
The Complexity of Satisfiability Problems:

Refining Schaefer’s Theorem

Eric Allender∗ Michael Bauland† Neil Immerman‡

Henning Schnoor† Heribert Vollmer†

November 18, 2004

Abstract

Schaefer proved in 1978 that the Boolean constraint satisfaction problem for
a given constraint language is either in P or is NP-complete, and identified all
tractable cases. Schaefer’s dichotomy theorem actually shows that there are at
most two constraint satisfaction problems, up to polynomial-time isomorphism (and
these isomorphism types are distinct if and only if P 6= NP). We show that if one
considers logspace isomorphisms, then there are exactly five isomorphism types
(assuming that the complexity classes NP,P,NL,⊕L, and L are all distinct). We
also consider AC0 reductions, which provide a more detailed picture of the structure
of P. We show that for constraint satisfaction problems that include the equality
relation, there are exactly six isomorphism types under AC0 isomorphisms (under
the same assumption). Our work leaves open the question of whether there is a
finite number of isomorphism types of constraint satisfaction problems under AC0

isomorphisms.

1 Introduction

In 1978, Schaefer classified the Boolean constraint satisfaction problem and showed
that, depending on the allowed relations in a propositional formula, the problem is

∗Department of Computer Science, Rutgers University, Piscataway, NJ 08855,
allender@cs.rutgers.edu.

†Theoretische Informatik, Universität Hannover, Appelstraße 4, D-30167 Hannover, Germany,
{bauland|schnoor|vollmer}@thi.uni-hannover.de. Supported in part by DFG grant Vo 630/5-1.

‡Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003,
immerman@cs.umass.edu.

1

Electronic Colloquium on Computational Complexity, Report No. 100 (2004)

ISSN 1433-8092

either in P or is NP-complete [Sch78]. This famous “dichotomy theorem” overlooks
the fact that different problems in P have quite different complexity, and there is now
a well-developed complexity theory to classify different problems in P. Furthermore,
in Schaefer’s original work (and in the many subsequent simplified presentations
of his theorem [CKS01]) it is already apparent that certain classes of constraint
satisfaction problems are either trivial (the 0-valid and 1-valid relations) or are
solvable in NL (the bijunctive relations) or ⊕L (the affine relations), whereas for
other problems (the Horn and anti-Horn relations) he provides only a reduction to
problems that are complete for P. Is this a complete list of complexity classes that
can arise in the study of constraint satisfaction problems? Given the amount of
attention that the dichotomy theorem has received, it is surprising that no paper
has addressed the question of how to refine Schaefer’s classification beyond some
steps in this direction in Schaefer’s original paper (see [Sch78, Theorem 5.1]).

Our own interest in this question grew out of the observation that there is at least
one other fundamental complexity class that arises naturally in the study of Boolean
constraint satisfaction problems that does not appear in the list (AC0,NL,⊕L,P) of
feasible cases identified by Schaefer. This is the class SL (symmetric logspace) that
has very recently been shown by Reingold to coincide with deterministic logspace
[Rei04]. (Theorem 5.1 of [Sch78] does already present examples of constraint sat-
isfaction problems that are complete for SL.) Are there other classes that arise in
this way?

The answer is more complex than we anticipated.
If we examine constraint satisfaction problems using logspace reducibility ≤ log

m ,
then we are able to show that this list of complexity classes is exhaustive. Every
constraint satisfaction problem is isomorphic to the standard complete set for one
of the classes NP,P,⊕L,NL, or L under isomorphisms computable and invertible
in logspace.

However, this overlooks the fact that there is a rich collection of complexity
classes lying within logspace; the correct tool to investigate these classes is AC0

reducibility ≤AC0

m
. We are able to show that all constraint satisfaction problems

that are complete for NP,P,⊕L, and NL under ≤log
m reductions are already complete

under ≤AC0

m
reductions, and hence by [Agr01] these problems are equivalent to

the standard complete sets for those classes under AC0 isomorphisms ≡AC0

iso . The
situation becomes more complex when we examine constraint satisfaction problems
in L.

All constraint satisfaction problems in L that include the equality predicate are
either trivially solvable in AC0 or they are complete for L under ≤AC0

m
and hence

are ≡AC0

iso -isomorphic to the standard L-complete set. Our tools break down when
investigating constraint satisfaction problems in L when the equality predicate is not
present. We have some partial results for this case, but we leave open the question
of whether there is any constraint satisfaction problem outside of AC0 that is not

2

complete for L, or even whether there are are infinitely many ≡AC0

iso types.

The proofs use a connection between complexity of constraint languages and
universal algebra which has been very useful in analyzing complexity issues of con-
straints. An introduction to this connection can be found in [Pip97].

2 Preliminaries

An n-ary Boolean relation is a subset of {0, 1}n. For a set V of variables, a con-
straint application C is an application of an n-ary Boolean relation R to an n-tuple
of variables (x1, . . . , xn) from V . An assignment I : V → {0, 1} satisfies the con-
straint application R(x1, . . . , xn) iff (I(x1), . . . , I(xn)) ∈ R. In this paper we use the
standard correspondence between Boolean relations and propositional formulas: A
formula ϕ(x1, . . . , xn) defines the relation Rϕ = {(α1, . . . , αn) | ϕ(α1, . . . , αn) = 1}.
The meaning should always be clear from the context.

A constraint language is a finite set of Boolean relations. The Boolean Constraint
Satisfaction Problem over a constraint language Γ (CSP(Γ)) is the question if a given
set ϕ of Boolean constraint applications using relations from Γ is simultaneously
satisfiable, i.e. if there exists an assignment I : V → {0, 1}, such that I satisfies
every C ∈ ϕ. It is easy to see that the Boolean CSP over some language Γ is the
same as satisfiability of conjunctive Γ-formulas. A well-known restriction of the
general satisfiability problem is 3SAT, which can be seen as the CSP problem over
the language Γ3SAT := {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3)}.

There is a very useful connection between the complexity of the CSP problem
and universal algebra, which requires a few definitions:

Definition A class of Boolean functions is called closed or a clone, if it is closed
under superposition. (As explained in the survey articles [BCRV03, BCRV04] being
closed under superposition is essentially the same thing as being closed under arbi-
trary composition.) Since the intersection of clones is again a clone, we can define,
for a set B of Boolean functions, 〈B〉 as the smallest clone containing B.

It is clear that 〈B〉 is the set of Boolean functions that can be calculated by
Boolean circuits using only gates for functions from B [BCRV03, BCRV04].

It is easy to see that the set of clones forms a lattice. For the Boolean case,
Emil Post identified all clones (Table 1) and their inclusion structure (Figure 1).
The clones are interesting for the study of the complexity of CSPs, because the
complexity of CSP(Γ) depends on the closure properties of the relations in Γ, which
we will define next.

3

Name Definition Base
BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotonic } {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn
0

{f ∈ BF | f is 0-separating of degree n} {→,dual(hn)}
S0 {f ∈ BF | f is 0-separating } {→}
Sn
1

{f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sn
02

Sn
0
∩ R2 {x ∨ (y ∧ z), dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01

Sn
0
∩ M {dual(hn), 1}

S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn
00

Sn
0
∩ R2 ∩ M {x ∨ (y ∧ z), dual(hn)}

S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn
12

Sn
1
∩ R2 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11

Sn
1
∩ M {hn, 0}

S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn
10

Sn
1
∩ R2 ∩ M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f |f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩ M {xy ∨ yz ∨ xz}
L {f |f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V {f | There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
V0 [{∨}] ∪ {0} {∨, 0}
V1 [{∨}] ∪ {1} {∨, 1}
V2 [{∨}] {∨}
E {f | There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E0 [{∧}] ∪ {0} {∧, 0}
E1 [{∧}] ∪ {1} {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ {0} ∪ {1} {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ {0} ∪ {1} {id, 0, 1}
I0 [{id}] ∪ {0} {id, 0}
I1 [{id}] ∪ {1} {id, 1}
I2 [{id}] {id}

Table 1: List of all closed classes of Boolean functions, and their bases. The function hn

is defined as: hn(x1, . . . , xn+1) :=

n+1
∨

i=1

x1 ∧ x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1

4

R1 R0

BF

R2

M

M1 M0

M2

S2

0

S3

0

S0

S2

02

S3

02

S02

S2

01

S3

01

S01

S2

00

S3

00

S00

S2

1

S3

1

S1

S2

12

S3

12

S12

S2

11

S3

11

S11

S2

10

S3

10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Figure 1: Graph of all closed classes of Boolean functions

5

Definition A k-ary relation R is closed under an n-ary Boolean function f , or
f is a polymorphism of R, if for all x1, . . . , xn ∈ R with xi = (xi[1], xi[2], . . . , xi[k]),
we have

(f(x1[1], . . . , xn[1]), f(x1[2], . . . , xn[2]), . . . , f(x1[k], . . . , xn[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R), and for a set Γ of Boolean
relations we define Pol(Γ) := {f | f ∈ Pol(R) for every R ∈ Γ}. For a set B of
Boolean functions, Inv(B) := {R | B ⊆ Pol(R)} is the set of invariants of B.

It is easy to see that every set of the form Pol(Γ) is a clone. As discussed in the
surveys [BCRV03, BCRV04], the operators Pol and Inv form a “Galois connection”
between the lattice of clones and certain sets of Boolean relations, which is very
useful for complexity analysis of the CSP problem. The concept of relations closed
under certain Boolean functions is interesting, because many properties of Boolean
relations can be expressed using this terminology. For example, a set of relations
can be expressed by Horn-formulas if and only if every relation in the set is closed
under the binary AND function. Horn is one of the properties that ensures the
corresponding satisfiability problem to be tractable. More generally, it holds that
tractability of formulas over a given set of relations only depends on the set of its
polymorphisms. A proof of the following theorem can be found in e.g. [JCG97] and
[Dal00]:

Theorem 2.1 If Pol(Γ2) ⊆ Pol(Γ1), then every R ∈ Γ1 can be expressed using
relations from Γ2, equality, and introduction of new existentially quantified variables.

Therefore:

Theorem 2.2 Let Γ1 and Γ2 be sets of Boolean relations such that Γ1 is finite and
Pol(Γ2) ⊆ Pol(Γ1). Then CSP(Γ1)≤

p
mCSP(Γ2).

Trivially, the binary equality predicate = is closed under every Boolean function.
Thus, = is contained in every set Inv(B) for a clone B (these sets often are called co-
clones). On the other hand, every relation is closed under the projection function,
φn

i (x1, . . . , xn) = xi. It is clear that when a set of relations is “big”, the set of
its polymorphisms is “small”. So the most general case is a constraint language Γ
such that Pol(Γ) only contains the projections, and these cases of the CSP are NP-
complete. An example for this is the language Γ3SAT from above: It can be shown
that Pol(Γ3SAT) only contains the projections, and therefore 3SAT is NP-complete.

As we have seen in the above theorem, the complexity of the CSP problem for a
given constraint language is determined by the set of its polymorphisms. However,
this only holds when we are just interested in the question if a given CSP is in P or

6

NP-complete (as Schaefer showed, one of these cases always holds). For complexity
classes below P, the Galois connection has its limits: For constraint languages Γ
such that CSP(Γ) is polynomial time solvable, the complexity of CSP(Γ) is not
completely determined by the set of polymorphisms of Γ, as can easily be seen in
the following important example:

Example 2.3 Let Γ1 := {{(0)}, {(1)}}, Γ2 := Γ1∪{=}. It is obvious that Pol(Γ1) =
Pol(Γ2); the set of polymorphisms is the clone R2. Formulas over Γ1 only contain
clauses of the form x or x for some variable x, whereas in Γ2, we additionally have
the binary equality predicate. We will now see that CSP(Γ1) has very different
complexity than CSP(Γ2).

Satisfiability of a Γ1-formula ϕ can be decided in AC0. (For every variable x,
check if both x and x are clauses in ϕ. If this is the case, ϕ is not satisfiable. If
for all variables this does not happen, then ϕ is satisfiable. One can see that the
complexity of this problem lies in coNLOGTIME ⊆ AC0.)

In contrast, CSP(Γ2) is complete for SL under ≤AC0

m
reductions. (Recall that

SL = L [Rei04].) We show that the complement of the graph accessibility problem
(GAP) for undirected graphs, which is known to be complete for SL, can be reduced
to CSP(Γ2). Let G = (V,E) be a finite, undirected graph, and s, t vertices in V . For
every edge (v1, v2) ∈ E, add a constraint v1 = v2. Also add s and t. It is obvious
that there exists a path in G from s to t if and only if the resulting formula is not
satisfiable. In fact, it is easy to see that CSP(Γ2) is not only hard for SL, but it
also lies within SL so it is complete for L under ≤AC0

m
reductions.

The lesson to learn from this example is that the usual reduction among con-
straint satisfaction problems arising from the same co-clone is not an ≤AC0

m
reduc-

tion. The following lemma summarizes the main relationships.

Lemma 2.4 Let Γ1 and Γ2 be sets of relations over a finite set, where Γ1 is finite
and Pol(Γ2) ⊆ Pol(Γ1). Then CSP(Γ1)≤

AC0

m
CSP(Γ2 ∪ {=})≤log

m CSP(Γ2)

Proof Any relation R from Γ1 can be expressed as

R(x1, . . . , xn) ⇐⇒ R1(x1,1, . . . , x1,n1
) ∧ · · · ∧ Rm(xm,1, . . . , xm,nm)

∧(xi1 = xi2) ∧ (xi3 = xi4) · · · ∧ (xin−1
= xin)

for some Ri ∈ Γ2. (The variables xik are not necessarily pairwise distinct, and not
all of the variables xik and xi,k are necessarily from {x1, . . . , xn}.) Since this local
replacement can be computed in AC0, this establishes the first reducibility relation.

For the second reduction, we need to eliminate all of the =-constraints. We do
this by identifying variables xi1 and xi2 if and only if there is a =-path from xi1 to
xi2 in the formula. By [Rei04], this can be computed in logspace. 2

7

3 Classification

Theorem 3.1 Let Γ be a finite set of Boolean relations.

– If I0 ⊆ Pol(Γ) or I1 ⊆ Pol(Γ), then every constraint formula over Γ is satisfi-
able, and therefore CSP(Γ) is trivial.

– If Pol(Γ) ∈ {I2,N2}, then CSP(Γ) is ≤AC0

m -complete for NP.

– If Pol(Γ) ∈ {V2,E2}, then CSP(Γ) is ≤AC0

m -complete for P.

– If Pol(Γ) ∈ {L2,L3}, then CSP(Γ) is ≤AC0

m -complete for ⊕L.

– If S00 ⊆ Pol(Γ) ⊆ S2
00 or S10 ⊆ Pol(Γ) ⊆ S2

10 or Pol(Γ) ∈ {D2,M2}, then
CSP(Γ) is ≤AC0

m -complete for NL.

– If Pol(Γ) ∈ {D1,D}, then CSP(Γ) is ≤AC0

m -complete for L.

– If S02 ⊆ Pol(Γ) ⊆ R2 or S12 ⊆ Pol(Γ) ⊆ R2, then CSP(Γ) is in L, and
CSP(Γ ∪ {=}) is complete for L under ≤AC0

m
.

Theorem 3.1 is a refinement of Theorem 5.1 from [Sch78] and Theorem 6.5 from
[CKS01]. The proof follows from the lemmas in the following subsections. First, we
mention some corollaries.

Corollary 3.2 For any set Γ, CSP(Γ) is logspace-isomorphic to the standard com-
plete set for one of the following complexity classes: NP,P,NL,⊕L,L.

Proof It is immediate from Theorem 3.1 that if CSP(Γ) is not in L, then it is
complete for one of NP,P,NL and ⊕L under ≤AC0

m
reductions. By [Agr01] each of

these problems is AC0-isomorphic to the standard complete set for its class. On
the other hand, if CSP(Γ) is solvable in L then it is an easy matter to reduce any
problem A ∈ L to CSP(Γ) via a length-squaring, invertible logspace reduction (by
first checking if x ∈ A, and then using standard padding techniques to map x to a
long satisfiable instance if x ∈ A, and mapping x to a long syntactically incorrect
input if x 6∈ A). Logspace isomorphism to the standard complete set now follows
by [Har78] (since the standard complete set is complete under invertible, length-
squaring reductions). 2

Corollary 3.3 For any set Γ such that = ∈ Γ, CSP(Γ) is AC0-isomorphic either
to 0Σ∗ or to the standard complete set for one of the following complexity classes:
NP,P,NL,⊕L,L.

8

Proof The proof is nearly identical. For the case when CSP(Γ) is trivial, as above
we can provide a length-squaring reduction that is a first-order projection. Isomor-
phism now follows via [ABI97]. 2

3.1 Upper Bounds: Algorithms

First, we state results that are well known; see e.g. [Sch78],[BCRV04]:

Proposition 3.4 Let Γ be a Boolean constraint language.

1. If Pol(Γ) ∈ I2,N2, then CSP(Γ) is NP-complete. Otherwise, CSP(Γ) ∈ P.

2. L2 ⊆ Pol(Γ) implies CSP(Γ) ∈ ⊕L.

3. D2 ⊆ Pol(Γ) implies CSP(Γ) ∈ NL.

4. I0 ⊆ Pol(Γ) or I1 ⊆ Pol(Γ) implies every instance of CSP(Γ) is satisfiable by
the all-0 or the all-1 tuple, and therefore CSP(Γ) is trivial.

Lemma 3.5 Let Γ be a constraint language such that S02 ⊆ Pol(Γ) or S12 ⊆ Pol(Γ).
Then CSP(Γ) ∈ SL.

Proof Let Pol(Γ) ⊇ S12. Observe Inv(S12) =
⋃

k≥2

Inv(Sk
12), and since Γ is finite,

we have Pol(Γ) ⊇ Sk
12 for some k. A base for Inv(Sk

12) is {NANDk, {0}, {1},=}. Let
ϕ be a conjunction of constraint applications over this language. Membership in SL
follows with this outline of an LSL-algorithm:

– For every NAND(x1, . . . , xk)-clause: For every occurring variable xi, check
with an SL-GAP-algorithm if there is a =-path in the input formula from xi

to a variable y such that y is a clause. If this is true for every variable, then
ϕ /∈ SAT.

– For every x clause: Check if there is a =-path in the input formula from x to
a variable y such that y is a clause (i.e., y = 0 is a clause). If this is the case,
then ϕ /∈ SAT.

– Otherwise, ϕ ∈ SAT holds.

For the Sk
02-classes, the algorithm works analogously (here we have OR instead

of NAND and therefore we search for a =-path to a y-gate in step 1). 2

Lemma 3.6 Let Γ be a constraint language such that Pol(Γ) ⊇ S00 or Pol(Γ) ⊇ S10.
Then CSP(Γ) ∈ NL.

9

Proof The following algorithm is based on the proof for Theorem 6.5 in [CKS01].
Observe that there is no finite set Γ such that Pol(Γ) = S00. Therefore, Pol(Γ) ⊇ Sk

00

for some k ≥ 2 holds. Note that {ORk, x, x, x → y} is a base for Inv(S00)
k ⊇ Γ.

Now the algorithm works as follows: For a given formula ϕ over the relations
mentioned above plus equality, consider every positive clause xi1 ∨ · · · ∨ xik . The
clause is satisfiable if and only if there is one variable in {xi1 , . . . , xik} which can
be set to 1 without violating any of the x and x → y clauses. For a variable
y ∈ {xi1 , . . . , xik}, this can be checked as follows:

For each clause x, check with an NL-GAP-algorithm if there is an →-=-path
from y to x, that is a sequence yR1z1, z1R2z2, . . . , zm−1Rmx for Ri ∈ {→,=}. If
one of these is the case, then y cannot be set to 1. Otherwise, we can set y to 1,
and the clause is satisfiable. If a clause is shown to be unsatisfiable, reject. If no
clause is shown to be unsatisfiable in this way, accept.

The S10-case is analogous, in this case we have NAND instead of OR. 2

Our final upper bound in this section is combined with a hardness result, and
thus serves as a bridge to the next two sections.

Lemma 3.7 Let Γ be a constraint language. If Pol(Γ) ∈ {D1,D}, then CSP(Γ) is
≤AC0

m -complete for SL.

Proof Note that Pol(⊕) = D and Pol(R) = D1, where R = x1 ∧ (x2 ⊕ x3). The
satisfiability problem for formulas that are conjunctions of clauses of the form x
or y ⊕ z is complete for SL by Problem 4.1 in Section 7 of [AG00], which proves
completeness for the case Pol(Γ) = D1 and thus proves membership in ⊕L for the
case Pol(Γ) = D. It suffices to prove hardness in the case Pol(Γ) = D.

This can easily be shown: For every given clause x, introduce x ⊕ f for a new
variable f , so we only have x⊕ y-clauses. If the original formula holds, the new one
holds with the same assignment plus f = 0. If the new formula ϕ′ holds, there is
some I such that I |= ϕ′. We know that I |= ϕ′ as well, because ⊕ is closed under
N2. Therefore, without loss of generality, I(f) = 0. Then I \ {f = 0} |= ϕ.

Thus, the problem for formulas allowing x-clauses can be reduced to one not
allowing them. Therefore, both cases are SL-complete. Note that this shows that
the ≤log

m reduction of Lemma 2.4 can be replaced by an ≤AC0

m
reduction in the case

when Pol(Γ2) ∈ {D1,D}. This could also be shown directly by expressing equality

over Γ2. In the next subsection, we will see additional cases where the ≤log
m reduc-

tion in Lemma 2.4 can be replaced by an ≤AC0

m
reduction. 2

10

3.2 Removing the Equality Relation

The hardness proofs in the upcoming section make use of Lemma 2.4, and therefore
require the equality relation is present in the considered constraint language Γ. The
next two lemmas prove that in most cases this implies hardness for the general case.

Lemma 3.8 Let Γ be a finite set of Boolean relations, where Pol(Γ) ⊆ M2. Then
CSP(Γ ∪ {=})≤AC0

m
CSP(Γ).

Proof The relation “x → y” is invariant under M2. Thus given any such Γ,
we can construct “x → y” with help of new existentially quantified variables that
do not appear anywhere else in the formula. Hence we can express x = y with
x → y ∧ y → x. 2

Lemma 3.9 Let Γ be a finite set of Boolean relations, where Pol(Γ) ⊆ L. Then
CSP(Γ ∪ {=})≤AC0

m
CSP(Γ).

Proof For any such set Γ, the relation R4
even can be defined (where this relation

consists of all 4-tuples with an even number of 1’s). Note that x = y is equivalent
to ∃zR4

even(z, z, x, y). 2

3.3 Lower Bounds: Hardness Results

One technique of proving hardness for constraint satisfaction problems is to reduce
certain Boolean circuit related problems to CSPs. In [Rei01], many decision prob-
lems regarding circuits were discussed. In particular, the “Satisfiability Problem
for B Circuits” (SATC(B)) is very useful for our purposes here. SATC(B) is the
problem of determining if a given Boolean circuit with gates from B has an input
vector on which it computes output “1”.

Lemma 3.10 Let Γ be a constraint language such that Pol(Γ) ∈ {E2,V2}. Then
CSP(Γ) is ≤AC0

m -hard for P.

Proof It is well-known that the satisfiability problems for Horn and anti-Horn
formulas is P-complete under ≤log

m reductions. We include a proof for the anti-Horn
case showing hardness under ≤AC0

m
reductions. (Membership in P follows directly

from Schaefer’s work.) The proof uses the standard idea of simulating each gate
in a Boolean circuit with Boolean constraints expressing the function of each gate.
We show SATC(S11) ≤AC0

m CSP(Γ). The result then follows from [Rei01] plus the

11

observation that his hardness result holds under ≤AC0

m . Let C be a {(x∧ (y∨z), c0}-
circuit. For each gate g ∈ C, introduce a new variable xg. Now, introduce constraint
clauses as follows:

1. Let g be a c0-gate. Then add a constraint xg (i.e., xg = 0).

2. Let g be a x ∨ (y ∧ z)-gate, and let gx, gy, gz be the predecessor gates of g.
Then introduce a constraint xg → (xgx ∧ (xgy ∨xgz)) (this can be expressed as
a conjunction of two anti-Horn clauses as follows: (xg ∨xgx)∧ (xg ∨xgy ∨xgz)).

3. For the output-gate g, add a constraint xg.

By construction, the resulting constraint ϕ is an anti-Horn-formula. Thus all
relations are closed under V2.

We claim C ∈ SAT if and only if ϕ ∈ SAT.

Let C ∈ SAT. Now, assign all variables in the constraint the value the corre-
sponding gate in the circuit has when given the satisfying assignment to the input
gates. That is, we are assuming that C(α1, . . . , αn) = 1. Assign to any xg in ϕ the
value valg(α1, . . . , αn) (which is the value of the gate g when (α1, . . . , αn) is given
as input for C). Obviously, all introduced constraint clauses are satisfied with this
variable assignment.

Let ϕ ∈ SAT. Assign to all input gates of the circuit the corresponding value of
the satisfying assignment for ϕ. It can easily be shown that for all g ∈ C, val(g) ≥ xg

holds. Since this is true for the output gate as well, and the clause xg (for g ∈ C
the output-gate of the circuit) exists in ϕ, the circuit value is 1.

To complete the proof, note that all occurrences of = can be removed, by Lemma
3.8. 2

Lemma 3.11 Let Γ be a constraint language such that Pol(Γ) ∈ {L2,L3}. Then
CSP(Γ) is ≤AC0

m -hard for ⊕L.

Proof Assume without loss of generality that Γ contains =. The proof of the
general case now follows from Lemma 3.9.

For the L2-case, this can be shown in a straightforward manner similar to the
proof of Lemma 3.10: We show SATC(L0) ≤

AC0

m CSP(Γ) for a constraint language
Γ with Pol(Γ) = L2. The result then follows with [Rei01]. Since we can express
xout and x1 = x2 ⊕ x3 as L2-invariant relations, we can directly reproduce the
given L0-circuit. This does not work for L3, since we cannot express x or x in
L3. However, since L3 is basically L2 plus negation, we can “extend” a given re-
lation from Inv(L2) so that it is invariant under negation, by simply doubling the
truth-table: We show for Γ1,Γ2 constraint languages such that Inv(Γ1) = L2 and

12

Inv(Γ2) = L3, CSP(Γ1) ≤AC0

m CSP(Γ2) holds: For an n-ary relation R ∈ Inv(L2),
let R := {(x1, . . . , xn) | (x1, . . . , xn) ∈ R}, and let R′ be the (n + 1)-ary relation

R′ := {0} × R ∪ {1} × R.

It is obvious that R′ is closed under N2 and under L2, and hence under L3. Let ϕ

be an instance of CSP(Γ1). Let Γ′
1 := {R′ | R ∈ Γ}. Let ϕ =

n
∧

i=1

Rn(xi1 , . . . , xini
).

We set ϕ′ :=
n
∧

i=1

R′
n(t, xi1 , . . . , xini

) for a new variable t.

Let ϕ ∈ SAT, I |= ϕ. Then I ∪ {t = 0} |= ϕ′.

Let ϕ′ ∈ SAT, I ′ |= ϕ′. Without loss of generality, let I ′(t) = 0 (otherwise,
observe I ′ |= ϕ′ holds as well), therefore I ′{t = 0} |= ϕ. Because of Lemma 2.4,
CSP(Γ1) ≤

AC0

m CSP(Γ′
1) ≤

AC0

m CSP(Γ2) follows. 2

With the same technique, we can also examine the complexity of CSPs invariant
under M2:

Lemma 3.12 Let Γ be a constraint language such that Pol(Γ) ⊆ M2. Then CSP(Γ)
is ≤AC0

m -hard for NL.

Proof As in the preceding lemma, we assume without loss of generality that Γ
contains =. The general case follows from Lemma 3.8.

We show SATC(E0) ≤
AC0

m CSP(Γ). The result then follows with [Rei01] for the
case Pol(Γ) = M2, and with Lemma 2.4 for classes below M2. Let C be a {∧, 0}-
circuit. For each gate g ∈ C, we introduce a variable xg and constraint applications
as follows:

1. Let g be a constant 0-gate. Then add a constraint application xg.

2. Let g be an ∧-gate, g = g1 ∧ g2. Add two constraint applications xg → xg1

and xg → xg2
.

3. Let g be the output-gate. Add a constraint application xg.

Note that the needed relations are all closed under ∧ and ∨, thus closed under
M2. Let ϕ be the conjunction of the constructed constraint applications. We claim
C ∈ SATC ⇔ ϕ ∈ SAT.

Let C ∈ SATC . Thus, there exist α1, . . . , αn, such that C(α1, . . . , αn) = 1. Now,
for any g ∈ C, let I(xg) := valg(α1, . . . , αn). We claim I is a satisfying assignment
for ϕ.

13

Let f be a constraint application in ϕ. Then there exists a gate g ∈ C such that
f was introduced for gate g.

Case 1: g is a 0-gate. Then the constraint is of the form xg. This constraint
application is satisfied by I, since the value of the gate g is 0 in the circuit,
thus I(xg) = valg(α1, . . . , αn) = 0.

Case 2: g is an ∧-gate: g = g1 ∧ g2. Then valg(α1, . . . , αn) = valg1
(α1, . . . , αn)

∧ valg2
(α1, . . . , αn), thus I(xg) = I(xg1

)∧ I(xg2
), and I satisfies the constraint

applications xg → xg1
and xg → xg2

.

Case 3: For the output-gate g ∈ C valg(α1, . . . , αn) = 1 holds, since (α1, . . . , αn)
is a satisfying argument for C. Thus, the constraint application xg is satisfied
by I.

Hence, the constraint ϕ is satisfied by I.

Now, let ϕ ∈ SAT. Let g1, . . . , gn be the input gates for C, I a satisfying
assignment for the variables in ϕ, and αi := I(xgi

) for i = 1, . . . , n. We claim
C(α1, . . . , αn) = 1. To show this, it is sufficient to prove valg(α1, . . . , αn) ≥ I(xg)
for all g ∈ C: Since for the output-gate g, xg is a constraint application in ϕ, we know
C(α1, . . . , αn) = valg(α1, . . . , αn) ≥ I(xg) = 1. We prove valg(α1, . . . , αn) ≥ I(xg)
by induction:

Let g be a gate in C.

Case 1: g is an input-gate. In this case, valg(α1, . . . , αn) = I(xg) by construction.

Case 2: g is a 0-gate. Then xg is a constraint application in ϕ, and thus
valg(α1, . . . , αn) ≥ I(xg) = 0.

Case 3: g is an ∧-gate. Let g = g1 ∧ g2. Without loss of generality, let I(xg) = 1.
Since xg → xg1

and xg → xg2
are constraint applications in ϕ, we know

I(g1) = I(g2) = 1. From the induction hypothesis follows valg1
(α1, . . . , αn) =

valg2
(α1, . . . , αn) = 1, and thus valg(α1, . . . , αn) = valg1

(α1, . . . , αn)
∧ valg2

(α1, . . . , αn) = 1.

2

The case of R2-invariant relations is already covered in Example 2.3.

Corollary 3.13 Let Γ be a finite set of relations such that Pol(Γ) ⊆ R2. Then
CSP(Γ ∪ {=}) is ≤AC0

m -hard for SL.

Note that the lemmas in this section cover all classes in Post’s lattice, and
therefore Theorem 3.1 is proven.

14

4 Conclusion and Further Research

We have obtained a complete classification for constraint satisfaction problems un-
der logspace isomorphisms, and identified five isomorphism types corresponding to
the complexity classes NP,P,NL,⊕L, and L. Considering only the problems com-
plete for NP,P,NL or ⊕L, we obtained a classification for AC0-isomorphisms. We
also saw that for complexity classes below L, the complexity of the constraint satis-
faction problem is not completely determined by the set of polymorphisms of a given
constraint language. We saw that for constraint languages Γ such that Pol(Γ) = R2,
the base does make a difference for the complexity of CSP(Γ). The same is true for
the case Pol(Γ) = Sm

α2 for α ∈ {0, 1},m ∈ N,m ≥ 2: In the general case, this prob-
lem is hard for L under ≤AC0

m -reductions. But there exist bases for these co-clones
which make the constraint satisfaction problem easier: Let Γ := {x1 ∨ · · · ∨ xm, x}.
Then Pol(Γ) = Sm

02. It can be shown (see the proposition below) that the CSP for
this constraint language is in coNLOGTIME, and so we know for these co-clones,
having equality as an element of the constraint language does make a difference. As
a consequence of Lemmas 3.7, 3.8, and 3.9, the question of whether or not equality
is contained in some constraint language Γ thus only makes a difference if Pol(Γ) is
one of the Sα2 classes or R2.

Proposition 4.1 Let Γ be a constraint language such that every relation in Γ can
be either written as conjunction of literals, or it is monotone increasing (decreasing).
Then CSP(Γ) ∈ coNLOGTIME.

Proof Without loss of generality, let every relation be a conjunction of literals or
monotone increasing. Let ϕ be an instance of CSP(Γ) and N be the set of variables
x for which there is a constraint application in Γ which is a conjunction of literals
containing x. Now, let I be an assignment to the variables in ϕ as follows:

I(x) :=

{

0, x ∈ N

1, otherwise.

Obviously, I satisfies all constraint applications in ϕ which are a conjunction of
literals, and ϕ is satisfiable if and only if it is satisfied by I. If ϕ is not satisfiable,
then there is a constraint which is not satisfied by I, and since relations in Γ are of
bounded arity, this can be verified in coNLOGTIME. 2

We think these problems are either trivial (when all relations are monotone
increasing (decreasing)) or complete for coNLOGTIME under uniform projections
(≤dlt

m , see [RV97])—for a given instance of 1∗, write some application of a monotone
increasing relation for every occurring 1, and a clause which contradicts this one for
every other symbol. We believe these are the only non-trivial cases for which the
CSP is not complete for L.

15

We think is is worthwhile to identify criteria for bases for these classes to decide
whether a certain base gives rise to a CSP in coNLOGTIME, or to a CSP that is
complete for L, or perhaps to a problem of intermediate complexity.

Acknowledgments

The first and third authors thank Denis Thérien for organizing a workshop at Bel-
lairs research institute where Phokion Kolaitis lectured at length about constraint
satisfiability problems. We thank Phokion Kolaitis for his lectures and for stimu-
lating discussions. We also thank Nadia Creignou for helpful hints.

References

[ABI97] E. Allender, J. Balcazar, and N. Immerman. A first-order isomorphism
theorem. SIAM Journal on Computing, 26:557–567, 1997.

[AG00] C. Alvarez and R. Greenlaw. A compendium of problems complete for
symmetric logarithmic space. Computational Complexity, 9(2):123–145,
2000.

[Agr01] M. Agrawal. The first-order isomorphism theorem. In Foundations
of Software Technology and Theoretical Computer Science: 21st Con-
ference, Bangalore, India, December 13-15, 2001. Proceedings, Lec-
ture Notes in Computer Science, pages 58–69, Berlin Heidelberg, 2001.
Springer Verlag.

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean
blocks, part I: Post’s lattice with applications to complexity theory.
SIGACT News, 34(4):38–52, 2003.

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with
Boolean blocks, part II: Constraint satisfaction problems. SIGACT
News, 35(1):22–35, 2004.

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. Monographs on Discrete Ap-
plied Mathematics. SIAM, 2001.

[Dal00] V. Dalmau. Computational complexity of problems over generalized for-
mulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica,
Universitat Politécnica de Catalunya, 2000.

[Har78] J. Hartmanis. On the logtape isomorphism of complete sets. Theoretical
Computer Science, 7:273–286, 1978.

16

[JCG97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of
constraints. Journal of the ACM, 44(4):527–548, 1997.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press,
Cambridge, 1997.

[Rei01] S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich
Mathematik und Informatik, Universität Würzburg, 2001.

[Rei04] O. Reingold. Undirected st-connectivity in log-space. Technical Report
TR04-094, ECCC Reports, 2004.

[RV97] K. Regan and H. Vollmer. Gap-languages and log-time complexity
classes. Theoretical Computer Science, 188:101–116, 1997.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proccedings
10th Symposium on Theory of Computing, pages 216–226. ACM Press,
1978.

17

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

