sequence a1, . . . , am, m ≤ n of
elements of A (n is the arity of R). The output is a compact representation of the
relation given by

{t ∈ R : pr1 t = a1, . . . , prm t = am}

Procedure Fix-values(R′, a1, . . . , am)
Step 1 set j := 0; Uj := R′

Step 2 while j < m do

Step 2.1 set Uj+1 := ∅
Step 2.2 for each (i, a, b) ∈ [n] × A2 do

Step 2.2.1 if ∃t2, t3 ∈ Uj witnessing (i, a, b) and
(we assume that if a = b then t2 = t3) and

Nonempty(Uj , j + 1, i, {(aj+1, a)}) 6=”no” and
i > j + 1 or a = b = ai then

(let t1 be the tuple returned by Nonempty(Uj , j + 1, i, {aj+1, a}))
set Uj+1 := Uj+1 ∪ {t1, ϕ(t1, t2, t3)}

end for each

Step 2.4 set j:=j+1
end while

Step 3 return Um

Let us study the correctness of the procedure. We shall show by induction on
j ∈ {0, . . . , m} that Uj is a compact representation of Rj = {t ∈ R : pr1 t =
a1, . . . , prj t = aj}. The case j = 0 is correctly settled in step 1. Hence it is
only necessary to show that at every iteration of the while loop in step 2, if Uj

is a compact representation of Rj then Uj+1 is a compact representation of Rj+1.
It is easy to see that if any of the conditions of the “if” in step 2.2.1 is falsified
then (i, a, b) is not in SigR. So it only remains to see that when the “if” in step
2.2.1 is satisfied, we have that (a) t1 and ϕ(t1, t2, t3) are tuples in Rj+1, and (b)
(t1, ϕ(t1, t2, t3)) witnesses (i, a, b).

Proof of (a): As t1 = Nonempty(Uj , j +1, i, {(aj+1, a)}), we can conclude that t1
belongs to Rj , prj+1 t1 = aj+1, and pri t1 = a. Consequently t1 belongs to Rj+1.
Furthermore, as t1, t2, and t3 are in Rj and Rj is invariant under ϕ, ϕ(t1, t2, t3)
belongs to Rj . Let us see now that prj+1 t2 = prj+1 t3 by means of a case analisis.
If i > j + 1 then we have that prj+1 t2 = prj+1 t3 as (t2, t3) witnesses (i, a, b). If
i ≤ j + 1 then a = b = ai and hence t2 and t3 are identical.

Finally, since ϕ is Mal’tsev, prj+1 ϕ(t1, t2, t3) = prj+1 t1 = aj+1 and hence
ϕ(t1, t2, t3) belongs to Rj+1.

MAL’TSEV CONSTRAINTS MADE SIMPLE 7

Proof of (b): Since (t2, t3) witnesses (i, a, b) we have that pr1,...,i−1 t2 = pr1,...,i−1 t3
Consequently, pr1,...,i−1 ϕ(t1, t2, t3) = pr1,...,i−1 t1. Furthermore we also have that
pri ϕ(t1, t2, t3) = pri(a, a, b) = b.

Notice that at each iteration at most 2 tuples are added for each (i, a, b) in
SigRj+1

. Consequently, Uj+1 is compact. This completes the proof of its correctness.
Let us study now its time complexity. The “while” loop at step 2 is performed

m ≤ n times. At each iteration the procedure executes another loop (step 2.2). The
“for each” loop at step 2.2 is executed for each (i, a, b) in [n] × A2, that is, a total
number of n|A|2 times. The cost of each iteration of the loop is basically dominated
by the cost of the call to procedure Nonempty which costs O((n+ |A|2)4n) = O(n5).
Thus the total cost of the procedure is then O(n7).

4.3. Procedure Next. We are now almost in a position to introduce procedure
Next. Procedure Next receives as input a canonical representation R′ of a relation
R invariant under ϕ, a sequence i1, . . . , ij of elements in [n] where n is the arity
of R, and a j-ary relation S invariant under ϕ. The output of Next is a compact
representation of the relation R∗ = {t ∈ R : pri1,...,ij

t ∈ S}. It is an easy exercise
to verify that R∗ must also be invariant under ϕ.

We shall start by defining a procedure, called Next-beta that although equiva-
lent to Next has a worse running time. In particular, the running time of Next-beta
might be exponential with respect to the size of its input.

Procedure Next-beta(R′, i1, . . . , ij , S)
Step 1 set U := ∅
Step 2 for each (i, a, b) ∈ [n] × A2 do

Step 2.1 if Nonempty(R′, i1, . . . , ij , i, S × {a})} 6=”no” then

(let t be Nonempty(R′, i1, . . . , ij , i, S × {a})})
Step 2.2 if Nonempty(Fix-values(R′, pr1 t, . . . , pri−1 t), i1, . . . , ij , i, S × {b}) 6=”no”

(let t′ be Nonempty(Fix-values(R′, pr1 t, . . . , pri−1 t), i1, . . . , ij , i, S × {b}))
set U := U ∪ {t, t′}

end for each

Step 3 return U

The overall structure of procedure Next-beta is similar to that procedure Fix-values.
Observe that the condition of the “if” statement

Nonempty(R′, i1, . . . , ij , i, S × {a})} 6= ”no”

of step 2.1 is satisfied if and only if there exists a tuple t ∈ R such that pri1,...ij
t ∈ S

and pri t = a. Hence if such a tuple does not exist then (i, a, b) is not in SigR∗

and nothing needs to be done for (i, a, b). Now consider the condition of the “if”
statement in step 2.2 which is given by

Nonempty(Fix-values(R′, pr1 t, . . . , pri−1 t), i1, . . . , ij , i, S × {b}) 6= ”no”

This condition is satisfied if and only if there exists some t′ in R such that pri1,...,ij
t′ ∈

S such that pr1,...,i−1 t′ = pr1,...,i−1 t and pri t
′ = b. It is immediate to see that if

the condition holds then (t, t′) witnesses (i, a, b). It only remains to show that if
(i, a, b) ∈ SigR∗ then such a t′ must exist. In order to do it, it is only necessary to
verify that if ta, tb are tuples in R∗ witnessing (i, a, b) then, since ϕ is Mal’tsev,
the tuple ϕ(t, ta, tb) satisfies the desired properties (here t is the tuple returned by
the call to procedure Nonempty in step 2.1).

8 VÍCTOR DALMAU

Again, the cardinality of U is bounded by 2| SigR∗ | and, hence, U is a compact
representation.

Let us study the running time of procedure Next-beta. The loop of step
2 is performed n|A| times and the cost of each iteration is basically the cost
of steps 2.1 and 2.2 in which other procedures are called. The cost of calling
Nonempty(R′, i1, . . . , ij , i, S×{a})} in step 2.1 is O((n+r)4|S|n) where r is | pri1,...,ij

R|.
The cost of calling

Nonempty(Fix-values(R′, pr1 t, . . . , pri−1 t), i1, . . . , ij , i, S × {b})

in step 2.2 is the sum of the call to Fix-values which is O(n7) and the call to
Nonempty which is O((n + r)4|S|n). Therefore, the total cost of an iteration of the
loop of step 2 is O((n + r)4|S|n + n7) and hence, the total running time for the
procedure is O((n + r)4|S|n2 + n8)

Let us take a closer look at the value of r = | pri1,...,ij
R. It is important to

notice here that the set of possible constraints S that can appear in an instance is
infinite and henceforth it is not possible to bound the value of j. Consequently, the
value of r might be exponential in the worst case. However, it would be possible to
bound the value of j and get a polynomial bound for r if a finite subset Γ of Inv(ϕ)
is fixed beforehand and we assume that all constraint instances use only constraint
relations from Γ. That is, by using the procedure Next-beta if could be possible
to define a polynomial-time algorithm that solves CSP(Γ) for every finite subset Γ
of Inv(ϕ). However we are aiming here for a more general result. To this end, we
define a new procedure Next which makes a sequence of calls to Next-beta.

Procedure Next(R′, i1, . . . , ij , S)
Step 1 set l := 0, Ul := R′

Step 2 while l < j do

Step 2.1 set Ul+1 := Next-beta(Ul, i1, . . . , il+1, pri1,...,il+1
S)

end while

Step 3 return Uj

Observe that at each call of the procedure Next in step 2.1, the value of r

can be bounded by | pri1,...,il
S||A|, and hence the running time of each call is

O(n8 + (n + |S|)4|S|n2). Thus, we have just proved

Lemma 2. For every n ≥ 1, every n-ary relation R invariant under ϕ, every

compact representation R′ of R, every i1, . . . , ij ∈ [n], and every j-ary relation

S invariant under ϕ, Next(R′, i1, . . . , ij , S) computes a compact representation of

R∗ = {t ∈ R : pri1,...,ij
∈ S} in time O(n9 + (n + |S|)4|S|n3). Furthermore R∗ is

invariant under ϕ.

Corollary 1. Algorithm Solve decides correctly if an instance P of CSP(inf(ϕ)) is

satisfiable in time O(mn8+m(n+|S∗|)4|S∗|n2) where n is the number of variables of

P, m is its number of contraints and S∗ is the largest constraint relation occurring

in P.

References

[1] A. Bulatov. A dichotomy theorem for constraints on a three-element set. In In Proceedings

of 43rd IEEE Symposium on Foundations of Computer Science (FOCS’02), pages 649–658,
2002.

[2] A. Bulatov. Mal’tsev constraints are tractable. Technical Report PRG-02-05, Computing Lab-
oratory, Oxford University, 2002.

MAL’TSEV CONSTRAINTS MADE SIMPLE 9

[3] A.A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of the
18th Annual IEEE Simposium on Logic in Computer Science, pages 321–330, Ottawa, Canada,
June 2003. IEEE Computer Society.

[4] S.A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd Annual ACM Symposium
on Theory of Computing STOC’71, pages 151–158, 1971.

[5] V. Dalmau. A New Tractable Class of Constraint Satisfaction Problems. In 6th International
Symposium on Artificial Intelligence and Mathematics, 2000.

[6] T. Feder and M.Y. Vardi. The Computational Structure of Monotone Monadic SNP and
Contraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Computing,
28(1):57–104, 1998.

[7] P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM,
44(4):527–548, July 1997.

[8] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.
[9] T.J. Schaefer. The Complexity of Satisfiability Problems. In 10th Annual ACM Symposium

on Theory of Computing, pages 216–226, 1978.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

