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Assume that Alice and Bob, given an authentic channel, have a protocol
where they end up with a bit SA and SB, respectively, such that with proba-
bility 1+ε

2 these bits are equal. Further assume that conditioned on the event
SA = SB no polynomial time bounded algorithm can predict the bit better
than with probability 1− δ

2 . Is it possible to obtain key agreement from such
a primitive? We show that for constant δ and ε the answer is yes if and only
if δ > 1−ε

1+ε , both for uniform and non-uniform adversaries.
The main computational technique used in this paper is a strengthening of

Impagliazzo’s hard-core lemma to the uniform case and to a set size param-
eter which is tight (i.e., twice the original size). This may be of independent
interest.

1 Introduction

Key agreement, introduced by Diffie and Hellman in their seminal paper [DH76] is a
protocol for two parties Alice and Bob which can communicate over an authentic channel
such that they end up with a common string K. Furthermore no efficient algorithm can
find K, given only the communication. Given the fact that the security of such a protocol
implies P 6= NP, no such protocol has been proven secure, but instead the security is
based on some complexity theoretic assumption.

In cryptography, much study has been devoted to find relations between different such
assumptions and primitives. For example, Impagliazzo and Luby show in [IL89] that
implementations of essentially all non-trivial cryptographic tasks imply the existence of
one-way functions. On the other hand, many important primitives can be realized if
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one-way functions exist. Examples include pseudorandom generators [HILL99], pseudo-
random functions [GGM86], and pseudorandom permutations [LR88].

For key agreement no such reduction to one-way functions is known. In fact, in [IR89]
it is shown that such a reduction must be inherently non-relativizing, and thus it seems
very hard to find such a construction.

It is thus natural to ask whether key agreement can be based on anything weaker.
An example of such a weaker primitive is weak key agreement: Alice and Bob have
a protocol such that they end up with some strings which are equal only with some
reasonable (noticeable) probability. Furthermore the outcome might only be secret in
some cases, similar to a weak one-way function. The most natural case is when the
string is just a single bit, and the question considered in this paper is whether such a
primitive is sufficient to achieve key agreement.

1.1 Previous Work

Computational Key Agreement Key agreement was introduced by Diffie and Hellman
in [DH76] and a scheme based on an algebraic hardness problem was proposed. Other
proposed schemes for public key encryption (which also achieve key agreement) are also
based on specific assumptions, for example the schemes given in [RSA78, McE78]. In
[IR89], Impagliazzo and Rudich show that it is not possible to base key agreement on
one-way functions unless non-relativizing techniques are used. Analogously, in [Rud91],
Rudich proves that the number of rounds of a given key agreement protocol can not be
reduced with a relativizing technique.

In [DNR04] Dwork, Naor and Reingold study the question when a non-perfect public
key cryptosystem can be improved to get a nearly perfect one. They also consider the
variant where the given, non-perfect system encrypts single bits. Let the probability
that the receiver decripts a single bit correctly be 1+ε

2 , and assume that the probability
that an efficient algorithm can predict the bit correctly given only the encryption can
be bounded by 1 − δ

2 . Dwork et al. show that for some universal constant c > 0, such
a cryptosystem can be used to get a public-key cryptosystem if ε is noticeable and
δ ≥ 1 − cε2.

Hard-core Results A key building block of our work is a variant of Impagliazzo’s hard-
core lemma, given in [Imp95]. In [KS99] Klivans and Servedio gave a connection of
this lemma to boosting algorithms in computational learning theory, and showed that
Impagliazzo’s algorithm gives in fact a boosting algorithm (cf. [Sch90]). They also note
that boosting algorithms are uniform constructions, which was a motivation to find a
uniform version of Impagliazzo’s Lemma. In [Tre03] Trevisan gives another version of
the hard-core lemma which can be applied in the uniform setting. The main difference
between Lemma 2.5 and Trevisan’s version is that our version is not applicable if the
predicate is not samplable, i.e., we need an algorithm which efficiently generates pairs
(x, P (x)). On the other hand, if such samples can be efficiently obtained our version can
be significantly stronger – it can in fact happen that applying our version is interesting
while Trevisan’s version does not give any non-trivial result.
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Information Theoretic Secret Key Agreement The question whether secret agreement
is possible in an information theoretic sense if the players Alice, Bob and Eve have a large
supply of random variables X, Y , and Z, respectively, which are distributed according
to some fixed distribution PXY Z was posed in [Mau93]. Also, for any such dsitribution
the secret key rate was defined. Intrinsic information, which gives an upper bound on
the secret key rate, was defined in [MW99]. In [RW03], information of formation was
defined, which will be used implicitly to give impossibility results.

1.2 Notation and Definitions

A function α : N → [0, 1] is negligible if α ∈ o(nc) for all c < 0, otherwise it is non-
negligible. It is noticeable if α ∈ Ω(nc) for some c < 0.

We define a protocol by two Turing machines, which have some common communica-
tion tapes.

Definition 1.1. A protocol is a pair of Turing machines A and B, called Alice and
Bob. Both machines have a read only input tape, a read only random tape, a work tape
and two common unerasable communication tapes ΓA and ΓB. The machine A writes
one symbol on ΓA in every step, and B writes one symbol on ΓB in every step.

In an execution of the protocol the machines A and B do alternating steps. The
communication Γ of a protocol denotes the contents of the communication tapes after a
run. With SA we denote the content of the work tape of A after the run, and SB is the
content of the work tape of B after the run.

In the following we define the computational security of such a protocol. In this
context, δ and ε can be functions of n. We assume that they are computable in time
polynomial in n. Reasonable values for δ and ε are in the range [0, 1]. Furthermore, we
only consider the case where SA and SB are bits, and the protocol is symmetric, i.e.,
Pr[SA = SB = 0] = Pr[SA = SB = 1], and Pr[SA = 0] = Pr[SB = 0] = 1/2. It is easy to
see that any protocol which yields bits can be modified to be symmetric (for example,
at the end of the protocol Alice can send a uniform random bit to Bob and both players
XOR this bit to their outcome).

Definition 1.2. A δ-secure secret bit agreement (SBA) protocol is a protocol where A
and B get the common input 1n. It satisfies SA, SB ∈ {0, 1}, Pr[SA = 0] = Pr[SB = 0] =
1/2, and for any polynomial time Turing machine E for all but finitely many n the
inequality Pr[E(1n, C) = SA | SA = SB] < 1 − δ/2 holds. The protocol has correlation ε,
if Pr[SA = SB = 1] = Pr[SA = SB = 0] ≥ 1+ε

4 .

For key agreement, both ε and δ must be close to 1.

Definition 1.3. A δ-secure SBA protocol with correlation ε achieves key agreement if
1 − δ and 1 − ε are negligible in n.

The goal of this paper is to answer the question whether a δ-secure SBA protocol with
correlation ε implies key agreement.
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1.3 Information Theoretic Setting

Consider a δ-secure SBA protocol with correlation ε. Intuitively, this should be similar
to the scenario where some oracle distributes random variables X, Y and Z to Alice, Bob
and Eve, respectively. In this case X and Y will be over the alphabet X = Y = {0, 1},
and the joint distribution of X and Y is defined by Pr[X = 0] = Pr[Y = 0] = 1

2 and
Pr[X = Y = 1] = Pr[X = Y = 0] ≥ 1+ε

4 . Furthermore, if X = Y Eve gets information
about X and Y only with probability 1−δ. The notion of (ε, δ)-secure random variables
formalizes this intuition. In the following I(X;Y ) is the mutual information (cf. [CT91]),
and for an event E we define the conditional mutual information I(X;Z | E) as the
mutual information of the distribution of X and Z conditioned on E .

Definition 1.4. Let Z be any set. A triple X × Y × Z of random variables over
{0, 1} × {0, 1} × Z is (ε, δ)-secure if

• Pr[X = 0] = Pr[X = 1] = Pr[Y = 0] = Pr[Y = 1] = 1/2.

• Pr[X = Y = 0] = Pr[X = Y = 1] ≥ 1+ε
4 .

• There exists an event E which implies X = Y such that Pr[E | X = Y ] ≥ δ and
I(X;Z | E) = 0.

We consider protocols where the input tape of A and B is filled with infinitely many
instantiations of X and Y from (ε, δ)-secure random variables. Given this, we aim for a
protocol where Alice and Bob end with the same bit, such that given the communication
and all instances of Z, the bit is (information theoretically) indistinguishable from a
random bit.

Definition 1.5. Let ε : N → [0, 1] and δ : N → [0, 1] be given. Let (Xi, Yi, Zi)i∈N be
independent (ε, δ)-secure random variables. Let X = (Xi)i∈N, Y = (Yi)i∈N and Z =
(Zi)i∈N.

An information theoretic secret key agreement protocol for (ε(n), δ(n))-secure random
variables is a protocol, where Alice gets input (n,X), Bob gets input (n, Y ), and for
the respective outputs SA and SB and communication Γ of the protocol, (SA, SB ,ΓZ) is
(1 − 2−n, 1 − 2−n)-secure.

The protocol is efficient if the running time for both Alice and Bob is in poly(n).

In Section 2, we will show that we can combine an information theoretic secret key
agreement protocol for (ε, δ)-secure random variables as defined above with a δ-secure
SBA protocol that has correlation ε. Namely, every time the information theoretic
protocol requests a random variable, we run the SBA protocol and use it as such an
instance. This is also possible for non-constant δ and ε.

In Section 3 we show that for constants δ and ε an efficient information theoretic
protocol exists if δ > 1−ε

1+ε . Note that the resulting protocol does not require any secrecy in

case SA 6= SB . On the other hand, if δ ≤ 1−ε
1+ε , a δ-secure SBA protocol with correlation ε

can be achieved without any computational hardness, which even satisfies that in case
SA 6= SB the bits are information theoretically secure.
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2 Computational Aspects

The key lemma to show that efficient information theoretic protocols can be used com-
putationally as well is a variant of Impagliazzo’s hard-core lemma. Impagliazzo’s lemma
states that every predicate which is mildly hard on average for circuits of some size s
(no circuit can predict the predicate with probability higher than 1 − δ) has a large set
of inputs (fraction δ) such that on these inputs the predicate is very hard for all circuits
of some smaller size s′.

We will use a modified version of the lemma, which has two improvements over the
previously known versions: in Section 2.1 we show that the size of the hard-core set
can be made twice as big1, which is tight. The proof given for this is very similar to
Nisan’s proof in [Imp95], see also [GNW95]. In Section 2.2 we generalize the result to
the uniform setting, this time in a way very similar to Impagliazzo’s proof.

Finally, in Section 2.3 we show how the lemma implies that information theoretic
protocols can be used in the computational setting.

2.1 Non-Uniform Hard-Core Sets

Assume that Alice and Bob have a protocol for secret bit agreement such that they
always agree (ε = 1) on the outcome. Further assume that Eve, given the communication
only, cannot always predict what Alice and Bob agreed on, but only with probability
1 − δ

2 . Intuitively, one expects that for some of the possible randomness Alice and Bob
use (about fraction δ), it will be very difficult for Eve to find the bit Alice and Bob
agreed on, while for others it might be rather easy. The following lemma – a variant of
Impagliazzo’s hard-core lemma – formalizes this intuition for non-uniform adversaries:
x ∈ Rn ⊆ {0, 1}n will be the randomness of Alice and Bob, f(x) the bit Alice and
Bob agree on, g(x) the communication between Alice and Bob, and C ′ a circuit for Eve
which is supposed to predict the predicate. We use the subset Rn ⊆ {0, 1}n of possible
randomness because in general Alice and Bob will not always agree on the output (ε < 1),
and Rn will only consist of those possible random strings for which the output of Alice
and Bob will be equal (note that for our application |Rn| ≥ 2n/2 trivially holds, because
we assume that Alice and Bob agree in more than half of the cases).

To reduce the number of parameters, we assume that g : Rn → {0, 1}n keeps the
number of bits constant. Note that padding can be used if that is not the case. In the
following lemma, reasonable values for δ and γ are in the range [0, 1]. The upper bound
to the size of the circuits in the following lemma is not important in our application
because every function f : {0, 1}n → {0, 1} can be computed by circuits of size O(2n/n)
(see [Weg87]), and thus we will only apply this lemma to circuits of significantly smaller
size.

Lemma 2.1 (Non-uniform hard-core lemma). Let Rn be a set with |Rn| ≥ 2n−1,
f : Rn → {0, 1} be any predicate, g : Rn → {0, 1}n any function, and γ, δ constants.

1Actually, the previously known variant can be bootstrapped in order to obtain a set size which is as
big as ours up to a factor which is in o(1). In any case, our version is more direct.
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If for any constant s′ ≤ 2n δ2

32 for all circuits C ′ of size s′

Pr
x←Rn

[
C ′

(
g(x)

)
= f(x)

]
≤ 1 −

δ

2
, (1)

then there exists a set S ⊆ Rn with size |S| ≥ δ|Rn| such that for all circuits C of

size s = γ2

32ns′ −O(1):

Pr
x←S

[C(g(x)) = f(x)] <
1 + γ

2
. (2)

Lemma 2.1 is proven by contradiction. The assumption that for every set S there exists
a circuit C of size s which contradicts (2) is used to get a circuit C ′ which contradicts (1).
This reduction is done in three steps. In Lemma 2.2 we show that if for every set S
of size δ|Rn| there is a circuit which is correct with probability at least 1+γ

2 , then also
for every distribution over Rn with min-entropy log(δ|Rn|) a circuit which has very
similar advantage exists. In Lemma 2.3 we show that this implies that there exists a
small collection of circuits with positive advantage on every set S of size δ|Rn| (note the
change in quantifiers: the collection is now the same for every set). Lemma 2.4 shows
that such a collection is sufficient to obtain a circuit which contradicts the assumption
of Lemma 2.1. It is the only new part of the proof and enables us to strengthen the
hard-core lemma to twice the size.

2.1.1 Sets to Measures

We first show that circuits for sets implies circuits for distributions with high min-
entropy as well. Instead of distributions with high min-entropy we will consider mea-
sures M : Rn → [0, 1]. The density of a measure M is µ(M) :=

∣
∣Rn

∣
∣−1 ∑

x∈Rn
M(x).

An element x is chosen according to M if the probability of x being chosen is propor-
tional to M(x). Note that the min-entropy of the distribution induced by a measure
with density δ is at least log(δ|Rn|). A set S is chosen according to M if every element x
is in the set independently of the other elements with probability M(x).

The following lemma, converting circuits for sets to circuits for measures, is in fact not
necessary for the applications we have in mind. One could formulate Lemma 2.1 using
measures instead of sets. On the other hand, in applications it is often more intuitive to
deal with sets instead of measures.

The lemma states that for a fixed measure M with density δ, if we choose a set S
according to this measure, with overwhelming probability all circuits of some limited
size perform the same on S as they do on M . The lemma is slightly stronger than what
is needed here, but it will be needed in this form in Section 2.2.

Lemma 2.2. Let Rn, f and g be as in Lemma 2.1, 1
2 > γ, δ > 0 be fixed and

M : Rn → [0, 1] be any measure with density µ(M) ≥ δ. The probability that for a

random set S chosen according to M there exists a circuit C with Size(C) ≤ 2n γ2δ2

64n
satisfying

∣
∣
∣ Pr
x←M

[
C(g(x)) = f(x)

]
− Pr

x←S

[
C(g(x)) = f(x)

]
∣
∣
∣ ≥ γ (3)
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is less than 2−2nγ2δ2/64.

Proof. First, the Hoeffding bound shows that the probability that (1 − γδ/4)δ|Rn| ≤
|S| ≤ (1 + γδ/4)δ|Rn| does not hold is smaller than exp(−2nγ2δ2/16).

Fix any circuit C, and assume w.l.o.g. that |{x | C(g(x)) = f(x)}| ≥ |Rn|/2. Consider
the subset S ′ of S for which C is correct. The probability that (1−γδ/4)E[|S ′|] ≤ |S ′| ≤
(1+γδ/4)E[|S ′|] does not hold is bounded by exp(−2nγ2δ2/32). If both random variables
|S| and |S ′| are in their respective interval, a straightforward calculation shows that for
this circuit C:

∣
∣
∣ Pr
x←M

[
C(g(x)) = f(x)

]
− Pr

x←S

[
C(g(x)) = f(x)

]
∣
∣
∣ =

∣
∣
∣
E[|S ′|]

E[|S|]
−

|S ′|

|S|

∣
∣
∣ ≤ γ.

The probability that this does holds is thus bounded by 1 − 2 exp(−2nγ2δ2/32).
For fixed size s, there are less than 2ns circuits with n input bits and one output bit.

Using the union bound, this implies that the probability that a circuit of size 2n γ2δ2

64n

which contradicts (3) exists is bounded by 2−2nγ2δ2/64.

2.1.2 A Collection of Circuits for Every Set

We now prove that if for every measure M with µ(M) ≥ δ there exists a circuit which is
good, this implies that there exists a small collection of circuits which perform well on
every set S of size δ|Rn|.

Lemma 2.3. Let Rn, f and g be as in Lemma 2.1, and γ, δ > 0. Assume that for every
measure M : Rn → [0, 1] with density µ(M) ≥ δ there exists a circuit CM of size s for
which

Pr
x←M

[CM (g(x)) = f(x)] ≥
1 + γ

2

Then there exists a collection C of 8n
γ2 circuits of size s such that for every set S of size

|S| ≥ δ|Rn|

Pr
C←C,x←S

[C(g(x)) = f(x)] >
1

2
.

Proof. Consider the following zero-sum game of two players Alice and Bob: Alice chooses
a circuit C of size at most s, and simultaneously Bob chooses a set S ⊆ Rn with
|S| ≥ δ|Rn|. The payoff for Alice is Prx←S [C(g(x)) = f(x)].

A randomized strategy for Bob is a distribution on sets of size at least δ|Rn|, and
corresponds to a distribution M on Rn with µ(M) ≥ δ. For any such strategy, the
assumption of the lemma implies that Alice has a strategy to obtain a value of at
least 1+γ

2 . According to von Neumann’s min-max Theorem [vN28] this means that there
exists a strategy (i.e., a distribution on circuits) for Alice, such that for no strategy of
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Bob the payoff is lower than 1+γ
2 . Thus, for this distribution C ′ we obtain for every set

S with |S| ≥ δ|Rn|

Pr
C←C′,x←S

[C(g(x)) = f(x)] ≥
1 + γ

2
.

Using Chernoff’s bound it is now easy to show that λ = 8n
γ2 circuits C1, . . . , Cλ from C′

exist for which, for every x ∈ Rn, the fraction of circuits answering 1 deviates from the
expected value by less than γ/2. Thus, for this collection C of 8n

γ2 circuits

Pr
C←C,x←S

[C(g(x)) = f(x)] >
1

2
,

for every set S of size δ|Rn|.

2.1.3 Combining the Circuits in the Collection

The key observation to improve over [Imp95] in the set size is given in the following
lemma, which states that to do so, a collection of circuits which does well on average for
every set is sufficient.

Lemma 2.4. Let Rn, f and g be as in Lemma 2.1, δ > 0 be fixed and C a collection of
circuits such that for every S ⊆ Rn of size |S| ≥ δ|Rn|

Pr
C←C,x←S

[C(g(x)) = f(x)] >
1

2
.

Then there is a circuit C ′ of size O(|C|)+
∑

C∈C Size(C) such that Pr[C ′(g(x)) = f(x)] >

1 − δ
2 .

Proof. For every x let αcorr(x) = 2PrC←C [C(g(x)) = f(x)]−1 be the expected advantage
of a circuit from C on x. Analogous, let α1 = 2PrC←C[C(g(x)) = 1] − 1. Consider a
subset S ⊆ Rn of size δ|Rn| for which the sum

∑

x∈S αcorr(x) is minimal, and let ϕ > 0
be the maximal value of αcorr(x) for x ∈ S.

We first describe a randomized circuit. On input g(x), circuit C ′ first evaluates all
circuits in the collection C and then finds α1(x). It then outputs 1 with probability

Pr[C ′(g(x)) = 1] =







0 if α1(x) ≤ −ϕ
1
2 + α1(x)

2ϕ if −ϕ < α1(x) < ϕ

1 if ϕ ≤ α1(x).

The probability that C ′(g(x)) equals f(x) is 1
2 + αcorr(x)

2ϕ , truncated at 0 and 1. Therefore
for x /∈ S, the circuit will always be correct.

On the other hand, since S has size δ|Rn|, the assumption of the lemma implies
PrC←C,x←S[C(g(x)) = f(x)] > 1

2 , and thus Ex←S [αcorr(x)] > 0. For a fixed x ∈ S we
obtain

Pr[C ′(g(x)) = f(x)] = max
(

0,
1

2
+

αcorr(x)

2ϕ

)

≥
1

2
+

αcorr(x)

2ϕ
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and thus Prx←S [C
′(g(x)) = f(x)] > 1

2 , which implies Pr[C ′(g(x)) = f(x)] > 1 − δ
2 .

Note that the total size of C ′ is the sum of the sizes of the circuit in C plus the size
needed to compute the output. The output bits of the circuits in C can now be sorted
with linear complexity (see [Weg87, Chapter 3.4]). The randomness used now just selects
one of the output bits with a certain probability distribution. We can fix the randomness
to the value for which the circuit has highest probability in predicting f(x) overall, and
thus obtain the lemma.

2.1.4 Assembling the Parts

We can use Lemmas 2.2, 2.3 and 2.4 to proof Lemma 2.1.

Proof (of Lemma 2.1). Assume for a contradiction, that for every set S of size |S| ≥ δ|Rn|
there exists a circuit C of size s such that

Pr
x←S

[C(g(x)) = f(x)] ≥
1 + γ

2
.

The assumption s′ ≤ 2n δ2

32 of the lemma implies s ≤ 2n δ2γ2

1024n . Using Lemma 2.2 this
implies that for every measure M with density δ there exists a circuit C ′′ of size s
satisfying

Pr
x←S

[C ′′(g(x)) = f(x)] ≥
1 + γ/2

2
.

Lemma 2.3 then implies that there exists a collection C of 32nγ−2 circuits of size s with

Pr
C←C,x←S

[C(g(x)) = f(x)] >
1

2
.

Lemma 2.4 states that we can combine these circuits to obtain one circuit C ′ of size
O(32nγ−2) + 32nsγ−2 for which

Pr[C ′(g(x)) = f(x)] > 1 −
δ

2
,

and thus we have a contradiction.

2.2 Uniform Hard-Core Sets

Lemma 2.1 is only applicable in the non-uniform settings, i.e., where Eve is modeled
by non-uniform circuits. In this section we present a similar lemma for the uniform
case. The main step to do that is to assume that an efficient algorithm produces the
circuits needed. In the following, let χS be the characteristic function of a set S, i.e.,
χS(x) = 1 ⇐⇒ x ∈ S and χS(x) = 0 otherwise.
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Lemma 2.5 (Uniform hard-core lemma). Let Rn ⊆ {0, 1}n be an efficiently sam-
plable set with |Rn| ≥ 2n/2. Let the functions f : Rn → {0, 1}, g : Rn → {0, 1}n,
δ : N → [0, 1] and γ : N → [0, 1] be computable in time poly(n), and assume that δ and γ
are noticeable.

Assume that there is no polynomial time algorithm B such that

Pr
x←Rn

[B(g(x)) = f(x)] ≥ 1 −
δ

2

for infinitely many n. Then, there is no polynomial time oracle algorithm A(·) such that
for infinitely many n the following holds: for any set S ⊆ Rn with |S| ≥ δ|Rn|, AχS

outputs a circuit C satisfying

E
[

Pr
x←S

[C(g(x)) = f(x)]
]
≥

1 + γ

2

(the expectation is over the randomness of A).

As before, we need the notion of measures for the proof. Recall that a measure M is
a function M : Rn → [0, 1], the density of M is defined as µ(M) :=

∣
∣Rn

∣
∣−1 ∑

x M(x)
and a set S is chosen according to M if x ∈ S independently of all other elements, with
probability M(x).

The proof is by contradiction. The basic idea is to use the algorithm A in the following
way: we start with an empty collection C of circuits, and add circuits one by one to C.
In every step, the given collection is used to define a measure M with µ(M) ≥ δ. The
measure is then used to define a set with size at least δ|Rn|, and this set is used with A
to obtain another circuit, which is then added to the collection. This is repeated until
for the collection either the majority of the circuits answers correctly on a fraction 1− δ

2 ,
or else for every set S of size δ|Rn|, a random circuit of C has probability slightly higher
than 1/2 of being correct on S (a similar condition as for Lemma 2.4). We then show
that in both cases we can obtain from C a circuit C ′ satisfying

Pr[C ′(g(x)) = f(x)] > 1 −
δ

2
,

which will be enough to get a contradiction.

2.2.1 The Idealized Algorithm

We first describe an idealized version of the algorithm. The idealized version assumes
that some characteristics of a given collection C of circuits (for example the density of
a measure MC,s defined by C, see below) can be estimated up to some error margin,
but the probability of a larger error is zero. Furthermore it assumes that an efficient
algorithm exists which, for any measure M with µ(M) ≥ δ, returns a circuit satisfying
Prx←M [C(g(x)) = f(x)] ≥ (1 + γ)/2. We will show in Section 2.2.2 how to drop these
assumptions.
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N

M

1

0
s

AC,s(x)

NC(x) s + 1
γδ

Figure 1: The advantage NC(x), measure MC,s(x), area AC,s(x) for one fixed x.

For the collection C of circuits let

NC(x) :=
∣
∣{C ∈ C | C(g(x)) = f(x)}

∣
∣ −

∣
∣{C ∈ C | C(g(x)) 6= f(x)}

∣
∣.

The measure MC,s(x) used to request the next circuit depends on NC and additionally
on a number s (which is initially 0 but will be increased while the collection is growing).
It is defined as

MC,s(x) :=







1 NC(x) ≤ s

1 − (NC(x) − s)γδ s < NC(x) < s + 1
γδ

0 NC(x) ≥ s + 1
γδ

(cf. Figure 1).
In order to proof that our algorithm will stop we consider the area under the curve in

Figure 1, starting from NC(x). Formally, AC,s(x) is defined as

AC,s(x) :=







s − NC(x) + 1
2γδ NC(x) ≤ s

1
2

(
s + 1

γδ − NC(x)
)
MC,s(x) s < NC(x) < s + 1

γδ

0 NC(x) ≥ s + 1
γδ .

(4)

The total area is also important, and thus let

A(C, s) =
1

|Rn|

∑

x∈Rn

AC,s(x).

The idealized version of the algorithm is shown in Figure 2. We use the following
notation: The skip-statement does nothing. The semantics of the if statement as in

if C1 → S1

[] C2 → S2

fi

for conditions C1 and C2, and statements S1 and S2 is that one condition which holds is
chosen in an arbitrary way, and the corresponding statement is executed. It is important
that we do not make any assumption which statement is executed if both conditions hold.

11



1 procedure GoodEnough(Collection C):
2 p := minS:|S|≥δ|Rn| Prx←S,C←C[C(g(x)) = f(x)]

3 r := |Rn|
−1|{x | NC(x) ≤ 0}

∣
∣

4 if p ≥ 1/2 + γδ2/32 ∨ r ≤ 7δ/16 → return true
5 [] p ≤ 1/2 + γδ2/16 ∧ r ≥ 3δ/8 → return false
6 fi
7 end GoodEnough.
8

9 procedure Imp+:
10 s := 0, C := ∅
11 while not GoodEnough(C) do
12 if µ(MC,s) ≤ δ(1 + γδ/16) → s := s + 1
13 [] µ(MC,s) ≥ δ → skip
14 fi

15 C := C ∪ CM , where CM satisfies Prx←MC,s
[CM (g(x)) = f(x)] > 1+γ

2 .

16 od
17 return C
18 end Imp+.

Figure 2: Algorithm for Proof of Lemma 2.5. The statement “skip” does nothing. In an
if-statement, any line may be executed for which the guard evaluates to true.

The algorithm given in Figure 2 is very simple: it adds the circuit which performs well
on MC,s to the collection C as long as the measure has density at least δ. If the density
is too small, i.e., µ(MC,s) ≤ δ, then s is increased before obtaining the circuit. This is
repeated until the resulting collection is good enough to prove Lemma 2.5.

The if-statements in the idealized algorithm require sampling, and thus it is not pos-
sible to give an efficient implementation of the algorithm in Figure 2. On the other
hand we can show that there exists an efficient randomized implementation, i.e., for
any κ ∈ poly(n) there exists an efficient algorithm which does exactly the same as the
idealized version with probability at least 1 − 2−κ.

We show the correctness of the algorithm in several steps. First, we show that there
exists an efficient randomized implementation for the loop. Then we show that in the
idealized version the loop terminates after at most 4γ−2δ−3 iterations. Finally, we prove
that a collection as returned by the idealized version is sufficient to prove Lemma 2.5.

2.2.2 Efficient Implementation of one Loop

To implement the algorithm in Figure 2, some knowledge about µ(MC,s), p (in line 2)
and r (in line 3) is required. Also we need to make sure that we can obtain circuits for
the measures as required in line 15. For a collection C of circuits, let Size(C) be the sum
of the sizes of the circuits in the collection.

12



Claim 2.6. If Size(C) ∈ poly(n) then there exists an efficient randomized implementa-
tion of the conditional statements in lines 4 and 12.

Proof. Using the Hoeffding-bound it is clear that for any κ ∈ poly(n) we can efficiently
find samples r′ and µ′ of r and µ(MC,s) respectively, such that with probability 1− 2−2κ

both |r′ − r| < δ/32 and |µ′ − µ(MC,s)| < γδ2/32.
Furthermore we can efficiently find an estimate p′ of p such that with probabil-

ity 1 − 2−2κ the estimate satisfies |p′ − p| < γδ2/64. To see this, let � be a total
order on Rn satisfying

NC(x) < NC(x
′) ⇒ x � x′.

Now, after drawing elements x1, . . . , xk for some k, let x̃ be the element at the δ-quantile,
and let X = {x | x � x̃}. Note that it is easy to show that p1 = Prx←X [C(g(x)) = f(x)]
is a good estimate for p, and that the average of the respective probabilities of the
sampled elements smaller than x̃ is a good estimate of p1.

Making k ∈ poly(n) large enough this implies the claim. C

In order to show that line 15 can be implemented we first need to show that the
measure satisfies µ(MC,s) ≥ δ.

Claim 2.7. In every iteration, after line 14 the measure MC,s satisfies µ(MC,s) ≥ δ.

Proof. The claim holds in the first round. Furthermore, the claim can only be wrong if s
is increased in line 12. In this case the measure cannot have decreased for any x when
comparing with the iteration before. This implies that the total density is at least as big
as one iteration earlier, which implies that the claim can be proven by induction. C

As a next step, we show that an algorithm A as in Lemma 2.2 (which we assume to
exist for a contradiction) can be used to give a randomized implementation of line 15 of
the idealized algorithm, which works for infinitely many n. For this, two modifications
are necessary. First, instead of only producing circuits which are expected to perform
well, we make sure it produces circuits which are nearly always performing well. Second,
we use Lemma 2.2 to show that such an algorithm also works with measures instead of
sets. In order to simplify the notation, we change the parameter γ when compared with
Lemma 2.5 to twice the size (this does not make any difference in the statement of the
lemma).

Claim 2.8. Let Rn, f , g, δ and γ be as in Lemma 2.5. Let A(·) be an polynomial time
oracle algorithm such that for infinitely many n, for any set S ⊆ Rn with |S| ≥ δ|Rn|,
AχS outputs a circuit C satisfying

E
[

Pr
x←S

[C(g(x)) = f(x)]
]
≥

1

2
+ γ.

If Size(C) ∈ poly(n), then there exists an efficient randomized implementation of line 15
which is correct for infinitely many n.

13



Proof. Note that, given an oracle for M(x), it is possible to efficiently simulate an oracle
χS for a set S chosen according to M (the answers must be cached). We thus run
algorithm AχS for a set S chosen according to M . Because of Lemma 2.2 and Markov’s
inequality, the probability that a circuit C is returned for which

q := Pr
x←M

[C(g(x)) = f(x)] ≥
1 + 7γ/8

2
.

is noticeable (for infinitely many n).
Using Chernoff’s inequality, for any κ ∈ poly(n), the constructed algorithm finds an

estimate q′ of q such the probability that |q′ − q| > γ
16 is at most 2−2κ. In case the

estimate is at least 1+3γ/4
2 , we return the circuit, otherwise we start over again with new

samples.
Note that with probability 2−2κ a circuit is returned after polynomially many tries of

the above algorithm. C

This implies that we can give an efficient randomized implementation of one loop of
the algorithm.

Lemma 2.9. Let Rn, f , g, δ and γ be as in Lemma 2.5. If there exists a polynomial
time oracle algorithm A(·) such that for infinitely many n, for any set S ⊆ Rn with
|S| ≥ δ|Rn|, AχS outputs a circuit satisfying

E[ Pr
x←S

[C(g(x)) = f(x)]] ≥
1 + γ

2
,

and if Size(C) ∈ poly(n), then there exists an efficient randomized implementation of the
loop of Algorithm Imp+ in Figure 2 which is correct for infinitely many n.

Proof. Claim 2.7 and 2.8 together imply that for infinitely many n there exists an im-
plementation of line 15 of the algorithm. Claim 2.6 shows that the if statements have a
randomized implementation as well, which proves the lemma.

2.2.3 Termination

We now show that the algorithm stops after at most 4γ−2δ−3 iterations. For this, we
show that A(C, s) − δs decreases by at least γδ2/8 in every iteration, and that the
algorithm must stop if it gets smaller than 0. Note that initially A(∅, 0) = 1

2γδ . First,
we show that adding a circuit to C (while leaving s constant) decreases A(C, s) by at
least γδ

2 .

Claim 2.10. If µ(MC,s) ≥ δ and CM satisfies Prx←MC,s
[CM (g(x)) = f(x)] ≥ 1+γ

2 then

A(C ∪ {CM}, s) ≤ A(C, s) − γδ
2 .

Proof. First, let S+ := {x | CM (g(x)) = f(x)} (i.e., the x for which the circuit is correct)
and S− := {x | CM (g(x)) 6= f(x)} (i.e., the x for which the circuit is wrong), and let
C′ = C ∪ {C}.

14



Consider a fixed x. If x ∈ S+, then AC′,s(x) ≤ AC,s(x) − MC,s(x) + γδ/2 (note that
NC′(x) = NC(x) + 1, and with Figure 1 it is easy to see that the area decreases by at
least MC,s(x) minus the small triangle which is cut off in case NC(x) is in the region where
MC,s(x) is not constant). Analogously, if x ∈ S− then AC′,s(x) ≤ AC,s(x)+MC,s(x)+γδ/2.
Consequently,

A(C′, s) ≤ A(C, s) +
γδ

2
+

1

|Rn|

( ∑

x∈S−

MC,s(x) −
∑

x∈S+

MC,s(x)
)

.

It is easy to see that Prx←MC,s
[CM (g(x)) = f(x)] ≥ 1+γ

2 implies
∑

x∈S+ MC,s(x) −
∑

x∈S− MC,s(x) ≥ γ
∑

x MC,s(x), and using µ(MC,s) ≥ δ we see that

A(C′, s) ≤ A(C, s) +
γδ

2
− γδ = A(C, s) −

γδ

2
. C

Of course, if s is increased in line 12, then the area A(C, s) will grow. We can give an
upper bound on this:

Claim 2.11. If s is increased in line 12, then A(C, s + 1) ≤ A(C, s) + δ + γδ
2 − γδ2

8 .

Proof. First we note that for any x, AC,s+1(x) ≤ AC,s(x) + MC,s(x) + γδ/2, and if
NC(x) ≤ 0 ≤ s then AC,s+1(x) ≤ AC,s(x) + MC,s(x). Since the loop would have stopped
if S := {x | NC(x) ≤ 0} was smaller than (3δ/8)|Rn|, we get in total

A(C, s + 1) ≤ A(C, s) +
1

|Rn|

∑

x∈S

MC,s(x) +
1

|Rn|

∑

x/∈S

(

MC,s(x) +
γδ

2

)

≤ A(C, s) + µ(MC,s)
︸ ︷︷ ︸

≤δ(1+γδ/16)

+
(

1 −
3δ

8

)γδ

2

≤ A(C, s) + δ +
γδ2

16
+

γδ

2
−

3γδ2

16
= A(C, s) + δ +

γδ

2
−

γδ2

8
. C

Taking these two claims together, we obtain:

Claim 2.12. In every iteration of the loop, A(C, s) − sδ decreases by at least γδ2

8 .

Proof. Combine Claim 2.10 and 2.11. C

Claim 2.13. If A(C, s) − sδ < 0, then C is a collection which satisfies

Pr
C←C,x←S

[C(g(x)) = f(x)] >
1

2
+

1

4γδ|C|

for every S ⊆ Rn of size |S| ≥ δ|Rn|.
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Proof. Let H ⊆ Rn be a set of size δ|Rn| for which PrC←C,x←H[C(g(x)) = f(x)] is
minimized. Since

Pr
C←C,x←H

[C(g(x)) = f(x)] =
1

2
+

∑

x∈HNC(x)

2|C||H|

it is enough to show that
∑

x∈HNC(x) > |Rn|
2γ . From (4) we see that AC,s(x) ≥ 1

2γδ + s−
NC(x), and this implies

∑

x∈H

NC(x) ≥
∑

x∈H

1

2γδ
+ s − AC,s(x)

≥ δ|Rn|
( 1

2γδ
+ s

)

−
∑

x∈Rn

AC,s(x)

=
|Rn|

2γ
+ δ|Rn|s − |Rn|A(C, s)

>
|Rn|

2γ
. C

Lemma 2.14. The loop of Algorithm Imp+ is traversed at most 4γ−2δ−3 times.

Proof. Initially the collection is empty, and thus A(C, s) = A(∅, 0) = 1
2γδ . Since in every

iteration A(C, s) − sδ decreases by at least γδ2

8 , this means that after at most 4γ−2δ−3

iterations A(C, s) − sδ < 0, in which case Claim 2.13 implies that

Pr
C←C,x←S

[C(g(x)) = f(x)] >
1

2
+

γδ2

16

(note that |C| ≤ 4γ−2δ−3). Thus, the if statement in line 4 of the algorithm must return
true (since the guard of line 5 is wrong), and the algorithm terminates.

2.2.4 The Collection Yields a Circuit

Claim 2.15. Let γ, δ be noticeable, C be a collection of circuits such that Size(C) ∈ poly(n)
and for every set S of size δ|Rn|

Pr
x←S,C←C

[C(g(x)) = f(x)] >
1

2
+

γδ2

16

then, there is a randomized circuit C ′ of size poly(n) for which

Pr[C ′(g(x)) = f(x)] > 1 −
δ

2
+

γ2δ4

2048

Furthermore, for any κ ∈ poly(n) such a circuit C ′ can be found efficiently from C with
probability 1 − 2−κ.
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Proof. Let � be a total order on Rn satisfying

NC(x) < NC(x
′) ⇒ x � x′,

and we assume that � is simple to compute given x and x′. In other words, we complete
the partial order given by comparing the number of circuits which are correct by imposing
an arbitrary order for two values x and x′ satisfying NC(x) = NC(x

′).

First, letting ϕ := γδ2

32 , we find a triple (x̃, f(x̃), g(x̃)) such that

1

|Rn|

∣
∣{x | x � x̃}

∣
∣ ∈ [δ, δ(1 + ϕ)] (5)

with probability 1−2−κ/2. This can be done efficiently: we sample poly(n, ϕ−1, δ) many
triples (x, f(x), g(x)), order them according to �, and select the element x̃ at relative
position δ(1 + ϕ/2). In order to see that x̃ satisfies

1

|Rn|
|{x | x � x̃}| ≥ δ (6)

with high probability, consider the random variable χ(x) which is defined to be 1 if x is
one of the first δ(1 + ϕ/2) fraction elements of Rn, and zero otherwise. The expected
value of χ(x) when sampling x is δ(1 + ϕ/2). If (6) is not satisfied, the sampled value
of χ(x) would be more than δϕ/2 different than it’s expected value, and the probability
for this can be made smaller than 2−κ/2 using Chernoff’s bound. Analogously we can
make the probability that the other bound is satisfied at least 1 − 2−κ/2.

Assume now that x̃ satisfies (5). We compute NC(x̃) > 0, and return a circuit C ′

which, on input g(x) computes the number

NC,1(x) :=
∣
∣{C ∈ C | C(g(x)) = 1}

∣
∣ −

∣
∣{C ∈ C | C(g(x)) = 0}

∣
∣.

The circuit C ′ then outputs one with probability

Pr[C ′(g(x)) = 1] =







0 if NC,1(x) ≤ −NC(x̃)
1
2 +

NC,1(x)
2NC(x̃) if −NC(x̃) < NC,1(x) < NC(x̃)

1 if NC(x̃) ≤ NC,1(x).

Note that for an x with x 6� x̃ the circuit is always correct. For an x satisfying x � x̃,
we have

Pr[C ′(g(x)) = f(x)] ≥
1

2
+

NC(x)

2NC(x̃)
,

and thus

Pr
x←{x|x�x̃}

[C ′(g(x)) = f(x)] ≥
1

2
+

∑

x�x̃ NC(x)

2NC(x̃) |{x | x � x̃}|

≥
1

2
+

∑

x�x̃ NC(x)

2|C| |{x | x � x̃}|

= Pr
C←C,x←{x|x�x̃}

[C(g(x)) = f(x)]

≥
1 + ϕ

2
.
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In total, we obtain

Pr[C ′(g(x)) = f(x)] = Pr[x � x′]
1 + ϕ

2
+ Pr[x 6� x′] · 1

≥ δ(1 + ϕ)
1 + ϕ

2
+ (1 − δ(1 + ϕ))

> 1 −
δ

2
+

ϕ2

2
. C

Claim 2.16. Let C be a collection of circuits such that Size(C) ∈ poly(n) and such that
1
|Rn|

∣
∣{x | NC(x) ≤ 0}

∣
∣ ≤ 7δ

16 . Then there is a circuit C ′ of size poly(n) for which

Pr[C ′(g(x)) = f(x)] > 1 −
7δ

16
.

Furthermore, C ′ can be found efficiently from C.

Proof. The majority function applied to the output of all the circuits in the collection
satisfies the desired properties. C

2.2.5 Finishing the Proof

We can now finish the proof of Lemma 2.5.

Proof (of Lemma 2.5). To get a contradiction, let A(·) be an oracle algorithm as in
Lemma 2.5. Lemma 2.9 implies that with this, the loop of Algorithm Imp+ has an
efficient randomized implementation which is correct for infinitely many n, as long as
the loop is traversed at most a polynomial number of times (since in this case Size(C)
must be polynomial).

Lemma 2.14 states that for those n the loop is traversed at most 4γ−2δ−3 times.
Thus for the infinitely many n for which the implementation does what the idealized
algorithm does, a collection of circuits will be returned which either satisfies the condition
of Claim 2.15 or 2.16, and it is easy to decide which is the case. One of those claims can
then be used to to get a circuit C ′ which satisfies for some noticeable function ϕ

Pr[C ′(g(x)) = f(x)] > 1 −
δ

2
+ ϕ.

The probability that anything does not run correctly can easily be bounded by 2−n using
these Lemmas. Since the circuit C ′ can then be simulated, we get the contradiction (for
infinitely many n).

Furthermore, since the running time of the algorithm is polynomially bounded we can
count the number of steps, and after a suitable polynomial number of steps stop the
algorithm. This ensures that the running time is polynomial for all n, while the success
can still be achieved for infinitely many n.
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2.3 Computational and Information Theoretic Key Agreement

Lemma 2.5 is sufficient to show that any efficient information theoretic SKA protocol
for (ε, δ)-secure random variables can be used without modification to improve a given
δ-secure SBA protocol with correlation ε to a key agreement protocol. Note that in
the following theorem, ε and δ can be arbitrary functions as long as they are efficiently
computable.

Theorem 2.17. Let δ : N → [0, 1], ε : N → [0, 1] be computable in time poly(n).
If there exists a δ-secure SBA protocol with correlation ε, and there exists an efficient
information theoretic secret key agreement protocol for (ε, δ)-secure random variables,
then there exists a (computational) key agreement protocol.

Proof. We assume without loss of generality that the given SBA protocol uses n bits of
randomness per invocation, and n bits of communication per invocation (any protocol
which does not satisfy this can be easily modified by padding to satisfy this). Further-
more, define Rn ⊆ {0, 1} to be the set of randomness for which SA = SB after the SBA
protocol. We note that |Rn| ≥ 2n−1. Let g : {0, 1}n → {0, 1}n be the communication the
SBA protocol generates, and f : Rn → {0, 1} be the secret bit SA for this randomness.

Let k ∈ poly(n) be the maximal number of instances the given information theoretic
secret key agreement protocol may use. Alice and Bob first use the SBA protocol k times
to obtain bits X1, . . . , Xk and Y1, . . . , Yk, while producing communication Γ1, . . . ,Γk.
They use the bits as inputs to the information theoretic secret key protocol and run it.
The outputs X and Y of the information theoretic protocol are then the outputs of the
new protocol, and let Γ be the communication produced by the information theoretic
protocol (i.e., Γ does not include Γ1, . . . ,Γk).

It is obvious that the the protocol can be run in time poly(n), and also that the
probability that the output bits of Alice and Bob are equal is at least 1 − 2−n.

In order to prove the security of the protocol, we show that an algorithm A which
breaks the resulting protocol for infinitely many n can be used to break the SBA protocol
for infinitely many n. For that, assume that

Pr[A(Γ1, . . . ,Γk,Γ) = SA] >
1 + γ

2
,

where γ is non-negligible.
We want to use A to give an algorithm which finds f(x) given g(x) with probabil-

ity 1 − δ/2 for infinitely many n. Lemma 2.5 implies that it is sufficient to find, for any
set S of size at least δ|Rn|, a circuit C such that E[Prx←S [C(g(x)) = f(x)]] ≥ (1+γ ′)/2,
for some non-negligible γ ′. In order to do this, a given oracle χS can be used.

Let now such a set S with be fixed. We will use the the hybrid argument to find
the circuit. First, we describe k + 1 different variations of protocol. For variation j,
0 ≤ j ≤ k, we first run the SBA protocol k times with randomness r1, . . . , rk to obtain
X1, . . . , Xk, Y1, . . . , Yk and Γ1, . . . ,Γk. Next, for all i ≤ j with Xi = Yi and χS(ri) = 1,
we replace Xi and Yi with the a uniform random bit (i.e., choose Ri at random and set
Xi = Ri and Yi = Ri). Then we continue with the information theoretic protocol. Let pj

19



be the probability that A(Γ1, . . . ,Γk,Γ) = SA, for an execution of protocol j. Obviously,
p0 ≥ (1 + γ)/2 and pk ≤ (1 + 2−n)/2, since in protocol k, (Xi, Yi,Γi) are (ε, δ)-secure
random variables. A simple application of the hybrid argument now implies that we can
obtain a circuit C ′ such that

Pr
x←S

[C ′(g(x)) = f(x)] ≥
1 + γ/k

2
.

Lemma 2.5 now proves the Theorem.

3 The Information Theoretic Protocol

We show that an information theoretic secret key agreement protocol for (ε, δ) secure
random variables exists if δ > 1−ε

1+ε . It is convenient to use a different parametrization in

this section. Namely, we set ϑ := 1−ε
1+ε . For reference, this gives the following conversion

formulas:

ϑ =
1 − ε

1 + ε

ε =
1 − ϑ

1 + ϑ

Pr[X = Y ] =
1

1 + ϑ
=

1 + ε

2
.

Note that the goal is to make ϑ ∈ [0, 1] as small as possible. With this parametrization,
we use brackets to characterize random variables:

Definition 3.1. Let Z be any set. A triple X × Y × Z of random variables over
{0, 1} × {0, 1} × Z is [ϑ, δ]-secure if it is ( 1−ϑ

1+ϑ , δ)-secure.

Our information theoretic protocol consists of two building blocks:

• Alice and Bob compute the XOR of multiple instances, and keep the resulting bit
as new random variable.

• Alice and Bob compute the XOR of two instances, and Alice sends the resulting
bit to Bob. Bob checks whether he gets the same, and tells this to Alice. They
keep the first of the two instances if they had the same bit.

We will show that after each of these operations, when used with [ϑ, δ]-secure random
variables, Alice and Bob again share [ϑ′, δ′]-secure random variables, and give bounds
on ϑ′ and δ′. Note that in order to obtain efficient secret key agreement it is sufficient
to construct [2−n, 1 − 2−n]-secure random variables for every n in an efficient way.

Definition 3.2. A [ϑ, δ] to [ϑ′, δ′] conversion protocol with cost c is a protocol, such
that, for independent [ϑ, δ]-secure random variables (Xi, Yi, Zi), i ∈ N:

• Alice and Bob use R random variables (X1, Y1, Z1), . . . , (XR, YR, ZR) and E[R] ≤ c.
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• The protocol can be computed in time polynomial in c.

• Alice and Bob output a random variable (X ′, Y ′), and for the communication Γ
the triple (X ′, Y ′, Z1 . . . ZRΓ) is [ϑ′, δ′]-secure.

3.1 The XOR of Multiple Variables

If Alice and Bob just take the XOR of r instantiations this gives a [ϑ, δ] to [rϑ, rδ(1−2rδ)]
conversion. In order to prove this, we need a few technical lemmas.

The following inequality is similar to Bernoulli’s inequality.

Lemma 3.3. Let r ∈ N, ϑ > 0. Then,

(1 − ϑ

1 + ϑ

)r
≥

1 − rϑ

1 + rϑ
.

Proof. Using induction on r. We have

(1 − ϑ

1 + ϑ

)r+1
=

(1 − ϑ

1 + ϑ

)r 1 − ϑ

1 + ϑ
≥

1 − rϑ

1 + rϑ
·
1 − ϑ

1 + ϑ

=
1 − (r + 1)ϑ + rϑ2

1 + (r + 1)ϑ + rϑ2

(∗)

≥
1 − (r + 1)ϑ

1 + (r + 1)ϑ
,

where (∗) follows from

(
1 − (r + 1)ϑ + rϑ2

)(
1 + (r + 1)ϑ

)
≥

(
1 − (r + 1)ϑ

)(
1 + (r + 1)ϑ + rϑ2

)
.

This allows us to compute the probability that the XOR of multiple i.i.d. {0, 1} random
variables is 1.

Lemma 3.4. Let R1, . . . , Rr be i.i.d. random variables over {0, 1} with Pr[Ri = 0] = 1
1+ϑ .

Then

Pr[R1 ⊕ · · · ⊕ Rr = 0] =
1

2
+

1

2

(1 − ϑ

1 + ϑ

)r
≥

1

1 + rϑ

Proof. We prove the equality with induction over r. For r = 1 the claim is obvious.
Furthermore,

Pr[R1 ⊕ · · · ⊕ Rr = 0] =
1

4

(

1 +
(1 − ϑ

1 + ϑ

)r−1)(

1 +
(1 − ϑ

1 + ϑ

))

+

1

4

(

1 −
(1 − ϑ

1 + ϑ

)r−1)(

1 −
(1 − ϑ

1 + ϑ

))

=
1

2
+

1

2

(1 − ϑ

1 + ϑ

)r
.

The inequality follows directly from Lemma 3.3.

Lemma 3.5. Let δ, ϑ be given. For every r there exists a [ϑ, δ] to [rϑ, (1−rϑ)(1−(1−δ)r)]
conversion with cost r.
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Proof. Let (Xi, Yi, Zi) with the corresponding event Ei, for 1 ≤ i ≤ r, be r instances of
[ϑ, δ]-secure random variables. Alice and Bob compute the parity X = X1⊕· · ·⊕Xr and
Y = Y1⊕· · ·⊕Yr, respectively. We show that (X,Y,Z1 . . . Zr) is [rϑ, (1−rϑ)(1−(1−δ)r)]-
secure.

Lemma 3.4 applied on Ri := Xi ⊕ Yi implies that Pr[X = Y ] ≥ 1
1+rϑ . We de-

fine the event E := (∀i : Xi = Yi) ∧ (∃i : Ei). Obviously E implies X = Y and
I(X;Z1 . . . Zr | E) = 0. We obtain

Pr[E | X = Y ] ≥ Pr[E ]

= Pr[∀i : Xi = Yi] Pr[E | ∀i : Xi = Yi]

≥
1

1 + rϑ
(1 − (1 − δ)r)

≥ (1 − rϑ)(1 − (1 − δ)r).

It is easy to see that for parameters of interest (1−rϑ)(1−(1−δ)r) ≥ rδ(1−2rδ) ≈ rδ,
as long as r is not to big. Thus, this nearly gives a [ϑ, δ] to [rϑ, rδ] conversion.

As a corollary we obtain:

Corollary 3.6. For every ϑ, δ with δ > 100ϑ there exists a [ϑ, δ] to [ 1
16 , 15

16 ] conversion
with cost 5

δ .

Proof. Since 1−(1−δ)r ≥ 1−e−rδ, Lemma 3.5 also gives a [ϑ, δ] to [rϑ, (1−rϑ)(1−e−rδ)]
conversion. Using r = 5

δ implies that rϑ < 1/20 and (1 − rϑ)(1 − e−rδ) > 15/16.

3.2 The XOR with Communication

Next we consider the protocol where Alice and Bob first both compute the XOR of two
random variables and then use the authentic channel to communicate it. In case the
XOR is the same for both, they keep the first of the two initial bits, and otherwise they
repeat the protocol.

Lemma 3.7. Let ϑ, δ with ϑ < δ be given. There exists a [ϑ, δ] to [ϑ2, δ2] conversion
with cost 2(1 + ϑ)/(1 − ϑ).

Proof. Assume that (X1, Y1, Z1) and (X2, Y2, Z2) are [ϑ, δ]-secure. Alice sends X1 ⊕ X2

to Bob, who checks if this is equal to Y1⊕Y2. If this is the case he notifies Alice that the
protocol was successful, and they output X = X1 and Y = Y1, respectively. Otherwise
they discard the bits and start over again. Note that Eve will know at which point Alice
and Bob accepted.

It is easy to see that the probability that Alice and Bob accept is 1−ϑ
1+ϑ , and the

probability that X1 = Y1 and X2 = Y2 is (1 + ϑ)−2, which implies that the probability
that X = Y holds after the protocol is 1

1+ϑ2 .
We define E := E1 ∧ E2. It is obvious that E implies X = Y and I(X;Z1Z2C | E) = 0.

Since Pr[E | X = Y ] = Pr[E | (X1 = Y1)∧ (X2 = Y2)] ≥ δ2 we see that the protocol gives
a [ϑ, δ] to [ϑ2, δ2] conversion. The expected number of repetitions of the protocol is 1+ϑ

1−ϑ
and thus the cost is 2(1 + ϑ)/(1 − ϑ).
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3.3 Combining the protocols

First we show that we can increase the security, once we have [ 1
16 , 15

16 ]-secure random
variables.

Lemma 3.8. For every 1/16 ≥ ϑ > 0, δ > 0 there exists a [ϑ, 1−δ] to [2ϑ2, 1−2ϑ2−4δ
2
]-

conversion with cost 5.

Proof. We first use Lemma 3.7 to get [ϑ2, (1 − δ)2]-secure random variables. Since
(1 − δ)2 ≥ 1 − 2δ, these random variables are also [ϑ2, 1 − 2δ]-secure. We then use two

of the resulting instances with Lemma 3.5 for r = 2, to obtain [2ϑ2, (1 − 2ϑ2)(1 − 4δ
2
)]-

secure random variables, which are also [2ϑ2, 1 − 2ϑ2 − 4δ
2
] secure. Finally, 1/16 ≥ ϑ

implies that the cost is at most 5.

Lemma 3.9. Let δ, ϑ with δ > ϑ be given. For every n > 0 there exists a [ϑ, δ] to
[2−n, 1 − 2−n] conversion with cost cϑ,δ · n

3, where cϑ,δ depends only on ϑ and δ.

Proof. Since ϑ > δ, Lemma 3.7 implies that there exists a [ϑ, δ] to [ϑ′, δ′] conversion with
δ′ > 100ϑ′. Together with Lemma 3.6 this implies that there exists a [ϑ, δ] to [ 1

16 , 15
16 ]

conversion with constant cost cϑ,δ.
Starting from [ 1

16 , 15
16 ]-secure variables, it is easy to verify that s iterations of Lemma 3.8

yield [2−3−2s

, 1 − 2−3−2s

]-secure random variables at a cost 5s. Letting s = log n this
implies the lemma.

3.4 Impossibility

In this section, we show that we can generate [ϑ, δ]-secure random variables from scratch
(using only an authentic channel), as long as ϑ ≥ δ. Since the protocol obviously then
satisfies the requirements for a δ-secure SBA protocol with correlation ε = (1−ϑ)/(1+ϑ),
this implies that if one can give a reduction from such a protocol to secret key agreement
one automatically obtains a protocol for secret key agreement.

Lemma 3.10. For any 1 ≥ ϑ ≥ δ ≥ 0, there exists a protocol for Alice and Bob with
output (SA, SB) using only an authentic channel and two bits of communication Γ such
that (SA, SB ,Γ) is a [ϑ, δ]-secure random variable.

Proof. It is sufficient to consider the case δ = ϑ. In this case, Alice chooses a bit b0 such
that Pr[b0 = 0] = 2δ/(1 + δ), a bit b1 such that Pr[b1 = 0] = Pr[b1 = 1] = 1/2, and sends
both bits to Bob. If b0 = 0, both players output a random bit, if b0 = 1 they output b1.

The probability that they output the same bit is δ/(1+δ)+(1−δ)/(1+δ) = 1/(1+δ).
The event E is defined as (b0 = 0)∧(X = Y ), and Pr[E | X = Y ] = (δ/(1+δ))(1+δ) = δ,
which implies that (X,Y,C) is a [δ, δ]-secure random variable.

This lemma could also be obtained by observing that for [ϑ, δ]-secure random variables
with ϑ ≥ δ the intrinsic information is zero, and using techniques implicit in [RW03]
which show that the information of formation of this distribution must be zero as well.

In total, we obtain the main theorem of this section:
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Theorem 3.11. For constants 0 ≤ δ, ε ≤ 1, there exists an information theoretic secret
key agreement protocol for (ε, δ)-secure random variables if and only if δ > 1−ε

1+ε .

Proof. Let the given security parameter be n. First we note that (ε, δ)-secure random
variables with δ > 1−ε

1+ε are [ϑ, δ] secure random variables with δ > ϑ. Lemma 3.9 implies
that a secret key agreement protocol with expected polynomial cost (in n) exists. Such
a protocol is easily modified to one where the worst case cost is polynomial, and such
that it only fails with probability 2 · 2−n.

On the other hand, if ϑ ≥ δ, Lemma 3.10 implies (cf. [Mau93]) that no such protocol
is possible.

Theorem 3.11 can be combined with Theorem 2.17 to get the main result:

Theorem 3.12. For constants 0 ≤ δ, ε ≤ 1, there exists a relativizing reduction from
key agreement to a δ-secure SBA protocol with correlation ε if and only if δ > 1−ε

1+ε .

Proof. If δ > 1−ε
1+ε the claim follows directly from Theorems 2.17 and 3.11. If δ ≤ 1−ε

1+ε
such a reduction would imply that secret key agreement exists, since the technique used
in the proof of Theorem 3.11 implies the existence of a δ-secure SBA protocol with
correlation 1−δ

1+δ .
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