
The Complexity of Satisfiability Problems:

Refining Schaefer’s Theorem?

Eric Allender1, Michael Bauland2, Neil Immerman3, Henning Schnoor2, and Heribert

Vollmer2

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08855, allender@cs.rutgers.edu
2 Theoretische Informatik, Universität Hannover, Appelstr. 4, 30167 Hannover, Germany.

bauland|schnoor|vollmer@thi.uni-hannover.de
3 Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003,

immerman@cs.umass.edu

Abstract. Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given
constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer’s
dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up
to polynomial-time isomorphism (and these isomorphism types are distinct if and only if P 6= NP).
We show that if one considers AC0 isomorphisms, then there are exactly six isomorphism types
(assuming that the complexity classes NP, P,⊕L, NL, and L are all distinct).

1 Introduction

In 1978, Schaefer classified the Boolean constraint satisfaction problem and showed that, depending
on the allowed relations in a propositional formula, the problem is either in P or is NP-complete
[Sch78]. This famous “dichotomy theorem” overlooks the fact that different problems in P have
quite different complexity, and there is now a well-developed complexity theory to classify different
problems in P. Furthermore, in Schaefer’s original work (and in the many subsequent simplified
presentations of his theorem [CKS01]) it is already apparent that certain classes of constraint
satisfaction problems are either trivial (the 0-valid and 1-valid relations) or are solvable in NL (the
bijunctive relations) or ⊕L (the affine relations), whereas for other problems (the Horn and anti-
Horn relations) he provides only a reduction to problems that are complete for P. Is this a complete
list of complexity classes that can arise in the study of constraint satisfaction problems? Given the
amount of attention that the dichotomy theorem has received, it is surprising that no paper has
addressed the question of how to refine Schaefer’s classification beyond some steps in this direction
in Schaefer’s original paper (see [Sch78, Theorem 5.1]).
Our own interest in this question grew out of the observation that there is at least one other
fundamental complexity class that arises naturally in the study of Boolean constraint satisfaction
problems that does not appear in the list (AC0, NL,⊕L, P) of feasible cases identified by Schaefer.
This is the class SL (symmetric logspace) that has very recently been shown by Reingold to coin-
cide with deterministic logspace [Rei04]. (Theorem 5.1 of [Sch78] does already present examples of
constraint satisfaction problems that are complete for SL.) Are there other classes that arise in this
way?
We give a negative answer to this question.

If we examine constraint satisfaction problems using AC0 reducibility ≤AC0

m
, then we are able

to show that the following list of complexity classes is exhaustive: Every constraint satisfaction

? Supported in part by DFG grant Vo 630/5-1.

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 100 (2004)

ISSN 1433-8092

problem not solvable in coNLOGTIME is isomorphic to the standard complete set for one of the
classes NP, P,⊕L, NL, or L under isomorphisms computable and invertible in AC0.

Our proofs rely heavily on the connection between complexity of constraint languages and universal
algebra (in particular, the theory of polymorphisms and clones) which has been very useful in ana-
lyzing complexity issues of constraints. An introduction to this connection can be found in [Pip97],
and we recall some of the necessary definitions in the next section. One of the contributions of this
paper is to point out that, in order to obtain a complete classification of constraint satisfaction
problems (up to AC0 isomorphism) it is necessary to go beyond the partition of constraint satis-
faction problems given by their polymorphisms, and examine the constraints themselves in more
detail.

2 Preliminaries

An n-ary Boolean relation is a subset of {0, 1}n. For a set V of variables, a constraint application C

is an application of an n-ary Boolean relation R to an n-tuple of variables (x1, . . . , xn) from V . An
assignment I : V → {0, 1} satisfies the constraint application R(x1, . . . , xn) iff (I(x1), . . . , I(xn)) ∈
R. In this paper we use the standard correspondence between Boolean relations and propositional
formulas: A formula ϕ(x1, . . . , xn) defines the relation Rϕ = {(α1, . . . , αn) | ϕ(α1, . . . , αn) = 1}.
The meaning should always be clear from the context.
A constraint language is a finite set of Boolean relations. The Boolean Constraint Satisfaction
Problem over a constraint language Γ (CSP(Γ)) is the question if a given set ϕ of Boolean constraint
applications using relations from Γ is simultaneously satisfiable, i.e. if there exists an assignment
I : V → {0, 1}, such that I satisfies every C ∈ ϕ. It is easy to see that the Boolean CSP over some
language Γ is the same as satisfiability of conjunctive Γ -formulas. A well-known restriction of the
general satisfiability problem is 3SAT, which can be seen as the CSP problem over the language
Γ3SAT = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3)}.
There is a very useful connection between the complexity of the CSP problem and universal algebra,
which requires a few definitions:

Definition 2.1. A class of Boolean functions is called closed or a clone, if it is closed under super-
position. (As explained in the survey articles [BCRV03,BCRV04] being closed under superposition is
essentially the same thing as containing all projections (in particular, the identity) and being closed
under arbitrary composition.) Since the intersection of clones is again a clone, we can define, for a
set B of Boolean functions, 〈B〉 as the smallest clone containing B.

It is clear that 〈B〉 is the set of Boolean functions that can be calculated by Boolean circuits using
only gates for functions from B [BCRV03,BCRV04].
It is easy to see that the set of clones forms a lattice. For the Boolean case, Emil Post identified all
clones (Table 1) and their inclusion structure (Figure 1). The clones are interesting for the study
of the complexity of CSPs, because the complexity of CSP(Γ) depends on the closure properties of
the relations in Γ , which we will define next.

Definition 2.2. A k-ary relation R is closed under an n-ary Boolean function f , or f is a poly-
morphism of R, if for all x1, . . . , xn ∈ R with xi = (xi[1], xi[2], . . . , xi[k]), we have

(f(x1[1], . . . , xn[1]), f(x1[2], . . . , xn[2]), . . . , f(x1[k], . . . , xn[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R), and for a set Γ of Boolean relations we
define Pol(Γ) = {f | f ∈ Pol(R) for every R ∈ Γ}. For a set B of Boolean functions, Inv(B) =
{R | B ⊆ Pol(R)} is the set of invariants of B.

Name Definition Base
BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotonic } {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {→,dual(hn)}

S0 {f ∈ BF | f is 0-separating } {→}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, hn}

S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01 Sn

0 ∩ M {dual(hn), 1}
S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩ M {x ∨ (y ∧ z),dual(hn)}
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ z), hn}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11 Sn

1 ∩ M {hn, 0}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩ M {x ∧ (y ∨ z), hn}
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f |f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩ M {xy ∨ yz ∨ xz}
L {f |f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V {f | There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
V0 [{∨}] ∪ {0} {∨, 0}
V1 [{∨}] ∪ {1} {∨, 1}
V2 [{∨}] {∨}
E {f | There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E0 [{∧}] ∪ {0} {∧, 0}
E1 [{∧}] ∪ {1} {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ {0} ∪ {1} {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ {0} ∪ {1} {id, 0, 1}
I0 [{id}] ∪ {0} {id, 0}
I1 [{id}] ∪ {1} {id, 1}
I2 [{id}] {id}

Table 1: List of all closed classes of Boolean functions, and their bases
(for definitions of these properties, see e.g. [BCRV03]).

The function hn is defined as: hn(x1, . . . , xn+1) =

n+1∨

i=1

x1 ∧ x2 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn+1

R1 R0

BF

R

M

M1 M0

M2

S2

0

S3

0

S0

S2

02

S3

02

S02

S2

01

S3

01

S01

S2

00

S3

00

S00

S2

1

S3

1

S1

S2

12

S3

12

S12

S2

11

S3

11

S11

S2

10

S3

10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R

M

M1 M0

M2

S2

0

S3

0

S0

S2

02

S3

02

S02

S2

01

S3

01

S01

S2

00

S3

00

S00

S2

1

S3

1

S1

S2

12

S3

12

S12

S2

11

S3

11

S11

S2

10

S3

10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

NP complete

P complete

NL complete

⊕L complete

L complete

L complete / coNLOGTIME

Figure 1: Graph of all closed classes of Boolean functions

It is easy to see that every set of the form Pol(Γ) is a clone. As discussed in the surveys [BCRV03,BCRV04],
the operators Pol and Inv form a “Galois connection” between the lattice of clones and certain sets
of Boolean relations, which is very useful for complexity analysis of the CSP problem. The concept of
relations closed under certain Boolean functions is interesting, because many properties of Boolean
relations can be equivalently formulated using this terminology. For example, a set of relations can
be expressed by Horn-formulas if and only if every relation in the set is closed under the binary
AND function. Horn is one of the properties that ensures the corresponding satisfiability problem
to be tractable. More generally, it holds that tractability of formulas over a given set of relations
only depends on the set of its polymorphisms. A proof of the following theorem can be found in
e.g. [JCG97] and [Dal00]:

Theorem 2.3. If Pol(Γ2) ⊆ Pol(Γ1), then every R ∈ Γ1 can be expressed by a formula

R(x1, . . . , xn) ⇐⇒ ∃y1, . . . , ymR1(z1,1, . . . , z1,n1
) ∧ · · · ∧ Rk(zk,1, . . . , zk,nk

)

∧(xi1 = xi2) ∧ (xi3 = xi4) · · · ∧ (xir−1
= xir)

for some Ri ∈ Γ2 (where zi,j ∈ {x1, . . . , xn, y1, . . . , ym}).

Therefore:

Theorem 2.4. Let Γ1 and Γ2 be sets of Boolean relations such that Γ1 is finite and Pol(Γ2) ⊆
Pol(Γ1). Then CSP(Γ1)≤

p
m

CSP(Γ2).

Trivially, the binary equality predicate = is closed under every Boolean function. Thus, = is con-
tained in every set Inv(B) for a clone B (these sets often are called co-clones). On the other hand,
every relation is closed under the projection function, φn

i (x1, . . . , xn) = xi. It is clear that when
a set of relations is “big”, the set of its polymorphisms is “small”. So the most general case is a
constraint language Γ such that Pol(Γ) only contains the projections, and these cases of the CSP
are NP-complete. An example for this is the language Γ3SAT from above: It can be shown that
Pol(Γ3SAT) only contains the projections, and therefore 3SAT is NP-complete.
As we have seen in the above theorem, the complexity of the CSP problem for a given constraint
language is determined by the set of its polymorphisms. At least this is the case when considering
gross classifications of complexity (such as whether a problem is in P or is NP-complete). However,
when we examine finer complexity classifications, such as determining the circuit complexity of a
constraint satisfaction problem, then the set of polymorphisms of a constraint language Γ does not
completely determine the complexity of CSP(Γ), as can easily be seen in the following important
example:

Example 2.5. Let Γ1 = {x, x}, Γ2 = Γ1 ∪ {=}. It is obvious that Pol(Γ1) = Pol(Γ2); the set of
polymorphisms is the clone R2. Formulas over Γ1 only contain clauses of the form x or x for some
variable x, whereas in Γ2, we additionally have the binary equality predicate. We will now see that
CSP(Γ1) has very different complexity than CSP(Γ2).

Satisfiability of a Γ1-formula ϕ can be decided in coNLOGTIME. (Such a formula is unsatisfiable
if and only if for some variable x, both x and x are clauses.)

In contrast, CSP(Γ2) is complete for L under ≤AC0

m
reductions.

We show that the complement of the graph accessibility problem (GAP) for undirected graphs,
which is known to be complete for L [Rei04], can be reduced to CSP(Γ2). Let G = (V, E) be
a finite, undirected graph, and s, t vertices in V . For every edge (v1, v2) ∈ E, add a constraint
v1 = v2. Also add s and t. It is obvious that there exists a path in G from s to t if and only if the
resulting formula is not satisfiable. In fact, it is easy to see that CSP(Γ2) is not only hard for L,

but it also lies within L so it is complete for L under ≤AC0

m
reductions.

The lesson to learn from this example is that the usual reduction among constraint satisfaction

problems arising from the same co-clone is not an ≤AC0

m
reduction. The following lemma summarizes

the main relationships.

Lemma 2.6. Let Γ1 and Γ2 be sets of relations over a finite set, where Γ1 is finite and Pol(Γ2) ⊆

Pol(Γ1). Then CSP(Γ1)≤
AC0

m
CSP(Γ2 ∪ {=})≤log

m
CSP(Γ2).

Proof. Since the local replacement from Theorem 2.3 can be computed in AC0, this establishes the
first reducibility relation (note that variables are implicitly existentially quantified and therefore
the quantifiers do not need to be written).

For the second reduction, we need to eliminate all of the =-constraints. We do this by identifying
variables xi1 and xi2 if there is an =-path from xi1 to xi2 in the formula. By [Rei04], this can be
computed in logspace.

3 Classification

Theorem 3.1. Let Γ be a finite set of Boolean relations.

– If I0 ⊆ Pol(Γ) or I1 ⊆ Pol(Γ), then every constraint formula over Γ is satisfiable, and therefore
CSP(Γ) is trivial.

– If Pol(Γ) ∈ {I2, N2}, then CSP(Γ) is ≤AC0

m -complete for NP.

– If Pol(Γ) ∈ {V2, E2}, then CSP(Γ) is ≤AC0

m -complete for P.

– If Pol(Γ) ∈ {L2, L3}, then CSP(Γ) is ≤AC0

m -complete for ⊕L.

– If S00 ⊆ Pol(Γ) ⊆ S2
00 or S10 ⊆ Pol(Γ) ⊆ S2

10 or Pol(Γ) ∈ {D2, M2}, then CSP(Γ) is ≤AC0

m -
complete for NL.

– If Pol(Γ) ∈ {D1, D}, then CSP(Γ) is ≤AC0

m -complete for L.

– If S02 ⊆ Pol(Γ) ⊆ R2 or S12 ⊆ Pol(Γ) ⊆ R2, then either CSP(Γ) is in coNLOGTIME, or

CSP(Γ) is complete for L under ≤AC0

m
. There is an algorithm deciding which case occurs.

Theorem 3.1 is a refinement of Theorem 5.1 from [Sch78] and Theorem 6.5 from [CKS01]. It is
immediate from a look at Figure 1 that this covers all cases.

The proof follows from the lemmas in the following subsections. First, we mention a corollary:

Corollary 3.2. For any set of relations Γ , CSP(Γ) is AC0-isomorphic either to 0Σ∗ or to the
standard complete set for one of the following complexity classes: NP, P, NL,⊕L, L.

Proof. It is immediate from Theorem 3.1 that if CSP(Γ) is not in AC0, then it is complete for one of

NP, P, NL, L, or ⊕L under ≤AC0

m
reductions. By [Agr01] each of these problems is AC0-isomorphic

to the standard complete set for its class. On the other hand, if CSP(Γ) is solvable in AC0 then
it is an easy matter to reduce any problem A ∈ AC0 to CSP(Γ) via a length-squaring, invertible
AC0 reduction (by first checking if x ∈ A, and then using standard padding techniques to map
x to a long satisfiable instance if x ∈ A, and mapping x to a long syntactically incorrect input if
x 6∈ A). AC0 isomorphism to the standard complete set now follows by [ABI97] (since the standard
complete set is complete under invertible, length-squaring reductions).

3.1 Upper Bounds: Algorithms

First, we state results that are well known; see e.g. [Sch78],[BCRV04]:

Proposition 3.3. Let Γ be a Boolean constraint language.
1. If Pol(Γ) ∈ {I2, N2}, then CSP(Γ) is NP-complete. Otherwise, CSP(Γ) ∈ P.
2. L2 ⊆ Pol(Γ) implies CSP(Γ) ∈ ⊕L.
3. D2 ⊆ Pol(Γ) implies CSP(Γ) ∈ NL.
4. I0 ⊆ Pol(Γ) or I1 ⊆ Pol(Γ) implies every instance of CSP(Γ) is satisfiable by the all-0 or the

all-1 tuple, and therefore CSP(Γ) is trivial.

Lemma 3.4. Let Γ be a constraint language.
1. If S02 ⊆ Pol(Γ) or S12 ⊆ Pol(Γ), then CSP(Γ) ∈ L.
2. If S00 ⊆ Pol(Γ) or S10 ⊆ Pol(Γ), then CSP(Γ) ∈ NL.

Proof. First we consider the cases S00 and S02. The following algorithm is based on the proof for
Theorem 6.5 in [CKS01]. Observe that there is no finite set Γ such that Pol(Γ) = S00 (Pol(Γ) = S02,
resp.). Therefore, Pol(Γ) ⊇ Sk

00 (Pol(Γ) ⊇ Sk
02, resp.) for some k ≥ 2. Note that Pol({ORk, x, x,→

, =}) = Sk
00 and Pol({ORk, x, x, =}) = Sk

02 ([BRSV05]), and therefore by Lemma 2.6 we can assume
w.l.o.g. Γ = {ORk, x, x,→, =} (Γ = {ORk, x, x, =}, resp.).
Now the algorithm works as follows: For a given formula ϕ over the relations mentioned above,
consider every positive clause xi1 ∨ · · · ∨ xik

. The clause is satisfiable if and only if there is one
variable in {xi1 , . . . , xik

} which can be set to 1 without violating any of the x and x → y clauses
(without violating any of the x, resp.). For a variable y ∈ {xi1 , . . . , xik

}, this can be checked as
follows:
For each clause x, check if there is an →-=-path (=-path, resp.) from y to x, by which we mean a
sequence yR1z1, z1R2z2, . . . , zm−1Rmx for Ri ∈ {→, =} (Ri ∈ {=}, resp.). (This is just an instance
of the GAP problem on directed graphs (undirected graphs, resp.), which is the standard complete
problem for NL (L, resp.).) If one of these is the case, then y cannot be set to 1. Otherwise, we can
set y to 1, and the clause is satisfiable. If a clause is shown to be unsatisfiable, reject. If no clause
is shown to be unsatisfiable in this way, accept.

The S10- and S12-case are analogous; in these cases we have NAND instead of OR.

Our final upper bound in this section is combined with a hardness result, and thus serves as a bridge
to the next two sections.

Lemma 3.5. Let Γ be a constraint language. If Pol(Γ) ∈ {D1, D}, then CSP(Γ) is ≤AC0

m -complete
for L.

Proof. Note that Pol({⊕}) = D and Pol({R}) = D1, where R = x1∧(x2⊕x3). Thus by Lemmas 2.6
and 3.7, and Proposition 3.6, we can restrict ourselves to the cases where Γ consists of these relations
only. The satisfiability problem for formulas that are conjunctions of clauses of the form x or y ⊕ z

is complete for L by Problem 4.1 in Section 7 of [AG00], which proves completeness for the case
Pol(Γ) = D1 and thus proves membership in L for the case Pol(Γ) = D. It suffices to prove hardness
in the case Pol(Γ) = D.

This can easily be shown: For every clause x, introduce x⊕ f for a new variable f , so we only have
x⊕y-clauses. If the original formula holds, the new one holds with the same assignment plus f = 0.
If the new formula ϕ′ holds, there is some I such that I |= ϕ′. We know that I |= ϕ′ as well, because
⊕ is closed under negation. Therefore, without loss of generality, I(f) = 0. Then I \ {f = 0} |= ϕ.

Thus, the problem for formulas allowing x-clauses can be reduced to one not allowing them. There-
fore, both cases are L-complete.

3.2 Removing the Equality Relation

Lemma 2.6 reveals that polymorphisms completely determine the complexity of a given constraint
satisfaction problem only if the equality relation is contained in the corresponding constraint lan-
guage. In Example 2.5 we saw that this question does lead to different complexity results. We now
show that for most constraint languages, we can get equality “for free” and therefore the question
of whether we have equality directly or not does not make a difference.
We say a constraint language Γ can express the relation R(x1, ..., xn) if there is function f that takes
an n-tuple of variables (y1, ..., yn) as input, and produces as output a formula R1(z

1
1 , . . . , z1

n1
)∧· · ·∧

Rl(z
l
1, . . . , z

l
nl

), where Ri ∈ Γ and zi
j ∈ {y1, . . . , yn, w1, . . . , wr} (the zi

j ’s need not be distinct) such
that for each assignment of values (c1, . . . , cn) to the variables y1, . . . , yn, R(c1, ..., cn) evaluates
to TRUE if and only if there is an assignment of values to the variables w1, . . . , wr such that all
Ri-clauses evaluate to TRUE.
The following proposition is immediate.

Proposition 3.6. Let Γ be a constraint language. If Γ can express the equality relation, then

CSP(Γ ∪ {=}) ≤AC0

m CSP(Γ).

Lemma 3.7. Let Γ be a finite set of Boolean relations where Pol(Γ) ⊆ M2, Pol(Γ) ⊆ L, or
Pol(Γ) ⊆ D. Then Γ can express the equality relation.

Proof. The relation “x → y” is invariant under M2. Thus given any such Γ , by Theorem 2.3
we can construct “x → y” with help of new existentially quantified variables that do not appear
anywhere else in the formula. Any equality clauses appearing here can be removed by identifying
(i.e. renaming) the corresponding variables. Hence Γ can express x = y with x → y ∧ y → x.

For the L-case, apply an analogous argument for the relation R4
even, which consists of all 4-tuples

with an even number of 1’s. Note that x = y is expressed by R4
even(z, z, x, y). If Pol(Γ) ⊆ D, then

we can express x ⊕ y, and thus we express equality by x = y ⇐⇒ (x ⊕ z) ∧ (z ⊕ y).

As noted in Example 2.5, for some classes, the question whether equality is contained in the con-
straint language or not does lead to different complexities, namely complete for L or contained
in coNLOGTIME. We now show that there are no intermediate complexity classes arising in
these cases. As we saw in the lemmas above, this only concerns constraint languages Γ such that
Pol(Γ) ⊇ Sm

02 or Pol(Γ) ⊇ Sm
12 holds for some m ≥ 2.

Lemma 3.8. 1. Let R be a relation such that Pol(R) ⊇ S02. Then either CSP({x, x, ORm, R}) ∈
coNLOGTIME or R can express equality (in which case CSP({x, x, ORm, R}) is complete for
L under AC0 reductions). There is an algorithm deciding which of the cases occurs.

2. Let R be a relation such that Pol(R) ⊇ S12. Then either CSP({x, x, NANDm, R}) ∈ coNLOGTIME,
or R can express equality (in which case CSP({x, x, NANDm, R}) is complete for L under AC0

reductions). There is an algorithm deciding which of the cases occurs.

Proof. If Pol(R) ⊇ S02, then as in the proof of Lemma 3.4 we know that Pol(R) ⊇ Sm
02 for some

m ≥ 2. Thus we know from Theorem 2.3 that R(x1, . . . , xn) can be expressed using equality, positive
and negative literals, and the m-ary OR predicate, since Pol({x, x, ORm}) = Sm

02 ([BRSV05]). Let
ϕ be a representation of R in this form. We simplify ϕ as follows (without loss of generality, we
assume R is not the empty relation):

1. For any clause x1 = x2 where x1 or x2 appears as a (possibly negated) literal, remove this
clause and insert the corresponding literals for x1 and x2. Repeat until no such clause remains.

2. Remove variables from OR-clauses which also appear as negative literals.

3. For an OR-clause containing variables connected with =, remove all of them except one.

Note that this does not change the relation represented by the formula. If no =-clause remains,
then R can be expressed using only OR and literals and therefore leads to a CSP solvable in
coNLOGTIME (a CSP-formula using only these relations is unsatisfiable iff there appear two con-
tradictory variables or an OR-clause containing only variables which also appear as a negative
literal). Otherwise, let x1 = x2 be a remaining clause. We existentially quantify all variables in R

except x1 and x2, and call the resulting relation R′. We claim R′ is the equality relation.
Let (x1, x2) ∈ R′. Since x1 = x2 appears in the defining formula, x1 = x2 holds. Let x1 = x2. We
assign the value 0 to every existentially quantified variable that appears as a negative literal, the
same value as x1 to every variable connected to x1 via an =-path, and the value 1 to all others.
Obviously, all literals are satisfied this way: Remember x1 and x2 do not appear as literals due to
step 1, and there are no contradictory literals since R is nonempty. All equality clauses are satisfied
because none of the variables appearing here also appear as literals.
Let (x1 ∨ · · · ∨ xj) be a clause. None of these variables appear as negative literals due to step 2,
and at most one of them can be =-connected to x1 and x2 due to step 3. Therefore, the assignment
constructed above assigns 1 to at least one of the occurring variables, thus satisfying the formula.
Hardness for L now follows with the same construction as in Example 2.5.
It is decidable which of these cases occurs: Since the only way to obtain equality is by existentially
quantifying all variables except two, this is a finite number of combinations which can be easily
verified by an algorithm. An analogous argument can be applied to the dual case Pol(R) ⊇ Sm

12.

Corollary 3.9. Let Γ be a constraint language such that S02 ⊆ Pol(Γ) ⊆ R2 or S12 ⊆ Pol(Γ) ⊆ R2.
Then either CSP(Γ) ∈ coNLOGTIME, or CSP(Γ) is complete for L under AC0-reductions. There
is an algorithm deciding which of these cases occurs.

3.3 Lower Bounds: Hardness Results

One technique of proving hardness for constraint satisfaction problems is to reduce certain problems
related to Boolean circuits to CSPs. In [Rei01], many decision problems regarding circuits were
discussed. In particular, the “Satisfiability Problem for B Circuits” (SATC(B)) is very useful for
our purposes here. SATC(B) is the problem of determining if a given Boolean circuit with gates
from B has an input vector on which it computes output “1”.

Lemma 3.10. Let Γ be a constraint language such that Pol(Γ) ∈ {E2, V2}. Then CSP(Γ) is ≤AC0

m -
hard for P.

Proof. Assume without loss of generality that Γ contains =. The proof of the general case then
follows from Lemmas 2.6 and 3.7, and Proposition 3.6.
A relation can be expressed as a Horn (dual Horn, resp.) formula if and only if it is invariant under
E2 (V2, resp.). It is well-known that the satisfiability problems for Horn and anti-Horn formulas
are P-complete under ≤log

m
reductions. We give a proof for the anti-Horn case showing hardness

under ≤AC0

m
reductions. (Membership in P follows directly from Schaefer’s work.) The proof uses

the standard idea of simulating each gate in a Boolean circuit with Boolean constraints expressing

the function of each gate. We show SATC(S11) ≤
AC0

m CSP(Γ). The result then follows from [Rei01]

plus the observation that his hardness result holds under ≤AC0

m . Let C be a {(x∧ (y∨z), c0}-circuit.
For each gate g ∈ C, introduce a new variable xg. Now, introduce constraint clauses as follows:

1. Let g be a c0-gate. Then add a constraint xg (i.e., xg = 0).
2. Let g be a x ∨ (y ∧ z)-gate, and let gx, gy, gz be the predecessor gates of g. Then introduce a

constraint xg → (xgx ∧ (xgy ∨ xgz)) (this can be expressed as a conjunction of two anti-Horn
clauses as follows: (xg ∨ xgx) ∧ (xg ∨ xgy ∨ xgz)).

3. For the output-gate g, add a constraint xg.

By construction, the resulting constraint ϕ is an anti-Horn-formula. Thus all relations are closed
under V2.
We claim C ∈ SATC if and only if ϕ ∈ CSP(Γ).

Let C ∈ SATC. Now, assign to all variables in the constraint the value the corresponding gate in
the circuit has when given the satisfying assignment to the input gates. That is, we are assuming
that C(α1, . . . , αn) = 1. Assign to any xg in ϕ the value valg(α1, . . . , αn) (which is the value of the
gate g when (α1, . . . , αn) is given as input for C). Obviously, all introduced constraint clauses are
satisfied with this variable assignment.

Let ϕ ∈ CSP(Γ). Assign to all input gates of the circuit the corresponding value of the satisfying
assignment for ϕ. It can easily be shown that for all g ∈ C, val(g) ≥ xg holds. Since this is true for
the output gate as well, and the clause xg (for g ∈ C the output-gate of the circuit) exists in ϕ, the
circuit value is 1. For the Horn case, a dual argument can be applied.

Lemma 3.11. Let Γ be a constraint language such that Pol(Γ) ∈ {L2, L3}. Then CSP(Γ) is ≤AC0

m -
hard for ⊕L.

Proof. Assume without loss of generality that Γ contains =. The proof of the general case then
follows from Lemmas 2.6 and 3.7, and Proposition 3.6.
For the L2-case, hardness can be shown in a straightforward manner similar to the proof of

Lemma 3.10. (We show SATC(L0) ≤AC0

m CSP(Γ) for a constraint language Γ with Pol(Γ) = L2.
The result then follows with [Rei01]. Since we can express xout and x1 = x2 ⊕ x3 as L2-invariant
relations, we can directly reproduce the given L0-circuit.)
This does not work for L3, since we cannot express x or x in L3. However, since L3 is basically L2 plus
negation, we show below that we can “extend” a given relation from Inv(L2) so that it is invariant
under negation, by simply doubling the truth-table. More precisely, given constraint language Γ

such that Pol(Γ) = L2, we show that there is a constraint language Γ ′ such that Pol(Γ ′) = L3 and

CSP(Γ) ≤AC0

m CSP(Γ ′). For an n-ary relation R ∈ Γ , let R = {(x1, . . . , xn) | (x1, . . . , xn) ∈ R},
and let R′ be the (n + 1)-ary relation

R
′ = {0} × R ∪ {1} × R.

It is obvious that R′ is closed under N2 and under L2, and hence under L3. Let ϕ be an instance of

CSP(Γ). Let Γ ′ = {R′ | R ∈ Γ}. Let ϕ =
n∧

i=1

Rn(xi1 , . . . , xini
). We set ϕ

′ =
n∧

i=1

R
′

n(t, xi1 , . . . , xini
)

for a new variable t.

Let ϕ ∈ CSP(Γ), I |= ϕ. Then I ∪ {t = 0} |= ϕ′.

Let ϕ′ ∈ CSP(Γ), I ′ |= ϕ′. Without loss of generality, let I ′(t) = 0 (otherwise, observe I ′ |= ϕ′

holds as well), therefore I ′{t = 0} |= ϕ, and thus CSP(Γ) ≤AC0

m CSP(Γ ′) holds.

With the same technique as the L-hardness in Example 2.5, we can also examine the complexity of
CSPs invariant under M2:

Lemma 3.12. Let Γ be a constraint language such that Pol(Γ) ⊆ M2. Then CSP(Γ) is ≤AC0

m -hard
for NL.

Proof. Since Pol(Γ) ⊆ M2, we know x → y, x, and x can be expressed with Γ . Therefore, the graph
accessibility problem for directed graphs easily reduces to CSP(Γ): Let G be a directed graph and
s, t vertices in G. For every vertex, introduce a variable, and for every edge (v1, v2), a constraint
v1 → v2. Add constraints s and t. It is clear that the constraint formula is satisfiable iff there is no
path from s to t in G. Since NL is closed under complement [Imm88], [Sze88], the lemma follows
with Lemmas 2.6 and 3.7, and Proposition 3.6.

Note that the lemmas in this section cover all classes in Post’s lattice, and therefore Theorem 3.1
is proven.

4 Conclusion and Further Research

We have obtained a complete classification for constraint satisfaction problems under AC0 isomor-
phisms, and identified six isomorphism types corresponding to the complexity classes NP, P, NL,⊕L, L,
and AC0. One can also show that all constraint satisfaction problems in AC0 are either trivial or
are complete for coNLOGTIME (under logtime-uniform projections).
One natural question for further research concerns constraint satisfaction problems over a larger do-
mains. In particular, it would be interesting to see if the dichotomy theorem of Bulatov [Bul02] over
three-element domains can be refined to obtain a complete classification up to AC0-isomorphism.

Acknowledgments

The first and third authors thank Denis Thérien for organizing a workshop at Bellairs research in-
stitute where Phokion Kolaitis lectured at length about constraint satisfiability problems. We thank
Phokion Kolaitis for his lectures and for stimulating discussions. We also thank Nadia Creignou for
helpful hints.

References

[ABI97] E. Allender, J. Balcazar, and N. Immerman. A first-order isomorphism theorem. SIAM
Journal on Computing, 26:557–567, 1997.

[AG00] C. Alvarez and R. Greenlaw. A compendium of problems complete for symmetric loga-
rithmic space. Computational Complexity, 9(2):123–145, 2000.

[Agr01] M. Agrawal. The first-order isomorphism theorem. In Foundations of Software Tech-
nology and Theoretical Computer Science: 21st Conference, Bangalore, India, December
13-15, 2001. Proceedings, Lecture Notes in Computer Science, pages 58–69, Berlin Hei-
delberg, 2001. Springer Verlag.

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part I:
Post’s lattice with applications to complexity theory. SIGACT News, 34(4):38–52, 2003.

[BCRV04] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part II:
Constraint satisfaction problems. SIGACT News, 35(1):22–35, 2004.

[BRSV05] E. Böhler, S. Reith, H. Schnoor, and H. Vollmer. Simple bases for boolean co-clones.
Technical Report 350, Fachbereich Mathematik und Informatik, Universität Würzburg,
2005.

[Bul02] A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proceedings
43rd Symposium on Foundations of Computer Science, pages 649–658. IEEE Computer
Society Press, 2002.

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint
Satisfaction Problems. Monographs on Discrete Applied Mathematics. SIAM, 2001.

[Dal00] V. Dalmau. Computational complexity of problems over generalized formulas. PhD thesis,
Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya,
2000.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal
on Computing, 17:935–938, 1988.

[JCG97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints. Journal
of the ACM, 44(4):527–548, 1997.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.
[Rei01] S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich Mathematik und

Informatik, Universität Würzburg, 2001.

[Rei04] O. Reingold. Undirected st-connectivity in log-space. Technical Report TR04-094, ECCC
Reports, 2004.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proccedings 10th Symposium
on Theory of Computing, pages 216–226. ACM Press, 1978.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26:279–284, 1988.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

