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Abstract

We show how to extract random bits from two or more independent weak random
sources in cases where only one source is of linear min-entropy and all other sources are
of logarithmic min-entropy. Our main results are as follows:

1. A long line of research, starting by Nisan and Zuckerman [15], gives explicit con-
structions of seeded-extractors, that is, extractors that use a short seed of truly
random bits to extract randomness from a weak random source. For every such
extractor E, with seed of length d, we construct an extractor E ′, with seed of length
d′ = O(d), that achieves the same parameters as E but only requires the seed to
be of min-entropy larger than (1/2 + δ) · d′ (rather than fully random), where δ is
an arbitrary small constant.

2. Fundamental results of Chor and Goldreich and Vazirani [6, 22] show how to extract
Ω(n) random bits from two (independent) sources of length n and min-entropy
larger than (1/2 + δ) · n, where δ is an arbitrary small constant. We show how to
extract Ω(n) random bits (with optimal probability of error) when only one source
is of min-entropy (1/2+ δ) · n and the other source is of logarithmic min-entropy.1

3. A recent breakthrough of Barak, Impagliazzo and Wigderson [4] shows how to
extract Ω(n) random bits from a constant number of (independent) sources of
length n and min-entropy larger than δn, where δ is an arbitrary small constant.
We show how to extract Ω(n) random bits (with optimal probability of error) when
only one source is of min-entropy δn and all other (constant number of) sources
are of logarithmic min-entropy.

4. A very recent result of Barak, Kindler, Shaltiel, Sudakov and Wigderson [5] shows
how to extract a constant number of random bits from three (independent) sources
of length n and min-entropy larger than δn, where δ is an arbitrary small constant.
We show how to extract Ω(n) random bits, with sub-constant probability of error,
from one source of min-entropy δn and two sources of logarithmic min-entropy.

∗Research supported by Israel Science Foundation (ISF) grant.
1We have learnt that the same result was obtained independently by Barak, Kindler, Shaltiel, Sudakov and

Wigderson (private communication).
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5. In the same paper, Barak, Kindler, Shaltiel, Sudakov and Wigderson [5] give an
explicit coloring of the complete bipartite graph of size 2n × 2n with two colors,
such that there is no monochromatic subgraph of size larger than 2δn× 2δn, where
δ is an arbitrary small constant. We give an explicit coloring of the complete
bipartite graph of size 2n× 2n with a constant number of colors, such that there is
no monochromatic subgraph of size larger than 2δn × n5.

We also give improved constructions of mergers and condensers. In particular,

1. We show that using a constant number of truly random bits, one can condense
a source of length n and min-entropy rate δ into a source of length Ω(n) and
min-entropy rate 1− δ, where δ is an arbitrary small constant.

2. We show that using a constant number of truly random bits, one can merge a
constant number of sources of length n, such that at least one of them is of min-
entropy rate 1 − δ, into one source of length Ω(n) and min-entropy rate slightly
less than 1− δ, where δ is any small constant.

1 Introduction

The problem of extracting pure randomness from weak sources of randomness has attracted
a lot of attention in the last 20 years.

A source of randomness (or simply, a source) of length n is just a random variable X of
length n bits. We say that the source is weak if its distribution is not uniform. The standard
measure for the amount of randomness contained in a source is its min-entropy. We say that a
random variable X (of length n bits) has min-entropy b if for every a ∈ {0, 1}n the probability
for X = a is at most 2−b. We say in this case that X is an (n, b)-source. We define the
min-entropy rate of an (n, b)-source as the ratio b/n. Two or more sources are independent if
they are independent as random variables.

Definition 1.1 ((n, b)-Source)
An (n, b)-source is a random variable of length n bits, with min-entropy ≥ b.

Given an (n, b)-source X with an unknown distribution, it is easy to see that if b ≤ n− 1
one cannot deterministically extract even one non-constant bit from X (unless additional
information about the distribution of X is given). That is, no fixed function E : {0, 1}n →
{0, 1} produces a non-constant bit E(X) for every such X. Hence, many works concentrated
on the problem of extracting randomness from two or more independent sources.

Denote by Un the uniform distribution over {0, 1}
n. For a random variable X over {0, 1}n,

denote by (X,Um) the joint distribution of X and an independent random variable uniformly
distributed over {0, 1}m, that is, (X,Um) is the product of the distribution of X with the
uniform distribution over {0, 1}m. In general, many times we will confuse notations between
random variables and their distributions. We measure the distance between distributions by
their L1 norm. Two distributions are ε-close if their L1 distance is at most ε.
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1.1 Two-Sources-Extractors

Two-sources-extractors attempt to extract pure randomness from two independent weak sources.

Definition 1.2 (Two-Sources-Extractor)
A function E : {0, 1}n1 × {0, 1}n2 → {0, 1}m is an [(n1, b1), (n2, b2) 7→ m ∼ γ]-two-sources-
extractor if for every (n1, b1)-source X1 and every independent (n2, b2)-source X2, the distri-
bution of the random variable E(X1, X2) is γ-close to Um (i.e., the uniform distribution over
{0, 1}m). We say in this case that E extracts m bits with probability of error γ.

A two-sources-extractor is called strong if its output is almost independent of each one of
the two inputs separately.2

Definition 1.3 (Strong-Two-Sources-Extractor)
An [(n1, b1), (n2, b2) 7→ m ∼ γ]-two-sources-extractor E is strong in the first input if
for every (n1, b1)-source X1 and every independent (n2, b2)-source X2, the distribution of
(X1, E(X1, X2)) is γ-close to (X1, Um). In the same way, E is strong in the second input
if for X1, X2 as above, the distribution of (X2, E(X1, X2)) is γ-close to (X2, Um). E is an
[(n1, b1), (n2, b2) 7→ m ∼ γ]-strong-two-sources-extractor if it is strong in both inputs.

A line of research constructed strong-two-sources-extractors based on the Hadamard ma-
trix [21, 6, 22, 8, 9]. These extractors menage to extract random bits when n1 = n2 = n and
b1 + b2 > n. In particular, [9] gives an explicit [(n, b1), (n, b2) 7→ m ∼ γ]-strong-two-sources-
extractor with m = (b1 + b2 − n)/3 and γ = 2−m.

Can one explicitly extract random bits when b1 + b2 < n ? It turns out that this can be
done by constructions based on the Paley matrix. In particular, it was shown in [11, 1] how to
extract one non-constant bit when b1 ≥ n/2+ polylog(n) and b2 ≥ log n, and similar methods
also give a random bit with a polynomially small probability of error. Other constructions
that work for b1 + b2 < n (although with less tight parameters) are implicit in [19].

In this work, we give a more general construction, based on sample spaces that are ε-biased
with respect to small linear tests (see [13, 2]). Our construction gives a strong extractor that
outputs many output bits, and it performs well even when n1 and n2 are significantly different
(which will be very important for some of the applications).

Roughly speaking (and for the important part of the range of the parameters), the following
theorem shows that as long as b1 ≥ (0.5 + δ) · n1 and b2 ≥ 5 log n1, one can (strongly) extract
Ω(δb2) random bits with an exponentially small probability of error.

3

2The notion of strong extraction was the focus of several previous works. We note, however, that it can
be proved that any two-sources-extractor, with small enough probability of error γ and small enough output
length m, is a strong-two-sources-extractor with slightly worse parameters. We will not elaborate about this
issue here, as it is not the focus of this work.

3Note that in the next subsection we will use these bits to extract much more bits out of the first source.
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Theorem 1 (Strong-Two-Sources-Extractor)
For any n1, n2, b1, b2,m, and any 0 < δ < 1/2, such that,4

n1 ≥ 6 log n1 + 2 log n2,

b1 ≥ (0.5 + δ) · n1 + 3 log n1 + log n2,

b2 ≥ 5 log(n1 − b1),

m ≤ δ ·min[n1/8, b2/40]− 1,

there exists an explicit5 [(n1, b1), (n2, b2) 7→ m ∼ γ]-strong-two-sources-extractor, with γ =
2−1.5·m.

1.1.1 Seeded-Extractors and Applications

Seeded-extractors attempt to extract pure randomness from one weak source, using an addi-
tional number of truly random bits, called seed. Obviously, this is interesting mainly when
the length of the seed is smaller than the length of the weak source and the length of the
output. A seeded-extractor is strong if its output is almost independent of the seed. Formally,
a seeded-extractor can be presented as a two-sources-extractor, where the min-entropy of the
first source is equal to its length.

Definition 1.4 (Seeded-Extractor)
A function E : {0, 1}d × {0, 1}n → {0, 1}m is a [d, (n, b) 7→ m ∼ γ]-seeded-extractor if it is a
[(d, d), (n, b) 7→ m ∼ γ]-two-sources-extractor. That is, for every (n, b)-source X and for an
independent random variable Z uniformly distributed over {0, 1}d, the distribution of E(Z,X)
is γ-close to Um. A [d, (n, b) 7→ m ∼ γ]-seeded-extractor E is strong if it is strong in the first
input as a two-sources-extractor, that is, if for X,Z as above, the distribution of (Z,E(Z,X))
is γ-close to (Ud, Um).

Seeded-extractors and their applications have been studied in numerous of works. For
excellent surveys of some of these works, see [17, 14, 20]. It was recently observed in [9]
that given a strong-two-sources-extractor, the output of the extractor can be used as a seed
for a seeded-extractor that is then applied on one of the two sources. In many cases, this
composition results in a two-sources-extractor that outputs much more bits than the original
one. Composing the strong-two-sources-extractor of Theorem 1 with a seeded-extractor that
is applied on the first source, we obtain the following theorem.

Roughly speaking (and for the important part of the range of the parameters), the theorem
shows that as long as b1 ≥ (0.5 + δ) · n1 and b2 ≥ 5 log n1, if δb2 is large enough (say, larger

4We have made no attempt to optimize the constants in the inequalities for b2 and m, as they depend on
each other.

5For simplicity, by explicit we mean: can be computed by a polynomial size circuit. In this paper, these
circuits will always be uniform, in the sense that they can be computed by a polynomial time probabilistic
Turing machine. In general, for our constructions, we will need to be able to do operations over finite fields.
The ”explicitness” of our constructions will hence be the same as the explicitness of the constructions of Alon,
Goldreich, Hastad and Peralta [2] (see the discussion in [2, 3]).
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than logarithmic in n1), one can use the bits extracted by Theorem 1 as a seed for a seeded-
extractor, and hence extract much more bits out of the first source.

Theorem 2 (Two-Sources-Extractor)
For any n1, n2, b1, b2, d,m, γ, and any 0 < δ < 1/2, such that,

n1 ≥ 6 log n1 + 2 log n2,

b1 ≥ (0.5 + δ) · n1 + 3 log n1 + log n2,

b2 ≥ 5 log(n1 − b1),

d ≤ δ ·min[n1/8, b2/40]− 1,

if there exists an explicit [d, (n1, b1) 7→ m ∼ γ]-seeded-extractor, then there exists an explicit
[(n1, b1), (n2, b2) 7→ m ∼ γ ′]-two-sources-extractor, with γ ′ = γ + 2−1.5·d.

For example, using a seeded-extractor of Zuckerman [24], we obtain the following corollary.
Roughly speaking, the corollary shows that if both sources are of length n, and the min-entropy
rate of the first source is slightly more than a half and the min-entropy of the second source
is logarithmic, then we are able to extract Ω(n) bits with a polynomially small error.6

Corollary 3 (Two-Sources-Extractor, Special Case)
For any constant δ > 0, there exists an explicit family of [(n, b1), (n, b2) 7→ m ∼ γ]-two-
sources-extractors, with

b1 = (0.5 + δ) · n,

b2 = O(log n),

m = Ω(n),

γ = 1/nΩ(1).

In the same way, using known constructions of seeded-extractors (see for example [24, 23,
18, 16]), we can show that if both sources are of length n, and the min-entropy rate of the first
source is slightly more than a half and the min-entropy of the second source is polylogarithmic,
then we are able to extract all the min-entropy of the first source with a sub-polynomially
small error.

1.1.2 Extractors with Weak Random Seeds

Composing the strong-two-sources-extractor of Theorem 1 with a seeded-extractor that is
applied on the second source, we obtain the following theorem. Roughly speaking (and for
the important part of the range of the parameters), the theorem shows that any seeded-
extractor E, with seed of length d, can practically be operated with a seed of length d′ = O(d)
that comes from a weak source of min-entropy rate slightly more than a half.7

6We have learnt that Corollary 3 was obtained independently by Barak, Kindler, Shaltiel, Sudakov and
Wigderson (private communication). Their construction is based on the Paley matrix.

7We note that it follows easily from the definitions that any strong-seeded-extractor can be operated with
seed that comes from a weak source. However, this typically gives a much weaker result than Theorem 4.
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Theorem 4 (Extractors with Weak Seed)
There exists a (large enough) universal constant c, such that: For any δ > 0, and any explicit
[d, (n, b) 7→ m ∼ γ]-seeded-extractor E, such that d ≥ log n and b ≥ cd/δ, there exists an
explicit [(d′, b′), (n, b) 7→ m ∼ γ ′]-two-sources-extractor E ′, with d′ ≤ cd/δ, b′ = (0.5 + δ) · d′

and γ′ = γ + 2−1.5·d.

1.2 Multi-Sources-Extractors

Multi-sources-extractors attempt to extract pure randomness from several independent weak
sources. This generalizes the notion of two-sources-extractors.

Definition 1.5 (Multi-Sources-Extractor)
A function E : {0, 1}n1 × · · · × {0, 1}nk → {0, 1}m is an [{(ni, bi)}

k
1 7→ m ∼ γ]-multi-sources-

extractor if for every independent random variables X1, ..., Xk, such that each Xi is an (ni, bi)-
source, the distribution of E(X1, ..., Xk) is γ-close to Um.

A multi-sources-extractor is strong if its output is almost independent of every subset of
all but one of the inputs.

Definition 1.6 (Strong-Multi-Sources-Extractor)
An [{(ni, bi)}

k
1 7→ m ∼ γ]-multi-sources-extractor E is strong in the j th input if for every

independent random variables X1, ..., Xk, such that each Xi is an (ni, bi)-source, the distribu-
tion of (Xj, E(X1, ..., Xk)) is γ-close to (Xj, Um). More generally, E is strong in a subset
σ ⊂ {1, ..., k} of inputs if for X1, ..., Xk as above, the distribution of ({Xj}j∈σ, E(X1, ..., Xk))
is γ-close to ({Xj}j∈σ, Um). E is an [{(ni, bi)}

k
1 7→ m ∼ γ]-strong-multi-sources-extractor if it

is strong in every subset σ ⊂ {1, ..., k} of size ≤ k − 1.

Barak, Impagliazzo and Wigderson recently presented new constructions of multi-sources-
extractors, based on additive number theory [4]. In particular, for any constant δ > 0 and
for large enough n, they gave an explicit construction of an [{(n, δn)}k1 7→ n ∼ 2−n]-multi-
sources-extractor, where k is a constant depending only on δ. A more recent result of Barak,
Kindler, Shaltiel, Sudakov and Wigderson shows that for any constant δ > 0 and for large
enough n, one can extract a constant number of random bits with a sub-constant probability
of error, from only 3 (n, δn)-sources [5].

In this work, we improve both these results. Roughly speaking, our new constructions for
multi-sources-extractors will work for (n1, b1), ..., (nk, bk) that satisfy Property 1.7, with an
arbitrary small constant δ > 0 and a large enough constant c. Roughly speaking (and for the
important part of the range of the parameters), the property requires that the first source is
of min-entropy rate δ and all other sources are of logarithmic min-entropy.

We will show that for such sources one can extract Ω(n1) bits with optimal probability of
error, from a constant (depending on δ) number of sources, and one can extract Ω(n1) bits
with sub-constant probability of error, from only 3 sources. We will also show how to extract
Ω(n1) bits with a constant probability of error, from only 2 such sources, using an additional
constant (depending on δ) number of truly random bits.
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Property 1.7 We say that n1, ..., nk, b1, ..., bk > 0 satisfy Property 1.7 with constants c, δ > 0,
if n1, ..., nk > c and b1 ≥ δn1, and for every i ∈ {2, ..., k}, n1 ≥ c log ni, and bi ≥ 5 log n1.

1.2.1 Our Results

Our first result shows how to extract random bits, that are independent of the first source,
from a constant number of sources that satisfy Property 1.7. Roughly speaking (and for
the important part of the range of the parameters), the theorem shows that if one source of
min-entropy rate δ is available, as well as a constant (depending on δ) number of sources of
logarithmic min-entropy, then one can extract m bits, with an exponentially small probability
of error, where m is of the order of the minimal min-entropy of all the sources.

Theorem 5 (Multi-Sources-Extractor)
For any constant δ > 0, there exist constants k, c, α, ρ > 0, such that for any n1, ..., nk, b1, ..., bk
that satisfy Property 1.7 with constants c, δ, there exists an explicit strong-in-the-first-input
[{(ni, bi)}

k
1 7→ m ∼ γ]-multi-sources-extractor, with

m ≥ min[αn1, b2, ..., bk]/200,

γ ≤ 2−ρ·m.

Our second result shows how to (strongly) extract random bits, from two sources that
satisfy Property 1.7, and a constant number of truly random bits. Roughly speaking (and
for the important part of the range of the parameters), the theorem shows that if one source
of min-entropy rate δ and one source of logarithmic min-entropy are available, as well as a
constant (depending on δ) number of truly random bits, then one can extract m bits, with a
constant probability of error, where m is of the order of the minimal min-entropy of the two
sources.

Theorem 6 (Strong-Seeded-Two-Sources-Extractor)
For any constants δ, γ > 0, there exist constants n3, c, α > 0, such that for any n1, n2, b1, b2
that satisfy Property 1.7 with constants c, δ, and for b3 = n3, there exists an explicit
[{(ni, bi)}

3
1 7→ m ∼ γ]-multi-sources-extractor E, with

m ≥ min[αn1, b2]/200.

Moreover, E is strong in the sets {1, 3} and {2, 3}.

Our third result shows how to extract random bits, that are independent of the first source,
from three sources that satisfy Property 1.7. Roughly speaking (and for the important part
of the range of the parameters), the theorem shows that if one source of min-entropy rate δ
is available, as well as two sources of logarithmic min-entropy, then one can extract m bits,
with a constant probability of error, where m is of the order of the minimal min-entropy of
the three sources.
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Theorem 7 (Three-Sources-Extractor)
For any constants δ, γ > 0, there exist constants c, α > 0, such that for any n1, n2, n3, b1, b2, b3
that satisfy Property 1.7 with constants c, δ, there exists an explicit strong-in-the-first-input
[{(ni, bi)}

3
1 7→ m ∼ γ]-multi-sources-extractor, with

m ≥ min[αn1, b2]/200.

1.2.2 Extracting More Bits

Since the m output bits in Theorem 5, Theorem 6 and Theorem 7 are (almost) independent
of the first source, they can be used as a seed for a seeded-extractor that is applied on the
first source (as in Theorem 2). Hence, if m is large enough we are able to extract much more
bits out of the first source. For example, if m ≥ c · log n1 (for a large enough constant c), we
are able to extract Ω(n1) random bits (as in Corollary 3), and if m is polylogarithmic in n1
we are able to extract all the min-entropy of the first source.

1.3 Mergers and Condensers

In this work, we are interested in mergers and condensers mainly as tools for constructing
multi-sources-extractors. Indeed, our constructions for multi-sources-extractors are based on
new constructions for mergers and condensers. Nevertheless, the new constructions for mergers
and condensers may be interesting in their own right and are described in this subsection.

1.3.1 Seeded-Condensers

Seeded-condensers generalize seeded-extractors, and attempt to transform a weak source with
a relatively low min-entropy rate into a weak source with a much higher min-entropy rate,
using an additional number of truly random bits (called seed). A seeded-condenser is strong
if for almost all possible assignments to the seed, the output is close to be a source with high
min-entropy.

Definition 1.8 (Seeded-Condenser)
A function C : {0, 1}d×{0, 1}n → {0, 1}m is a [d, (n, bin) 7→ (m, bout) ∼ γ]-seeded-condenser if
for every (n, bin)-source X, and for an independent random variable Z uniformly distributed
over {0, 1}d, the distribution of C(Z,X) is γ-close to a distribution of an (m, bout)-source. A
[d, (n, bin) 7→ (m, bout) ∼ γ]-seeded-condenser C is strong if for X as above, the average over
z ∈ {0, 1}d of the minimal distance between the distribution of C(z,X) and a distribution of
an (m, bout)-source is ≤ γ.

For any constants δ, γ > 0, we give an explicit construction of [d, (n, δn) 7→ (m, δ ′m) ∼ γ]-
strong-seeded-condenser, with m = Ω(n), d = O(1) and δ ′ ≥ 1 − δ. Roughly speaking, this
shows that using a constant number of truly random bits, one can (strongly) condense a weak
source with min-entropy rate close to 0 into a weak source with min-entropy rate close to 1.
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Theorem 8 (Strong-Seeded-Condenser)
For any constants δ, γ > 0, there exist constants n0, d, α > 0, such that for any n ≥ n0 there
exists an explicit [d, (n, δn) 7→ (m, δ′m) ∼ γ]-strong-seeded-condenser, such that,

m ≥ α · n,

δ′ ≥ 1− δ.

1.3.2 Somewhere-Random-Sources

Our new constructions for seeded-condensers are based on new constructions for, so called,
somewhere-condensers, and new constructions for mergers. In the next subsections we will
give the definitions of a merger and a somewhere-condenser. In order to give these definitions,
we first need to give the definition of a somewhere-random-source, first introduced by Ta-
Shma [18].

Definition 1.9 ((n, b)1:k-Source)
A k places somewhere (n, b)-source, or shortly, an (n, b)1:k-source, is a random variable X =
(X1, ..., Xk), such that every Xi is of length n bits and at least one Xi is of min-entropy ≥ b,
that is, at least one of the random variables X1, ..., Xk is an (n, b)-source. Note that X1, ..., Xk

are not necessarily independent.

1.3.3 Mergers

Mergers, first introduced by Ta-Shma [18], attempt to transform a k places somewhere (n, b)-
source into one (m, b′)-source, with a relatively high min-entropy b′, using an additional num-
ber of truly random bits (called seed). In other words, we are given k random variables and
we are guaranteed that at least one of them is an (n, b)-source. Our goal is to merge them
into one source with high min-entropy, using an additional number of truly random bits. A
merger is strong if for almost all possible assignments to the seed, the output is close to be a
source with high min-entropy.

Definition 1.10 (Merger)
A function M : {0, 1}d × {0, 1}n·k → {0, 1}m is a [d, (n, bin)

1:k 7→ (m, bout) ∼ γ]-merger if for
every (n, bin)

1:k-source X, and for an independent random variable Z uniformly distributed
over {0, 1}d, the distribution of M(Z,X) is γ-close to a distribution of an (m, bout)-source.
A [d, (n, bin)

1:k 7→ (m, bout) ∼ γ]-merger M is strong if for X as above, the average over
z ∈ {0, 1}d of the minimal distance between the distribution of M(z,X) and a distribution of
an (m, bout)-source is ≤ γ.

Lu, Reingold, Vadhan and Wigderson recently presented beautiful new constructions of
strong-mergers that use only a constant number of truly random bits [12]. Roughly speaking,
they showed how to merge (using a constant number of truly random bits) a k places some-
where (n, b)-source, where k is any constant, into one (n, b′)-source, where b′ is slightly less
than b/2 (and where the probability of error γ is an arbitrary small constant).
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The drawback of these constructions, however, (from our point of view), is that they loose
a factor of 2 in the min-entropy rate, and hence the min-entropy rate decreases to below 0.5.
In our work, we will need to keep the min-entropy rate above 0.5. We hence give here a
generalization of their construction (using similar ideas) that (almost) preserves the original
min-entropy rate, when the original min-entropy rate is close to 1.

Roughly speaking, we present constructions of strong-mergers that use a constant number
of truly random bits and merge a k places somewhere (n, b)-source, where k is any constant
and b/n is close to 1, into one (m, b′)-source, where the min-entropy rate b′/m is only slightly
lower than the min-entropy rate b/n, and where m = Ω(n), and where the probability of
error γ is an arbitrary small constant.

Theorem 9 (Strong-Merger)
For any constants δ, γ ′, k > 0, there exist constants n0, d, α > 0, such that for any n ≥ n0
there exists an explicit [d, (n, b)1:k 7→ (m, b′) ∼ γ′]-strong-merger, such that,

b = n · (1− δ),

m ≥ α · n,

b′ ≥ m · (1− 4δ/γ ′).

1.3.4 Somewhere-Condensers

Somewhere-condensers attempt to transform an (n, b)-source into a k places somewhere (m, b′)-
source, with a much higher min-entropy rate.

Note that any seeded-condenser, with seed of length d, gives a somewhere-condenser with
k = 2d. Thus, the notion of somewhere-condenser seems to be weaker than the one of seeded-
condenser. Nevertheless, somewhere-condensers have the advantage that they may achieve a
much smaller probability of error (e.g., much smaller than a constant when k is constant),
and hence they may be interesting in their own right.

For technical reasons, in order to achieve a very small probability of error, we have to
allow the distribution of the output of a somewhere-condenser to be a convex combination of
distributions of k places somewhere (m, b′)-sources, (rather than a distribution of one specific
k places somewhere (m, b′)-source).

Recall that a convex combination of probability distributions is an expression
∑

j αjµj,
where the coefficients αj are positive real numbers such that

∑

j αj = 1, and every µj is a
probability distribution over the same probability space. Note that a convex combination of
probability distributions is a probability distribution (over the same probability space).

Definition 1.11 (Somewhere-Condenser)
A function C : {0, 1}n → {0, 1}m·k is an [(n, bin) 7→ (m, bout)

1:k ∼ γ]-somewhere-condenser
if for every (n, bin)-source X, the distribution of the random variable C(X) can be expressed
as a convex combination of distributions,

∑

j αjµj + γµ′, where µ′ is an arbitrary probability
distribution and every µj is a probability distribution of an (m, bout)

1:k-source.

10



Our constructions for somewhere-condensers are based on the recent constructions of multi-
sources-extractors, by Barak, Impagliazzo and Wigderson [4].

For any constant δ > 0, we give an explicit construction of [(n, δn) 7→ (m, δ ′m)1:k ∼ γ]-
somewhere-condenser, with m = Ω(n), k = O(1), δ ′ ≥ 1 − δ and γ ≤ 2−Ω(m). Roughly
speaking, this shows that one can condense an (n, b)-source with min-entropy rate close to 0
into a k places somewhere (m, b′)-source with constant k and with min-entropy rate close to 1,
and where the probability of error is exponentially small.8

Theorem 10 (Somewhere-Condenser)
For any constant δ > 0, there exist constants n0, k, α, ρ > 0, such that for any n ≥ n0 there
exists an explicit [(n, δn) 7→ (m, δ′m)1:k ∼ γ]-somewhere-condenser, such that,

m ≥ α · n,

δ′ ≥ 1− δ,

γ ≤ 2−ρ·m.

1.4 Explicit Constructions of Ramsey Graphs

A recent breakthrough of Barak, Kindler, Shaltiel, Sudakov and Wigderson [5] gives an explicit
coloring of the complete bipartite graph of size 2n × 2n with two colors, such that there is no
monochromatic subgraph of size larger than 2δn× 2δn, where δ is an arbitrary small constant.

Here we show (as an immediate corollary of Theorem 6) an explicit coloring of the com-
plete bipartite graph of size 2n × 2n with a constant number of colors, such that there is no
monochromatic subgraph of size larger than 2δn×n5. Note that unlike the construction given
in [5], the number of colors that we use is a constant larger than two. Moreover, that constant
depends on δ. At the other hand, the sizes of the monochromatic subgraphs that we are able
to exclude are much smaller than the ones in [5].

Our results are in fact more general and allow the sizes of the two sides of the graph to be
significantly different.9

Corollary 11 (Ramsey-Graph)
For any constant δ > 0, there exist constants r, c > 0, such that for any n2 > c and n1 >
c log n2, there exists an explicit coloring of the complete bipartite graph of size 2n1×2n2 with r
colors, such that there is no monochromatic subgraph of size larger than 2δn1 × (n1)

5.

1.5 Methods

For the proofs of our results we use a large number of new and borrowed methods. The
new constructions for two-sources-extractors are based on the constructions of Alon, Gol-

8We have learnt that similar results were obtained independently by Barak, Kindler, Shaltiel, Sudakov and
Wigderson [5]. Their proofs are based on similar methods.

9We note that the constant 5 can probably be improved to any constant larger than 1/2, using a method
from [1].
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dreich, Hastad and Peralta for sample spaces that are ε-biased with respect to small linear
tests [2]. The new constructions for somewhere-condensers are based on the recent multi-
sources-extractors of Barak, Impagliazzo and Wigderson [4]. The new constructions for merg-
ers are based on the recent mergers of Lu, Reingold, Vadhan and Wigderson [12]. Other
constructions are obtained by composing (in various ways) the above mentioned components.
Many of the results are obtained by several steps of composition. Hence, in all parts of the
work, special attention is given to the notion of strong extraction, and to the independence
(or almost independence) of different random variables.

1.6 Related Works

Our results are are very related to recent results of Barak, Kindler, Shaltiel, Sudakov and
Wigderson [5]. In particular, a result similar to Theorem 10 (Somewhere-Condenser) was
proved independently in [5], and a result similar to Corollary 3 (Two-Sources-Extractor, Spe-
cial Case) was also obtained independently by them (private communication).

While the two works are mostly independent, we stress that Theorem 7 (Three-Sources-
Extractor) was only obtained after we heard a talk about their work10, and our proof for that
theorem uses ideas borrowed from their work. Our result on coloring of bipartite graphs was
also added after we learnt about their results (although the proof is an easy corollary of our
other results).

2 Preliminaries

The logarithm in this paper is always taken base 2. We assume for simplicity that the min-
entropy b of an (n, b)-source is always an integer ≤ n. We will usually denote by the letters
a, b, d, k, l,m, n, p positive integers, and by Greek letters (e.g., α, γ, δ, ε, ρ) positive reals (unless
we say otherwise). We will usually denote by X,Y, Z random variables, and by a, x, y, z values
that these variables can take.

2.1 Flat Sources

Let X be an (n, b)-source. We say that the source X is flat if it is uniformly distributed over
a set SX ⊂ {0, 1}n of size 2b. The following lemma, proved by Chor and Goldreich, shows
that the distribution of any (n, b)-source is a convex combination of distributions of flat (n, b)-
sources. Hence, as in [6], in most cases it will be enough to consider flat sources rather than
general weak sources.

Lemma 2.1 [6] The distribution of any (n, b)-source is a convex combination of distributions
of flat (n, b)-sources.

10The talk was given by Guy Kindler in a workshop on complexity theory (Banff, July 2004).
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2.2 The Parity Lemma

A random variable Z over {0, 1} is ε-biased if |Pr[Z = 0] − Pr[Z = 1]| ≤ ε, that is, if its
distribution is ε-close to uniform. A sequence of 0-1 random variables Z1, ..., Zm is ε-biased
for linear tests if the exclusive-or of any nonempty set of these variables is ε-biased, that is,
for any nonempty τ ⊂ {1, ...,m}, the random variable Zτ =

⊕

i∈τ Zi is ε-biased.

The following lemma is usually attributed to Vazirani. For the proof see for example [10].

Lemma 2.2 Let Z1, ..., Zm be 0-1 random variables that are ε-biased for linear tests. Then,
the distribution of (Z1, ..., Zm) is ε · 2

m/2-close to uniform.

2.3 Entropy and Min-Entropy

The Shannon’s entropy (or simply, entropy), H(X), of a random variable X is defined by

H(X) = −
∑

a

Pr(X = a) · log Pr(X = a).

The relations between the entropy and the min-entropy of a random variable are given by the
following two lemmas.11

Lemma 2.3 Let X be a random variable with min-entropy ≥ b. Then, H(X) ≥ b.

Proof:
The proof is straight forward from the definitions. 2

Lemma 2.4 Let X be a random variable of length n bits, with H(X) ≥ n − δn. Then, for
any δ′ ≥ 2δ, the distribution of X is γ-close to a distribution of an (n, n− δ ′n)-source, where

γ ≤ 2δ/δ′.

Proof:
Denote, b = n− δn and b′ = n− δ′n. Denote by γ ′ the probability for Pr(X = a) ≥ 2−b

′

, that
is,
∑

a Pr(X = a), where the sum is taken over all elements a with Pr(X = a) ≥ 2−b
′

.

By basic properties of the entropy function (see for example [7]), or alternatively, by a
standard convexity argument,

H(X) ≤ (1− γ ′) · n+ γ ′ · b′.

Hence,
b ≤ (1− γ ′) · n+ γ ′ · b′,

that is,
γ′ ≤ (n− b)/(n− b′) = δ/δ′.

By redistributing the probability mass of elements a with Pr(X = a) ≥ 2−b
′

, we obtain an
(n, b′)-source which is 2γ ′-close to X. 2

11For simplicity of the presentation, Lemma 2.4 is not given here in its tightest form.
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3 Two-Sources-Extractors

Our main tool for constructing two-sources-extractors will be small probability spaces of 0-1
random variables that are ε-biased for small linear tests. We will show how to construct a
two-sources-extractor from any such probability space.

Recall that a random variable Z over {0, 1} is ε-biased if |Pr[Z = 0] − Pr[Z = 1]| ≤ ε,
that is, if its distribution is ε-close to uniform. A sequence of 0-1 random variables Z1, ..., ZN
is ε-biased for linear tests of size k if the exclusive-or of any k or less of these variables is
ε-biased, that is, for any r ∈ {1, ..., k} and any different i1, ..., ir ∈ {1, ..., N} the random
variable Zi1 ⊕ · · · ⊕ Zir is ε-biased.

Explicit constructions for small probability spaces of N random variables that are ε-biased
for linear tests of size k were given in [13, 2] (see also [3]). In particular, [2] showed that for
every k,N ≥ 2, variables Z1, ..., ZN as above can be explicitly constructed using 2 · dlog(1/ε)+
log k + log logNe random bits.

3.1 Extracting One Bit

Let N = 2n2 . Let Z1, ..., ZN be 0-1 random variables that are ε-biased for linear tests of size
k that can be constructed using n1 random bits. We define E : {0, 1}

n1 × {0, 1}n2 → {0, 1}
by E(x, y) = Zy(x), that is, E(x, y) is the random variable Zy when using x as the value of
the n1 bits needed to produce Z1, ..., ZN . In other words, x is used to choose the point in the
probability space and y is used to choose the variable from Z1, ..., ZN that we evaluate.

The following lemma shows that if n1 and ε are small enough and n2 and k are large
enough then the function E is a very good two-sources-extractor.

Lemma 3.1 Let N = 2n2. Let Z1, ..., ZN be 0-1 random variables that are ε-biased for linear
tests of size k′ that can be constructed using n1 random bits. Define E : {0, 1}n1 × {0, 1}n2 →
{0, 1} by E(x, y) = Zy(x). Then, for any even integer k ≤ k′ and any b1, b2, the function E
is an [(n1, b1), (n2, b2) 7→ 1 ∼ γ]-two-sources-extractor, with

γ = 2(n1−b1)/k ·
[

ε1/k + k · 2−b2/2
]

.

Proof:
Let X be an (n1, b1)-source and let Y be an independent (n2, b2)-source. We will show that
the distribution of E(X,Y ) is γ-close to uniform. As in [6], it is enough to consider the case
where X is uniformly distributed over a set SX ⊂ {0, 1}n1 of size 2b1 and Y is uniformly
distributed over a set SY ⊂ {0, 1}

n2 of size 2b2 .

For every x ∈ {0, 1}n1 and y ∈ {0, 1}n2 denote

e(x, y) = −1E(x,y) = −1Zy(x).
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Claim 3.2 For any r ∈ {1, ..., k} and any different y1, ..., yr ∈ {0, 1}
n2,

∑

x∈{0,1}n1

r
∏

j=1

e(x, yj) ≤ 2
n1 · ε.

Proof:

∑

x∈{0,1}n1

r
∏

j=1

e(x, yj) =
∑

x∈{0,1}n1

r
∏

j=1

−1Zyj
(x) =

∑

x∈{0,1}n1

−1Zy1
(x)⊕···⊕Zyr (x),

and since Zy1 ⊕ · · · ⊕ Zyr
is ε-biased, the last sum is at most 2n1 · ε. 2

Denote by γ(X,Y ) the expectation of e(X,Y ). We will show that |γ(X,Y )| ≤ γ. Obvi-
ously, this means that E(X,Y ) is γ-close to uniform, as required.

By the definition,
2b1 · 2b2 · γ(X,Y ) =

∑

x∈SX

∑

y∈SY

e(x, y).

Hence, by a convexity argument and since k is even,

2b1 ·
(

2b2 · γ(X,Y )
)k
≤

∑

x∈SX





∑

y∈SY

e(x, y)





k

≤

∑

x∈{0,1}n1





∑

y∈SY

e(x, y)





k

=
∑

x∈{0,1}n1

∑

y1,...,yk∈SY

k
∏

j=1

e(x, yj)

=
∑

y1,...,yk∈SY

∑

x∈{0,1}n1

k
∏

j=1

e(x, yj).

We will break the sum over y1, ..., yk ∈ SY into two sums. The first sum is over y1, ..., yk ∈ SY
such that at least one yj is different than all other elements in {y1, ..., yk}, and the second
sum is over y1, ..., yk ∈ SY such that every yj is identical to at least one other element in
{y1, ..., yk}. The number of summands in the first sum is bounded by 2

b2·k, and by Claim 3.2
each summand is bounded by 2n1 · ε. The number of summands in the second sum is bounded
by 2b2·k/2 · (k/2)k, and each summand is trivially bounded by 2n1 . Hence,

2b1 · 2b2·k · γ(X,Y )k ≤ 2n1 · ε · 2b2·k + 2n1 · 2b2·k/2 · (k/2)k.

That is,
|γ(X,Y )| ≤ 2(n1−b1)/k · ε1/k + 2(n1−b1)/k · 2−b2/2 · (k/2)

= 2(n1−b1)/k ·
[

ε1/k + (k/2) · 2−b2/2
]

.

2
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3.2 Extracting Many Bits

Let N = m · 2n2 . Let Z1, ..., ZN be 0-1 random variables that are ε-biased for linear tests of
size k that can be constructed using n1 random bits. We think of the set of indices {1, ..., N}
as the set {(i, y) : i ∈ {1, ...,m}, y ∈ {0, 1}n2}. We define E : {0, 1}n1 × {0, 1}n2 → {0, 1}m

by Ei(x, y) = Z(i,y)(x), where Ei(x, y) denotes the i
th bit of E(x, y). In other words, x is

used to choose the point in the probability space and i, y are used to choose the variable from
Z1, ..., ZN that we evaluate.

The following lemma shows that if n1,m, ε are small enough and n2, k are large enough
then the function E is a very good two-sources-extractor.

Lemma 3.3 Let N = m · 2n2. Let Z1, ..., ZN be 0-1 random variables that are ε-biased for
linear tests of size k′ that can be constructed using n1 random bits. Define E : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m by Ei(x, y) = Z(i,y)(x). Then, for any even integer k ≤ k′/m and any
b1, b2, the function E is an [(n1, b1), (n2, b2) 7→ m ∼ γ2m/2]-two-sources-extractor, where

γ = 2(n1−b1)/k ·
[

ε1/k + k · 2−b2/2
]

.

Proof:
Let X be an (n1, b1)-source and let Y be an independent (n2, b2)-source. We will show that
the distribution of E(X,Y ) is γ · 2m/2-close to uniform.

For every nonempty τ ⊂ {1, ...,m}, define Eτ : {0, 1}
n1 × {0, 1}n2 → {0, 1}, by

Eτ (x, y) =
⊕

i∈τ

Ei(x, y) =
⊕

i∈τ

Z(i,y)(x).

Since |τ | ≤ m, the variables {Z ′y =
⊕

i∈τ Z(i,y) : y ∈ {0, 1}
n2} are ε-biased for linear tests of size

k′/m. Hence by Lemma 3.1, for every nonempty τ , the random variable Eτ (X,Y ) is γ-close
to uniform. Hence by Lemma 2.2, the distribution of E(X,Y ) = (E1(X,Y ), ..., Em(X,Y )) is
γ · 2m/2-close to uniform. 2

3.3 Strong Extraction

We will now show that if n1,m, ε are small enough and n2, k are large enough then the function
E defined above is actually a very good strong-two-sources-extractor.

Lemma 3.4 Let N = m · 2n2. Let Z1, ..., ZN be 0-1 random variables that are ε-biased for
linear tests of size k′ that can be constructed using n1 random bits. Define E : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m by Ei(x, y) = Z(i,y)(x). Then, for any even integer k ≤ k′/m and any
b1, b2, γ such that,

γ ≥ 2(n1−b1)/k ·
[

ε1/k + k · 2−b2/2
]

,

the function E is an [(n1, b
′
1), (n2, b

′
2) 7→ m ∼ γ ′]-strong-two-sources-extractor, with

b′1 = b1 +m/2 + 2− log γ,
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b′2 = b2 +m/2 + 2− log γ,

γ′ = γ · 2m/2+1.

Proof:
Let X be an (n1, b

′
1)-source and let Y be an independent (n2, b

′
2)-source. We will show that

the distribution of (X,E(X,Y )) is γ ′-close to (X,Um). The proof that the distribution of
(Y,E(X,Y )) is γ ′-close to (Y, Um) is the same. As in [6], it is enough to consider the case
where X is uniformly distributed over a set SX ⊂ {0, 1}

n1 of size 2b
′

1 .

As before, for every nonempty τ ⊂ {1, ...,m}, define Eτ : {0, 1}
n1 × {0, 1}n2 → {0, 1}, by

Eτ (x, y) =
⊕

i∈τ

Ei(x, y) =
⊕

i∈τ

Z(i,y)(x).

Since |τ | ≤ m, the variables {Z ′y =
⊕

i∈τ Z(i,y) : y ∈ {0, 1}
n2} are ε-biased for linear tests of

size k′/m.

As before, by Lemma 3.1, for every nonempty τ , the random variable Eτ (X,Y ) is γ-biased.
For every nonempty τ , denote by Bτ the set of all x ∈ SX , such that Eτ (x, Y ) is not γ-biased.

Claim 3.5 For every nonempty τ ,
|Bτ | ≤ 2

b1+1.

Proof:
Assume for a contradiction that |Bτ | > 2

b1+1. Denote by B0τ the set of all x ∈ Bτ such that
Eτ (x, Y ) is 0 with probability > 1/2 + γ/2, and denote by B1

τ the set of all x ∈ Bτ such
that Eτ (x, Y ) is 0 with probability < 1/2− γ/2. Since for every x ∈ Bτ the random variable
Eτ (x, Y ) is not γ-biased, we have Bτ = B0τ ∪ B

1
τ , and hence at least one of the sets B

0
τ , B

1
τ is

of size larger than 2b1 . W.l.o.g. assume that |B0
τ | > 2

b1 .

Let X ′ be a random variable uniformly distributed over B0
τ . Then by the definition of

B0τ , we know that Eτ (X
′, Y ) is 0 with probability > 1/2 + γ/2. However, since X ′ is an

(n1, b1)-source, by Lemma 3.1, Eτ (X
′, Y ) is γ-close to uniform. 2

Define
B =

⋃

τ

Bτ ,

where the union is over all nonempty τ ⊂ {1, ...,m}. Then, by Claim 3.5,

|B|/|SX | ≤ 2
m · 2b1+1/2b

′

1 = γ′/4.

For every x ∈ SX \B, the random variable Eτ (x, Y ) is γ-biased for every nonempty τ . Hence,
by Lemma 2.2, for every x ∈ SX \ B, the distribution of E(x, Y ) is γ

′/2-close to uniform.
Thus, for 1− γ ′/4 fraction of the elements in SX , the distribution of E(x, Y ) is γ

′/2-close to
uniform. Hence, the distribution of (X,E(X,Y )) is γ ′-close to (X,Um). 2
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3.4 Proof of Theorem 1

We will now use Lemma 3.4 and the construction given in [2] for random variables that are ε-
biased for small linear tests, to give the proof for Theorem 1 (Strong-Two-Sources-Extractor).
The proof will follow from the following lemma.

Lemma 3.6 For any n1, n2, b1, b2,m, and any 0 < δ < 1/2, such that,

n1 ≥ 6 log n1 + 2 log n2,

b1 ≥ n1/2 + δn1 + 3 log n1 + log n2,

b2 ≥ 4 log(n1 − b1),

m ≤ δ ·min[n1/4, b2/16]− 1,

there exists an explicit [(n1, b
′
1), (n2, b

′
2) 7→ m ∼ γ ′]-strong-two-sources-extractor, with

b′1 = b1 + 3(m+ 1),

b′2 = b2 + 3(m+ 1),

γ′ = 2−3m/2.

Proof:
W.l.o.g. assume that m ≥ 1. W.l.o.g. assume that n1 ≥ 16 and b2 ≥ 64 (as otherwise m < 1).
Let N = m ·2n2 . Let k′ = m ·max[(n1−b1), 2]. Let ε = 2

−r, where r = n1/2−3 log n1− log n2.
Note that

n1 ≥ 2 · dlog(1/ε) + log k
′ + log logNe.

Hence, by [2], 0-1 random variables Z1, ..., ZN that are ε-biased for linear tests of size k
′ can

be constructed using n1 random bits. We will now consider two cases.

Case A: b2 ≤ 4(n1 − b1).
In this case, we use Lemma 3.4 with k = the smallest even integer larger than 8(n1 − b1)/b2.
Hence, k ≤ n1 − b1, and also

8(n1 − b1)/b2 ≤ k ≤ 8(n1 − b1)/b2 + 2 ≤ 16(n1 − b1)/b2 ≤ 8n1/b2.

Note that

2(n1−b1)/k ·
[

ε1/k + k · 2−b2/2
]

≤ 2(n1−b1−r)/k + 2(n1−b1)/k · (n1 − b1) · 2
−b2/2 ≤

2−δn1/k + 2(n1−b1)/k · 2−b2/4 ≤ 2−δb2/8 + 2b2/8 · 2−b2/4 ≤ 2 · 2−δb2/8 ≤ 2−(2m+1).

Case B: b2 > 4(n1 − b1).
In this case, we use Lemma 3.4 with k = 2. Note that

2(n1−b1)/k ·
[

ε1/k + k · 2−b2/2
]

= 2(n1−b1−r)/2 + 2(n1−b1)/2 · 2 · 2−b2/2 ≤
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2−δn1/2 + 2b2/8 · 2 · 2−b2/2 ≤ 2−δn1/2 + 2−b2/4 ≤ 2−(2m+1)

Hence, in both cases the proof follows by Lemma 3.4, using γ = 2−(2m+1). 2

Proof of Theorem 1: (Strong-Two-Sources-Extractor)
Let us first restate Theorem 1: For any n1, n2, b

′
1, b

′
2,m, and any 0 < δ′ < 1/2, such that,

n1 ≥ 6 log n1 + 2 log n2,

b′1 ≥ n1/2 + δ
′n1 + 3 log n1 + log n2,

b′2 ≥ 5 log(n1 − b1),

m ≤ δ′ ·min[n1/8, b
′
2/40]− 1,

there exists an explicit [(n1, b
′
1), (n2, b

′
2) 7→ m ∼ γ ′]-strong-two-sources-extractor, with γ ′ =

2−3m/2.

Denote, b1 = b′1 − 3(m+ 1) and b2 = b′2 − 3(m+ 1). Denote, δ = δ′/2. Note that

b1 ≥ n1/2 + δn1 + 3 log n1 + log n2,

b2 ≥ 4 log n1,

m ≤ δ ·min[n1/4, b2/16]− 1.

The proof hence follows by Lemma 3.6. 2

3.5 Applying a Seeded-Extractor

For the proofs of Theorem 2 (Two-Sources-Extractor), Corollary 3 (Two-Sources-Extractor,
Special Case) and Theorem 4 (Extractors with Weak Seed), we will need to compose the
two-sources-extractors of Theorem 1 with seeded-extractors, as in [9]. Formally, we will need
the following composition lemma.

Lemma 3.7 Let E1 : {0, 1}
n1 × {0, 1}n2 → {0, 1}d be an [(n1, b1), (n2, b2) 7→ d ∼ γ1]-strong-

two-sources-extractor, and let E2 : {0, 1}
d × {0, 1}n1 → {0, 1}m be a [d, (n1, b1) 7→ m ∼ γ2]-

seeded-extractor. Denote by E : {0, 1}n1 × {0, 1}n2 → {0, 1}m the following composition of E1
and E2: for every x ∈ {0, 1}

n1 and y ∈ {0, 1}n2, we define E(x, y) = E2(E1(x, y), x). Then,
E is an [(n1, b1), (n2, b2) 7→ m ∼ γ1 + γ2]-two-sources-extractor.

Proof:
The proof is straight forward from the definitions. 2

Proof of Theorem 2: (Two-Sources-Extractor)
The proof is straight forward from Theorem 1, using Lemma 3.7. By Theorem 1, there exists
an explicit [(n1, b1), (n2, b2) 7→ d ∼ 2−1.5·d]-strong-two-sources-extractor. If there exists an
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explicit [d, (n1, b1) 7→ m ∼ γ]-seeded-extractor then by Lemma 3.7, there exists an explicit
[(n1, b1), (n2, b2) 7→ m ∼ γ ′]-two-sources-extractor, with γ ′ = γ + 2−1.5·d. 2

Proof of Corollary 3: (Two-Sources-Extractor, Special Case)
The proof is straight forward from Theorem 2, using the seeded-extractor of Zuckerman [24].
More precisely, we can use Theorem 1 to extract d = O(log n) bits that are (almost) inde-
pendent of the first source, and then (by Lemma 3.7) we can use these bits as a seed for a
seeded-extractor that extracts Ω(n) bits out of the first source (with a polynomially small
probability of error). An explicit construction for such a seeded-extractor was given in [24]. 2

Proof of Theorem 4: (Extractors with Weak Seed)
The proof is straight forward from Theorem 1, using Lemma 3.7, where the roles of the two
sources are exchanged (i.e., we think of the first source as the second and the second source
as the first). More precisely, let d′ = bcd/δc, where c is the (large enough) universal constant,
and let b′ = (0.5 + δ) · d′. Given a (d′, b′)-source and an (n, b)-source, we can use Theorem 1
to extract d bits that are (almost) independent of the second source (with probability of error
2−1.5·d), and then (by Lemma 3.7) we can use these bits as a seed for the seeded-extractor E
that extracts m bits out of the second source (with probability of error γ). 2

4 Mergers and Condensers

In this section, we describe our new constructions for mergers, somewhere-condensers and
seeded-condensers and we give the proofs for Theorem 10, Theorem 9 and Theorem 8.

4.1 Somewhere-Condensers

Our construction for somewhere-condensers is based on the multi-sources-extractors of Barak,
Impagliazzo and Wigderson [4]. The following lemma was proved in [4].

Lemma 4.1 [4] For any constant δ0 > 0 there exist constants m0, k, such that for any m ≥
m0, there exists an explicit [{(m, δ0m)}

k
1 7→ m ∼ 2−m]-multi-sources-extractor, E. Moreover,

for any x1, ..., xk−1 ∈ {0, 1}
m, there exists a unique xk ∈ {0, 1}

m such that E(x1, ..., xk) = 0
m,

and that unique xk can be explicitly computed as xk = f(x1, ..., xk−1).

Recall that for two measures ψ, ψ′ (over the same space), we say that ψ < ψ′ if for every
event A we have ψ(A) < ψ′(A). For a probability distribution ψ over a finite probability
space, define by Sψ the support of ψ, that is the set of all points with non-zero probability.

The following lemma (and its proof) gives our basic construction.

Lemma 4.2 For any constant δ0 > 0 there exist constants n0, k, such that for any n ≥ n0 and
any δ > δ0 + 2k/n, there exists an explicit [(n, δn) 7→ (m, δ ′m)1:k ∼ γ]-somewhere-condenser,
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such that,
m = dn/(k − 1)e,

δ′ ≥ δ + (1− δ)/(2k)− 5/m,

γ ≤ 2−(1−δ)m/(2k).

Proof:
Given δ0, letm0, k be the constants from Lemma 4.1, and let n0 = m0 ·k. Assume w.l.o.g. that
n0,m0, k are large enough. Given n, δ, denotem = dn/(k−1)e and δ

′ = δ+(1−δ)/(2k)−5/m.
For simplicity, we assume that δn, δ′m are integers (otherwise, decrease δ by at most 1/n and
increase δ′ by at most 1/m, and the same proof follows). For simplicity, we assume that k− 1
divides n (otherwise, increase n by adding zeros, which decreases δ by at most k/n, and the
same proof follows). Thus, n = m · (k − 1). Let f be the function from Lemma 4.1 (applied
for δ0 and m). Define C : {0, 1}

m·(k−1) → {0, 1}m·k, by

C(x1, ..., xk−1) = (x1, ..., xk−1, f(x1, ..., xk−1)).

Denote by T ⊂ {0, 1}m·k the image of C, that is,

T =
{

(x1, ..., xk−1, f(x1, ..., xk−1)) : (x1, ..., xk−1) ∈ {0, 1}
m·(k−1)

}

.

LetX be an (n, δn)-source. As in [6], it is enough to consider the case whereX is uniformly
distributed over a set SX ⊂ {0, 1}

n of size 2δn. Denote by µ the distribution of C(X). Then,
obviously, µ is a uniform distribution over a set Sµ ⊂ {0, 1}

m·k of size 2δn.

Denote by 0 ≤ γ ′ ≤ 1 the smallest number such that µ can be expressed as a convex
combination of probability distributions,

∑

j αjµj + γ
′µ′, where every µj is a probability dis-

tribution of an (m, δ′m)1:k-source (as in Definition 1.11). We will show that γ ′ ≤ 2−(1−δ)m/(2k),
as required.

By the minimality of γ ′, for every α > 0 and every probability distribution ψ, if αψ < µ′

then ψ is not the distribution of an (m, δ′m)1:k-source. (Otherwise, we can express µ′ as
α ·ψ+(1−α) ·µ′′, which means that γ ′ can be decreased to γ ′ · (1−α)). Hence, the support of
µ′ is contained in a subset B1× · · · ×Bk ⊂ {0, 1}

m·k, where every Bi ⊂ {0, 1}
m is of size 2δ

′m.
Note also that since γ ′µ′ < µ, the support of µ′ is contained in the support of µ, and hence
also in T . Therefore, by Lemma 4.1 (applied for random variables uniformly distributed over
B1, ..., Bk),

|Sµ′ | ≤ |T ∩B1 × · · · ×Bk| ≤ 2
δ′m·k · 2−m · 2.

Since µ is uniformly distributed over Sµ and since γ
′µ′ < µ,

γ′ ≤ |Sµ′ |/|Sµ| ≤ 2
δ′m·k · 2−m · 2 · 2−δm·(k−1) = 2(δ

′−δ)·m·k · 2−(1−δ)·m · 2

= 2−(1−δ)·m/2 · 2−5k · 2 < 2−(1−δ)·m/2.

2

For the proof of Theorem 10 (Somewhere-Condenser), we will need to compose Lemma 4.2
with itself many times. Formally, we will need the following composition lemma.
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Lemma 4.3 Let C1 : {0, 1}
n1 → {0, 1}n2·k1 be an [(n1, b1) 7→ (n2, b2)

1:k1 ∼ γ1]-somewhere-
condenser, and let C2 : {0, 1}

n2 → {0, 1}n3·k2 be an [(n2, b2) 7→ (n3, b3)
1:k2 ∼ γ2]-somewhere-

condenser. Denote by C : {0, 1}n1 → {0, 1}n3·k2·k1 the following composition of C2 and C1:
for every x ∈ {0, 1}n1 we obtain C(x) by applying C2 on each of the k1 coordinates of C1(x).
Then, C is an [(n1, b1) 7→ (n3, b3)

1:k1·k2 ∼ γ1 + γ2]-somewhere-condenser.

Proof:
The proof is straight forward from the definitions. 2

We are now ready to give the proof for Theorem 10.

Proof of Theorem 10: (Somewhere-Condenser)
The proof follows easily by compositions of Lemma 4.2 with itself (using Lemma 4.3), until
the min-entropy is above (1− δ) ·m.

We start with an (n, δn)-source X. We apply Lemma 4.2, with δ0 slightly smaller than δ,
and getX1, ..., Xk. We now apply Lemma 4.2 (with the original δ0) on each one of the variables
X1, ..., Xk separately. We keep doing that (with the original δ0) until δ

′ ≥ 1− δ.

Note that since the min-entropy rate increases by a constant in each step, we stop after
a constant number of steps. Hence, we end up with an (m, δ ′m)1:k-source, with constant k
and with m = Ω(n). Since we stop after a constant number of steps, the final γ is still ex-
ponentially small. The constant n0 is chosen such that we can apply Lemma 4.2 in all steps. 2

4.2 Mergers

Before giving our construction for mergers, we will need to prove the following lemma.

Lemma 4.4 Let F be a finite field, and let v1, ..., vr be linearly independent vectors in the
vector space Fk

′

. Let S ⊂ Fk
′

be such that for every u ∈ Fk
′

and every non-zero α1, ..., αr ∈ F,
at least one of the vectors u, u+ α1v1, ..., u+ αrvr is not in S. Then,

|S| ≤ r · |F|k
′−1.

Proof:
For every i ∈ {1, ..., r}, denote by Si the set of all vectors u ∈ S, such that u is the unique
vector from S in the line (i.e., affine subspace of dimension 1) {u + αvi : α ∈ F}. Since, for
every i the number of lines of the form {u + αvi : α ∈ F} is |F|

k′−1, and since Si contains at
most one vector from each such line, we know that |Si| ≤ |F|

k′−1.

Assume for a contradiction |S| > r · |F|k
′−1. Then, there exists u ∈ S \

⋃

i Si. For every i,
since u ∈ S \ Si, there exists non-zero αi ∈ F such that u+ αivi ∈ S (by the definition of Si).
Thus, u, u+α1v1, ..., u+αrvr are all in S, which contradicts the requirement of the lemma. 2
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Our construction for mergers is based on the construction of Lu, Reingold, Vadhan and
Wigderson [12]. The following lemma (and its proof) gives our basic construction.12

Lemma 4.5 For any p,m, such that p|m, and any n, r, such that n = m · r, and any b, k, γ,
there exists an explicit [d, (n, b)1:k 7→ (m, b′) ∼ γ′]-strong-merger, such that,

d = k · r · p,

b′ = m− (2/γ) · (m+ n− b)/(r + 1),

γ′ = γ + 2r/2p.

Proof:
Denote l = m/p. Let F be a finite field of size 2p. Given z ∈ {0, 1}d, we think of z as a vector
(z1,1, ..., zk,r) ∈ F

kr. Given x = (x1, ..., xk) ∈ {0, 1}
n·k, we think of each xi ∈ {0, 1}

n as a vector
(xi,1, ..., xi,r), where each xi,j is in {0, 1}

m. We think of each xi,j ∈ {0, 1}
m as a vector in Fl.

More generally, we think of {0, 1}m as the vector space Fl.

Define M : {0, 1}d × {0, 1}n·k → {0, 1}m by,

M(z, x) =
k
∑

i=1

r
∑

j=1

zi,j · xi,j ∈ F
l,

(where the operations are in the vector space Fl).

Let X = (X1, ..., Xk) be an (n, b)
1:k-source. Thus, every Xi is of length n bits and at

least one Xi is of min-entropy ≥ b. W.l.o.g., assume that X1 = (X1,1, ..., X1,r) is of min-
entropy ≥ b. Hence, by Lemma 2.3, H(X1,1, ..., X1,r) ≥ b, where H denotes the Shannon’s
entropy function.

Denote by v1, ..., vkr the standard base for the vector space F
kr. In particular, v1, ..., vr are

the first r vectors in the standard base.

For every z ∈ Fkr, denote
Yz =M(z,X).

For every z ∈ Fkr and every non-zero α1, ..., αr ∈ F, the values of the random variables
Yz, Yz+α1v1 , ..., Yz+αrvr

determine the values of X1,1, ..., X1,r (by X1,i = (Yz+αivi
− Yz)/αi).

Hence, by basic properties of the entropy function (see for example [7]),

H(Yz) +H(Yz+α1v1) + · · ·+H(Yz+αrvr
) ≥

H(Yz, Yz+α1v1 , ..., Yz+αrvr
) ≥ H(X1,1, ..., X1,r) ≥ b.

Hence, at least one of the random variables Yz, Yz+α1v1 , ..., Yz+αrvr
has entropy ≥ b/(r + 1),

and by Lemma 2.4 that variable is γ-close to an (m, b′)-source, where

b′ = m−
2

γ
·

(

m−
b

r + 1

)

= m−
2

γ
·
m · (r + 1)− b

r + 1
= m−

2

γ
·
m+ n− b

r + 1
.

12We note that a better analysis of the same construction, using min-entropy rather than entropy, can
possibly be done, and may be included in later versions of this work.
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Denote by S ⊂ Fkr the set of all z ∈ Fkr, such that, Yz is not γ-close to an (m, b
′)-source.

Then S satisfies the conditions of Lemma 4.4 (with k′ = kr), and hence |S| ≤ r · |F|kr−1. That
is, S is of fraction ≤ r/2p of z ∈ Fkr.

Thus, for at least 1−r/2p fraction of z ∈ Fkr, the distribution ofM(z,X) = Yz is γ-close to
an (m, b′)-source. Hence, the average over z ∈ Fkr of the minimal distance of the distribution
of M(z,X) and a distribution of an (m, b′)-source is ≤ γ + 2r/2p. 2

We are now ready to give the proof for Theorem 9.

Proof of Theorem 9: (Strong-Merger)
The proof follows immediately from Lemma 4.5. We choose in Lemma 4.5 a constant r, such
that 1/(r + 1) is negligible compared to δ, and we fix m = dn/re. We then increase n to
be exactly m · r by adding up to r − 1 zeros. (We choose n0 to be large enough, such that
adding at most r − 1 zeros affects δ in a negligible factor). We choose a constant p, such
that 2r/2p is negligible compared to γ ′, and we fix γ = γ ′ − 2r/2p. We get in Lemma 4.5,
d = k · r · p (which is a constant), b′ ≈ m − (2/γ) ·m · δ and γ ′ ≈ γ (where we use the sign
≈ to denote that we ignored negligible factors). Hence, b′ ≈ m ·(1−2δ/γ ′) ≥ m ·(1−4δ/γ ′). 2

4.3 Seeded-Condensers

Theorem 8 (Strong-Seeded-Condenser) is proved by composing the somewhere-condenser of
Theorem 10 and the merger of Theorem 9. Formally, we will need the following composition
lemma.

Lemma 4.6 Let C : {0, 1}n1 → {0, 1}n2·k be an [(n1, b1) 7→ (n2, b2)
1:k ∼ γ1]-somewhere-

condenser, and let M : {0, 1}d × {0, 1}n2·k → {0, 1}m be a [d, (n2, b2)
1:k 7→ (m, b′) ∼ γ2]-

strong-merger. Denote by C ′ : {0, 1}d × {0, 1}n1 → {0, 1}m the following composition of M
and C: for every z ∈ {0, 1}d and x ∈ {0, 1}n1, we define C ′(z, x) = M(z, C(x)). Then, C ′ is
a [d, (n1, b1) 7→ (m, b′) ∼ γ1 + γ2]-strong-seeded-condenser.

Proof:
The proof is straight forward from the definitions. 2

We are now ready to give the proof for Theorem 8.

Proof of Theorem 8: (Strong-Seeded-Condenser)
The proof follows by composing Theorem 10 and Theorem 9, using Lemma 4.6. Given an
(n, δn)-source, we use Theorem 10 to transform its distribution into a distribution that is,
say, γ/2-close to a convex combination of distributions of (n′, δ′′n′)1:k-sources, with, say, δ′′ ≥
1−δγ/10, and such that k is constant and n′ = Ω(n). We can now use Theorem 9 to transform
this distribution into a distribution that is γ-close to a distribution of an (m,m− δm)-source,
such that m = Ω(n). By Theorem 9, we can do that using a seed of length d = O(1).
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Note that the merger of Theorem 9 functions well (i.e., with the parameters as above)
on any (n′, δ′′n′)1:k-source, and hence it functions well (i.e., with the same parameters as
above) also on a convex combination of distributions of (n′, δ′′n′)1:k-sources. This follows since
a convex combination of distributions of (m,m − δm)-sources is also a distribution of an
(m,m− δm)-source (as follows easily from the definitions).

Since the merger of Theorem 9 is strong, it can be verified (according to the same lines)
that the seeded-condenser that we obtain is strong (as is stated in Lemma 4.6). 2

5 Multi-Sources-Extractors

Our results on multi-sources extractors are obtained by composing (in various ways) com-
ponents that were derived in previous sections. A special attention is given to the notion
of strong extraction, and to the independence (or almost independence) of different random
variables.

5.1 Proof of Theorem 5

Theorem 5 (Multi-Sources-Extractor) is proved by composing the somewhere-condenser of
Theorem 10 and the two-sources-extractor of Theorem 1. We will use the following composi-
tion lemma.

Lemma 5.1 Let C : {0, 1}n1 → {0, 1}n·(k−1) be an [(n1, b1) 7→ (n, b)1:k−1 ∼ γ1]-somewhere-
condenser. For every i ∈ {2, ..., k}, let Ei : {0, 1}

n×{0, 1}ni → {0, 1}m be an [(n, b), (ni, bi) 7→
m ∼ γ2]-strong-two-sources-extractor. Denote by E : {0, 1}

n1 × · · · × {0, 1}nk → {0, 1}m the
following composition of C and E2, ..., Ek: for every x1 ∈ {0, 1}

n1 , ..., xk ∈ {0, 1}
nk , we define

E(x1, ..., xk) =
k
⊕

i=2

Ei(C(x1)i−1, xi),

where C(x1)1, ..., C(x1)k−1 ∈ {0, 1}
n denote the k − 1 coordinates of C(x1) (i.e., C(x1) =

(C(x1)1, ..., C(x1)k−1)). Then, E is a strong-in-the-first-input [{(ni, bi)}
k
1 7→ m ∼ γ1 + γ2]-

multi-sources-extractor.

Proof:
Let X1, ..., Xk be independent random variables, such that each Xi is an (ni, bi)-source.

First, assume that C(X1) is an (n, b)
1:k−1-source. Hence, one of the random variables

C(X1)1, ..., C(X1)k−1 is an (n, b)-source. W.l.o.g., assume that C(X1)1 is an (n, b)-source.
Since E2 is an [(n, b), (n2, b2) 7→ m ∼ γ2]-strong-two-sources-extractor, the distribution of the
random variable

(C(X1)1, E2(C(X1)1, X2))
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is γ2-close to (C(X1)1, Um). Hence, the distribution of the random variable

(X1, C(X1)1, E2(C(X1)1, X2))

is γ2-close to (X1, C(X1)1, Um) (this follows since C(x1)1 is a function of x1, or more precisely,
since for every x1, x

′
1, such that C(x1)1 = C(x′1)1, the distributions of E2(C(x1)1, X2) and

E2(C(x
′
1)1, X2) are the same). Hence, obviously, the distribution of the random variable

(X1, E2(C(X1)1, X2))

is γ2-close to (X1, Um). Hence, the distribution of the random variable

(X1, X3, ..., Xk, E2(C(X1)1, X2))

is γ2-close to (X1, X3, ..., Xk, Um) (this follows since X3, ..., Xk are independent of X1, X2).
Hence, the distribution of the random variable

(X1, E3(C(X1)2, X3), ..., Ek(C(X1)k−1, Xk), E2(C(X1)1, X2))

is γ2-close to (X1, E3(C(X1)2, X3), ..., Ek(C(X1)k−1, Xk), Um). Hence, the distribution of the
random variable

(X1,
k
⊕

i=2

Ei(C(X1)i−1, Xi))

is γ2-close to (X1, Um).

Next, assume that the distribution of C(X1) is a convex combination of distributions of
(n, b)1:k−1-sources. Then, the same analysis as above, applied for each one of these distributions
separately, shows that the random variable

(X1,
k
⊕

i=2

Ei(C(X1)i−1, Xi))

is γ2-close to (X1, Um).

Since we know that the distribution of C(X1) is γ1-close to a combination of distributions
of (n, b)1:k−1-sources, we can conclude that the random variable

(X1,
k
⊕

i=2

Ei(C(X1)i−1, Xi))

is (γ1+γ2)-close to (X1, Um). Thus, E is a strong-in-the-first-input [{(ni, bi)}
k
1 7→ m ∼ γ1+γ2]-

multi-sources-extractor. 2

Proof of Theorem 5: (Multi-Sources-Extractor)
Theorem 5 is proved by composing the somewhere-condenser of Theorem 10 and the two-
sources-extractor of Theorem 1, using Lemma 5.1.
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By Theorem 10, for the constant δ, there exist constants c, k, α, ρ1, such that for n1 ≥ c
there exists an explicit [(n1, δn1) 7→ (n, b)1:k−1 ∼ γ1]-somewhere-condenser, such that,

n ≥ α · n1,

b ≥ 0.9 · n,

γ1 ≤ 2
−ρ1·n.

Assume that n1, ..., nk, b1, ..., bk satisfy Property 1.7 with constants c, δ (where c is assumed
to be large enough). Then, by Theorem 1, for every i ∈ {2, ..., k}, there exists an explicit
[(n, b), (ni, bi) 7→ m ∼ γ2]-strong-two-sources-extractor such that,

m ≥ min[n, b2, ..., bk]/200,

γ2 ≤ 2
−1.5·m.

Hence, by Lemma 5.1, there exists an explicit strong-in-the-first-input [{(ni, bi)}
k
1 7→ m ∼

γ1 + γ2]-multi-sources-extractor. 2

5.2 Proof of Theorem 6

Theorem 6 (Strong-Seeded-Two-Sources-Extractor) is proved by composing the seeded-condenser
of Theorem 8 and the two-sources-extractor of Theorem 1. We will use the following compo-
sition lemma.

Lemma 5.2 Let C : {0, 1}n3 × {0, 1}n1 → {0, 1}n be an [n3, (n1, b1) 7→ (n, b) ∼ γ1]-strong-
seeded-condenser, and let E : {0, 1}n × {0, 1}n2 → {0, 1}m be an [(n, b), (n2, b2) 7→ m ∼ γ2]-
strong-two-sources-extractor. Denote by E ′ : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m the
following composition of C and E: for every x1 ∈ {0, 1}

n1 , x2 ∈ {0, 1}
n2 , x3 ∈ {0, 1}

n3, we
define E ′(x1, x2, x3) = E(C(x3, x1), x2). Then, E

′ is an [{(ni, bi)}
3
1 7→ m ∼ γ1 + γ2]-multi-

sources-extractor, where b3 = n3. Moreover, E ′ is strong in the sets {1, 3} and {2, 3}.

Proof:
Let X1, X2, X3 be independent random variables, such that each Xi is an (ni, bi)-source.

Since C : {0, 1}n3 × {0, 1}n1 → {0, 1}n is an [n3, (n1, b1) 7→ (n, b) ∼ γ1]-strong-seeded-
condenser, the average over x3 ∈ {0, 1}

n3 of the minimal distance between the distribution of
the random variable

C(x3, X1)

and a distribution of an (n, b)-source is ≤ γ1. Hence, since E : {0, 1}
n × {0, 1}n2 → {0, 1}m is

an [(n, b), (n2, b2) 7→ m ∼ γ2]-strong-two-sources-extractor, the average over x3 ∈ {0, 1}
n3 of

the minimal distance between the distribution of the random variable

(X2, E(C(x3, X1), X2))
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and the distribution (X2, Um) is ≤ γ1 + γ2. Hence, since X3 is uniformly distributed over
{0, 1}n3 , the distribution of the random variable

(X3, X2, E(C(X3, X1), X2))

is (γ1 + γ2)-close to (X3, X2, Um). Thus, E
′ is an [{(ni, bi)}

3
1 7→ m ∼ γ1 + γ2]-multi-sources-

extractor, strong in the set {2, 3}.

Since C : {0, 1}n3 × {0, 1}n1 → {0, 1}n is an [n3, (n1, b1) 7→ (n, b) ∼ γ1]-seeded-condenser,
the distribution of the random variable

C(X3, X1)

is γ1-close to a distribution of an (n, b)-source. Hence, since E : {0, 1}
n × {0, 1}n2 → {0, 1}m

is an [(n, b), (n2, b2) 7→ m ∼ γ2]-strong-two-sources-extractor, the distribution of the random
variable

(C(X3, X1), E(C(X3, X1), X2))

is (γ1 + γ2)-close to (C(X3, X1), Um). Hence, the distribution of the random variable

(X1, X3, C(X3, X1), E(C(X3, X1), X2))

is (γ1 + γ2)-close to (X1, X3, C(X3, X1), Um) (this follows as in the proof of Lemma 5.1, since
C(x3, x1) is a function of x1, x3, or more precisely, since for every x1, x3, x

′
1, x

′
3, such that

C(x3, x1) = C(x′3, x
′
1), the distributions of E(C(x3, x1), X2) and E(C(x′3, x

′
1), X2) are the

same). Hence, the distribution of the random variable

(X1, X3, E(C(X3, X1), X2))

is (γ1 + γ2)-close to (X1, X3, Um). Thus, E
′ is an [{(ni, bi)}

3
1 7→ m ∼ γ1 + γ2]-multi-sources-

extractor, strong in the set {1, 3}. 2

Proof of Theorem 6: (Strong-Seeded-Two-Sources-Extractor)
Theorem 6 is proved by composing the seeded-condenser of Theorem 8 and the two-sources-
extractor of Theorem 1, using Lemma 5.2.

By Theorem 8, for the constants δ, γ, there exist constants c, n3, α > 0, such that for n1 ≥ c
there exists an explicit [n3, (n1, δn1) 7→ (n, b) ∼ γ/2]-strong-seeded-condenser, such that,

n ≥ α · n1,

b ≥ 0.9 · n.

Assume that n1, n2, b1, b2 satisfy Property 1.7 with constants c, δ (where c is assumed to
be large enough). Then, by Theorem 1, there exists an explicit [(n, b), (n2, b2) 7→ m ∼ γ/2]-
strong-two-sources-extractor such that,

m ≥ min[n, b2]/200.

Hence, by Lemma 5.2, there exists an explicit [{(ni, bi)}
3
1 7→ m ∼ γ]-multi-sources-

extractor, strong in the sets {1, 3} and {2, 3} (where b3 = n3). 2
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5.3 Proof of Theorem 7

Before proving Theorem 7 (Three-Sources-Extractor), we will need to prove the following
theorem. The theorem shows how to extract a constant number of random bits from three
sources that satisfy Property 1.7. Moreover, the extracted bits are independent of the sets of
sources {1, 2} and {1, 3}. Roughly speaking (and for the important part of the range of the
parameters), the theorem shows that if one source of min-entropy rate δ is available, as well as
two sources of logarithmic min-entropy, then one can extract a constant number of bits, with
a constant probability of error, and these bits are independent of the sets of sources {1, 2}
and {1, 3}.

Theorem 12 For any constants δ, γ > 0 and any constant m′ > 0, there exists a constant
c > 0, such that for any n1, n2, n3, b1, b2, b3 > 0 that satisfy Property 1.7 with constants c, δ,
there exists an explicit [{(ni, bi)}

3
1 7→ m′ ∼ γ]-multi-sources-extractor, strong in the sets {1, 2}

and {1, 3}.

Theorem 12 is proved by composing the somewhere-condenser of Theorem 10, the two-
sources-extractor of Theorem 1, and an optimal strong-two-sources-extractor (whose existence
is guaranteed by a probabilistic argument) and that acts on a constant number of bits (and
hence it can be found in constant time). The idea for this composition is borrowed from [5].
We will use the following composition lemma.

Lemma 5.3 Let C : {0, 1}n1 → {0, 1}n·k be an [(n1, b1) 7→ (n, b)1:k ∼ γ1]-somewhere-
condenser. Let E2 : {0, 1}

n × {0, 1}n2 → {0, 1}m be an [(n, b), (n2, b2) 7→ m ∼ γ2]-strong-two-
sources-extractor, and let E3 : {0, 1}

n × {0, 1}n3 → {0, 1}m be an [(n, b), (n3, b3) 7→ m ∼ γ2]-
strong-two-sources-extractor. Let E ′ : {0, 1}m·k×{0, 1}m·k → {0, 1}m

′

be an [(mk,m), (mk,m) 7→
m′ ∼ γ3]-strong-two-sources-extractor. Denote by E : {0, 1}

n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m
′

the following composition of C,E2, E3, E
′: for every x1 ∈ {0, 1}

n1 , x2 ∈ {0, 1}
n2 , x3 ∈ {0, 1}

n3,
we define

y2 = (E2(C(x1)1, x2), . . . , E2(C(x1)k, x2)) ∈ {0, 1}
m·k,

y3 = (E3(C(x1)1, x3), . . . , E3(C(x1)k, x3)) ∈ {0, 1}
m·k,

E(x1, x2, x3) = E ′(y2, y3),

where C(x1)1, ..., C(x1)k ∈ {0, 1}
n denote the k coordinates of C(x1)

(i.e., C(x1) = (C(x1)1, ..., C(x1)k)). Then, E is an [{(ni, bi)}
3
1 7→ m′ ∼ γ1 + 2γ2 + γ3]-multi-

sources-extractor. Moreover, E is strong in the sets {1, 2} and {1, 3}.

Proof:
Let X1, X2, X3 be independent random variables, such that each Xi is an (ni, bi)-source. Let

Y2 = (E2(C(X1)1, X2), . . . , E2(C(X1)k, X2)),

Y3 = (E3(C(X1)1, X3), . . . , E3(C(X1)k, X3)).

For every x1 ∈ {0, 1}
n1 , let

Y2|X1=x1
= (E2(C(x1)1, X2), . . . , E2(C(x1)k, X2)),
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Y3|X1=x1
= (E3(C(x1)1, X3), . . . , E3(C(x1)k, X3)).

First, assume that C(X1) is an (n, b)
1:k-source. Hence, one of the random variables

C(X1)1, ..., C(X1)k is an (n, b)-source. W.l.o.g., assume that C(X1)1 is an (n, b)-source. Since
E2 is an [(n, b), (n2, b2) 7→ m ∼ γ2]-strong-two-sources-extractor, the distribution of the ran-
dom variable

(C(X1)1, E2(C(X1)1, X2))

is γ2-close to (C(X1)1, Um). Hence, the distribution of the random variable

(X1, C(X1)1, E2(C(X1)1, X2))

is γ2-close to (X1, C(X1)1, Um) (this follows as in the proof of Lemma 5.1, since C(x1)1 is
a function of x1, or more precisely, since for every x1, x

′
1, such that C(x1)1 = C(x′1)1, the

distributions of E2(C(x1)1, X2) and E2(C(x
′
1)1, X2) are the same). Hence, obviously, the

distribution of the random variable

(X1, E2(C(X1)1, X2))

is γ2-close to (X1, Um).

Hence, the expectation overX1 = x1 of the distance between the distribution of the random
variable E2(C(x1)1, X2) and the uniform distribution Um is ≤ γ2. Hence, the expectation over
X1 = x1 of the minimal distance between the distribution of the random variable Y2|X1=x1

and a distribution of an (mk,m)-source is ≤ γ2. In the same way, the expectation over
X1 = x1 of the minimal distance between the distribution of the random variable Y3|X1=x1

and a distribution of an (mk,m)-source is ≤ γ2. Since for every x1, the random variables
Y2|X1=x1

and Y3|X1=x1
are independent, the expectation over X1 = x1 of the minimal distance

between the distribution of the random variable (Y2|X1=x1
, Y3|X1=x1

) and a distribution of a
pair of independent (mk,m)-sources is ≤ 2γ2.

Therefore, since E ′ is an [(mk,m), (mk,m) 7→ m′ ∼ γ3]-strong-two-sources-extractor, the
expectation over X1 = x1 of the distance between the distribution of the random variable

(Y2|X1=x1
, E ′(Y2|X1=x1

, Y3|X1=x1
))

and the distribution (Y2|X1=x1
, Um′) is ≤ 2γ2 + γ3. Hence, the distribution of the random

variable
(X1, Y2, E

′(Y2, Y3))

is (2γ2 + γ3)-close to (X1, Y2, Um′). This implies that the distribution of the random variable

(X1, X2, Y2, E
′(Y2, Y3))

is (2γ2 + γ3)-close to (X1, X2, Y2, Um′) (as before and as in the proof of Lemma 5.1, this
follows since for a fixed X1 = x1 the random variable Y2 is a function of X2 (and Y3 is
independent of X2), or more precisely, since for every x1, x2, x

′
2, such that the value of Y2

when X1 = x1, X2 = x2 is the same as its value when X1 = x1, X2 = x′2, the distribution
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of E ′(Y2, Y3) conditioned on X1 = x1, X2 = x2 is the same as its distribution conditioned on
X1 = x1, X2 = x′2). We can hence conclude that the distribution of the random variable

(X1, X2, E(X1, X2, X3))

is (2γ2 + γ3)-close to (X1, X2, Um′).

Next, assume that the distribution of C(X1) is a convex combination of distributions of
(n, b)1:k-sources. Then, the same analysis as above, applied for each one of these distributions
separately, shows that the random variable

(X1, X2, E(X1, X2, X3))

is (2γ2 + γ3)-close to (X1, X2, Um′).

Since we know that the distribution of C(X1) is γ1-close to a combination of distributions
of (n, b)1:k-sources, we can conclude that the random variable

(X1, X2, E(X1, X2, X3))

is (γ1+2γ2+γ3)-close to (X1, X2, Um′). Thus, E is an [{(ni, bi)}
3
1 7→ m′ ∼ γ1+2γ2+γ3]-multi-

sources-extractor, strong in the set {1, 2}. In the same way, E is also strong in the set {1, 3}. 2

Proof of Theorem 12:
Theorem 12 is proved using Lemma 5.3, by composing the somewhere-condenser of Theo-
rem 10, the two-sources-extractor of Theorem 1, and an optimal strong-two-sources-extractor
that acts on a constant number of bits.

By Theorem 10, for the constants δ, γ, there exist constants c, k, α, such that for n1 ≥ c
there exists an explicit [(n1, δn1) 7→ (n, b)1:k ∼ γ/4]-somewhere-condenser, such that,

n ≥ α · n1,

b ≥ 0.9 · n.

By a standard probabilistic argument, for the constants k,m′, γ, there exists a (large
enough) constant m, such that there exists an [(mk,m), (mk,m) 7→ m′ ∼ γ/4]-strong-two-
sources-extractor, E ′. Since E ′ acts on a constant number of bits, it can be found in constant
time by an exhaustive search.

Assume that n1, n2, n3, b1, b2, b3 satisfy Property 1.7 with constants c, δ (where c is assumed
to be large enough). Then, by Theorem 1, for every i ∈ {2, 3}, there exists an explicit
[(n, b), (ni, bi) 7→ m ∼ γ/4]-strong-two-sources-extractor.

Hence, by Lemma 5.3, there exists an explicit [{(ni, bi)}
3
1 7→ m′ ∼ γ]-multi-sources-

extractor, strong in the sets {1, 2} and {1, 3}. 2

Proof of Theorem 7: (Three-Sources-Extractor)
Theorem 7 is proved by composing the multi-sources-extractor of Theorem 12 and the multi-
sources-extractor of Theorem 6.
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Let X1, X2, X3 be independent random variables, such that each Xi is an (ni, bi)-source,
and such that the requirements of Theorem 7 are satisfied (for a large enough constant c).

By Theorem 12, for any constant m′ (that may depend on the constants δ, γ), if we assume
that the constant c is large enough then we can extract from X1, X2, X3, a string Z

′ of m′

random bits, with distribution that is γ/2-close to the uniform distribution. Moreover, the
distribution of (X1, X2, Z

′) is γ/2-close to (X1, X2, Um′).

By Theorem 6, if we assume that the constants m′ and c are large enough then we can
extract from X1, X2, Z

′, a string Z of m random bits, with distribution that is γ-close to the
uniform distribution, where m ≥ min[αn1, b2]/200 (where α > 0 is a small enough constant,
that may depend on the constants δ, γ). Moreover, the distribution of (X1, Z) is γ-close to
(X1, Um). 2

5.4 Proof of Corollary 11

Corollary 11 is an easy corollary of Theorem 6.

Proof of Corollary 11: (Ramsey-Graph)
We fix the constant γ in Theorem 6 to be 0.1, and we let the constant c to be the one
from Theorem 6, and the constant r to be 22

n3 , (where n3 is the constant from Theo-
rem 6). We only consider the first bit extracted by the multi-sources-extractor of Theo-
rem 6, (i.e., we reduce m to be 1). We think of the multi-sources-extractor of Theorem 6,
E : {0, 1}n1×{0, 1}n2×{0, 1}n3 → {0, 1}, as a function E : {0, 1}n1×{0, 1}n2 → {0, 1}2

n3 . We
think of this function as a coloring of the the complete bipartite graph of size 2n1 × 2n2 with r
colors. By Theorem 6 we know that there is no monochromatic subgraph of size larger than
2δn1× (n1)

5, as such a subgraph implies the existence of independent X1, X2, X3, such that X1

is an (n1, δn1)-source, X2 is an (n2, 5 log n1)-source, and X3 is an (n3, n3)-source, and such that
the first output bit of the multi-sources-extractor of Theorem 6 is constant on these sources. 2
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