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Abstract

We prove a new equivalence between the non-uniform and uniform complexity of expo-
nential time. We show that EXP ⊆ NP/log if and only if EXP = PNP

|| . Our equivalence

makes use of a recent result due to Shaltiel and Umans showing EXP in PNP

|| implies EXP in
NP/poly.
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1 Introduction

Let A and B be uniform complexity classes such that B ⊆ A. If A seems much “larger” than B then
it is often the case that we can prove that B is strictly contained in A, e.g. let B = P and A = EXP.
Is the same true if we consider a non-uniform analogue of B? That is to say, augment B by giving
it access to some advice string b such that b depends only on the length of x; can we still separate
A from B/b? If not, can we derive interesting consequences on A if it is contained in B/b, i.e. can
we show that A collapses to some smaller complexity class?

These questions are of central importance in computational complexity theory, particularly
in the area of derandomization, where both separations of uniform from non-uniform classes or
collapses of uniform classes have important consequences:

Separations

• If EXP 6⊂ P/poly, then Babai et al. [2], building on the “Hardness versus Randomness”
paradigm [20], have shown that BPP is contained in subexponential time and that MA is con-
tained in non-deterministic subexponential time (both containments are for infinitely many
input lengths).

• It is known that if EXP cannot be computed by nondeterministic polynomial-size circuits
then it is possible to obtain similar derandomizations of AM [16, 19, 22]. Shaltiel and
Umans [21] were the first to prove that if EXP 6⊂ NP/poly then AM ⊆ NSUBEXP for
infinitely many input lengths.

Collapses

Perhaps less well known than the above derandomizations are equally important results show-
ing that uniform complexity classes such as EXP or NEXP collapse if they are contained in smaller,
non-uniform classes:

• Babal et al. [2] showed that EXP ⊆ P/poly implies that EXP = MA, improving on work due
to Meyer [15] who first proved that EXP ⊆ P/poly implies EXP = ΣP

2 .

• Impagliazzo et al. [12] improved the above collapse and showed that NEXP ⊆ P/poly if
and only if NEXP = EXP = MA. This result is crucial to Kabanets and Impagliazzo’s
breakthrough paper [14] showing that derandomizing BPP implies proving circuit lower
bounds.

If we pay particular attention to MA, then the above separations and collapses match up nicely–
if EXP ⊆ P/poly then EXP collapses to MA, and if EXP 6⊂ P/poly then MA can be derandomized
(and will be contained in NSUBEXP).

The same is not true, however, for AM. Separating EXP from NP/poly implies that AM is
contained in non-deterministic, sub-exponential time [21]. Placing EXP ⊆ NP/poly, however,
implies only that EXP = ΣP

3 , the third level of the polynomial-time hierarchy1.

1Actually one can prove that under the assumption that EXP ⊆ NP/poly, EXP ⊆ ZPP
Σ

P

2 [6]
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Is it true that EXP ⊆ NP/poly implies that EXP = AM? If so, combining this fact with
the above derandomization of AM [21] would yield a rare unconditional derandomization of AM,
namely that AM is contained in Σ2 − SUBEXP, the subexponential time analogue of ΣP

2 (AM

is currently only known to be in ΠP

2 )– see Gutfreund et al. [11] for a discussion. Shaltiel and
Umans [22] have asked if EXP ⊆ NP/ log implies that EXP = AM, as even this is not known.

1.1 Our Results

We give a new collapse for exponential time if it is computed by a nondeterministic, slightly non-
uniform complexity class. More precisely we show that if EXP ⊆ NP/ log then EXP = PNP

|| , i.e.
EXP is computed by a polynomial-time turing machine with non-adaptive access to an NP-oracle.
Further, we can also prove the converse:

Theorem 1 The following are equivalent.

1. EXP ⊆ PNP

||

2. EXP ⊆ NP/ log

The forward direction of our equivalence makes use of a new hardness amplification result
due to Shaltiel and Umans. They prove that if EXP 6⊂ NP/poly then EXP 6⊂ PNP

|| /poly. The
contrapositive gives a partial collapse of exponential time which we show how to strengthen via
a non-standard method of computing advice. As a result we obtain EXP ⊆ PNP

|| implies EXP ⊆

NP/ log, improving on the conclusion EXP ⊆ AM/ log obtained by Shaltiel and Umans [22].
The backwards direction requires two collapses. First we prove that if EXP ⊆ NP/ log then

EXP = PNP, and then we use the fact that the ODDMAXBIT function is complete for PNP to show
how the above advice strings can be computed and verified non-adaptively.

We also prove variations of Theorem 1 for other classes.

Theorem 2 The following are equivalent.

1. PSPACE ⊆ PNP

||

2. PSPACE ⊆ NP/ log

Theorem 3 The following are equivalent.

1. P#P ⊆ PNP

||

2. P#P ⊆ NP/ log

Is it possible to prove something similar to Theorem 1 for NEXP? We show that, in fact,
such a statement is vacuously true for NEXP since one can separate NEXP from NP/ log outright
via diagonalization (it is also known that NEXP 6⊂ PNP

|| [10]). We can consider, however, the
consequences of NEXP being contained in randomized complexity classes that take advice (such
classes have been a focus of research interest as of late [4, 9]). We observe that the techniques
of Impagliazzo et al. [12] can be used to prove that NEXP ⊆ BPP/ log implies NEXP = BPP,
strengthening a result of Trevisan and Vadhan [24].
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1.2 Related Work

The first important collapse of a uniform class contained in a non-uniform class is due to Karp
and Lipton [15] who showed that NP ⊆ P/poly implies that PH = ΣP

2 and that NP ⊂ P/ log
implies P = NP. For exponential time, aside from the collapse results mentioned above due
to Babai et al. [2] and Impagliazzo et al. [12], Buhrman and Homer [7] showed that if EXPNP ⊆
EXP/poly then EXPNP = EXP and Buhrman, Fortnow, and Pavan [6] showed a weak relativization
of Impagliazzo et al. [12], namely that for any A ∈ EXP, NEXPA ⊆ PA/poly implies NEXPA =
EXPA and if A is complete for ΣP

k then NEXPA ⊆ PA/poly implies NEXPA = EXP = MAA.
Buhrman, Chang and Fortnow [5] give an equivalence of a non-uniform collapse to NP and a

uniform inclusion.

Theorem 4 (Buhrman-Chang-Fortnow) The following are equivalent.

1. coNP ⊆ NP/1

2. The polynomial-time hierarchy collapses to Dp

where Dp is the set of languages that are the difference of two NP languages.

Buhrman, Chang and Fortnow also generalize Theorem 4 to show that coNP in NP/k if and only if
the polynomial-time hierarchy collapses to the 2kth level of the Boolean hierarchy where the first
level of the Boolean hierarchy is NP and the i + 1st level is the set of differences of sets in NP and
the sets in the ith level.

This extension only works for finite k but Buhrman, Fortnow and Chang conjecture that it
extends to k = O(log n).

Conjecture 5 (Buhrman-Chang-Fortnow) The following are equivalent.

1. coNP ⊆ NP/ log

2. The polynomial-time hierarchy collapses to PNP

||

Since EXP in NP/poly implies EXP ⊆ ΣP

3 [1, 26], Theorem 4 implies EXP ⊆ NP/1 if and
only if EXP = Dp. Likewise Conjecture 5 implies Theorem 1 so we can view our Theorem 1 as a
partial resolution of Conjecture 5.

2 Preliminaries

2.1 Complexity Classes

We assume the reader is familiar with complexity classes P = ∪kDTIME(nk), NP =
∪kNTIME(nk), EXP = ∪kDTIME(2nk

), NEXP = ∪kNTIME(2nk

), PSPACE = ∪kDSPACE(nk)
as well as notions of oracle turing machines and the polynomial-time hierarchy (see e.g. [3] for
further explanations).

The non-uniform class NP/ log is the set of languages L such that there exists a language A in
NP and a function a : N → Σ∗ with |a(n)| = O(log n) such that for all x in Σ∗, x is in L if and
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only if (x, a(|x|)) is in A. NP/poly has the same definition except that we allow |a(n)| = O(nk)
for some k. Similarly NP can be replaced with any machine based complexity class, e.g. BPP/ log
is the set of languages accepted by a BPP machine augmented with an advice string of length
O(log n) which depends only on the input length.

The class PNP consists of the languages accepted in polynomial-time with oracle access to
some NP language. Since SAT, the set of satisfiable Boolean formula, is NP-complete, we can use
SAT as the oracle language. We will make use of the following theorem giving a natural complete
language for PNP:

Theorem 6 (Krentel [17]) Let φ(x1, . . . , xn) be a Boolean formula. Let a be the lexicographically
smallest satisfying assignment for φ, if there is one. The problem of determining whether the nth
bit of a is equal to one is many-one complete for PNP.

The above language is often referred to as ODDMAXBIT.

The class PNP

|| (sometimes written PNP

tt ) is the set of languages accepted in polynomial-time
with non-adaptive oracle access to SAT, in other words all queries must be made before any the
oracle returns any answers.

2.2 Randomized Classes

We also assume the reader is familiar with randomized complexity classes such as BPP and MA,
the set of languages accepted by a Merlin-Arthur game where on input x, Merlin, the prover,
sends a single message y and Arthur (the verifier) probabilistically verifies the purported proof y
to determine membership of x. AM is the set of languages accepted by an Arthur-Merlin game
where on input x, Arthur sends a random challenge r to Merlin who responds with y; Arthur then
probabilistically verifies y to determine acceptance of x (see the survey by Kabanets [13]).

2.3 Alternation and Games

We will make use of the characterization of PSPACE due to Chandra, Kozen, and Stockmeyer as a
game [8]. Chandra et al. showed that PSPACE is equivalent to the following two person game: on
input x, players alternate announcing bits for a polynomial number of rounds and a polynomial-
time computable judge chooses a winner based on x and the announced bits:

Theorem 7 (Chandra-Kozen-Stockmeyer) A language L is in PSPACE if there exists a
polynomial-time relation R on 2k + 1 strings where k = nO(1) and players P1 and P2 such that

• On round i for i odd, P1 takes as input x and all strings from previous rounds and ouputs
string xi.

• On round j for j even, P2 takes as input x and all strings from previous rounds and outputs
string yj.

• After k rounds, the input x is in the language L if and only if R(x, x1, y1, x2, y2, . . . , xk, yk)
is true.
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Furthermore, each player Pi requires only PSPACE to output his/her string for each round.
Hence we say each player has a strategy computable in PSPACE.

3 The Proof

In this section we give the proof of Theorem 1 showing the following are equivalent:

1. EXP ⊂ NP/log

2. EXP ⊂ PNP

||

We use the following nice result of Shaltiel and Umans [22]:

Theorem 8 (Shaltiel-Umans) If EXP ⊆ PNP

|| /poly then EXP ⊆ NP/poly.

The proof of the above theorem makes use of the fact that EXP has a low-degree extension f ,
and if this extension is computable in PNP

|| then for each query q made by the oracle-machine, one
can give an advice p equal to the fraction of x’s resulting in a q(x) which should be answered as
true by the NP oracle. For any x, it then suffices to choose a random low-degree curve through x
and guess witnesses for a p fraction of points on this curve.

Proof of Theorem 1:

(2 ⇒ 1)

Fix an EXP-complete language L. By Theorem 8, L is in NP/poly. Fix the appropriate NP-
machine M and let an be the lexicographically smallest advice string such that for all x of length
n, x is in L iff M(x, an) accepts.

Fix n. Let bi be the ith bit of an. We can compute bi in time exponential in n so by assumption
bi is in PNP

|| . Let Qi be the set of queries to SAT made by the PNP

|| algorithm to compute bi. Let
Q =

⋃
i Qi. Let r be the number of formulas in Q that are satisfiable. r is our O(log n) bits of

advice.
Our NP/ log algorithm works as follows on input x of length n: guess a subset S of r formulas

in Q and guess and verify their satisfying assignments. For each i, simulate the PNP

|| algorithm to
compute bi answering each query yes if it is in S and no otherwise. From the bi’s we now have an.
Now output M(x, an).

(1 ⇒ 2)

This direction follows by combining the following two lemmas:

Lemma 9 If EXP ⊆ NP/ log then EXP ⊆ PNP.

Lemma 10 If PNP ⊆ NP/ log then PNP = PNP

|| .
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Proof of Lemma 9:

It is known that if EXP is in NP/log then EXP = PSPACE. This follows, for example, from the
fact that if EXP ⊂ PA/poly then EXP ⊆ MAA, i.e. a relativized version of a collapse due to Babai
et al. observed by Buhrman et al. [2, 6]. Choosing A = NP places EXP ⊆ MANP ⊆ PSPACE.

By Theorem 7, we can view PSPACE as a interactive game between two players and a
polynomial-time computable judge (recall each player’s strategy is computable in PSPACE and
thus NP/ log by assumption). Let L be a PSPACE-complete language and fix an input x. We will
give an PNP algorithm to determine whether x is in L.

Let T be the set of all nO(1) advice strings and let M be the NP advice taking machine deciding
L. For each advice string a ∈ T , simulate M(x, a) and divide T into two groups labeled IN and
OUT depending on whether M(x, a) accept or rejects. Since one advice string gives the correct
answer, if either IN or OUT is empty then we know whether x is in L. This simulation can be
carried out in PNP.

Otherwise, IN and OUT are both non-empty. Do the following for each pair of advice strings
ai and ao where ai is chosen from IN and ao is chosen from OUT: simulate players P1 and P2

where P1’s strategy is computed using advice ai and P2’s strategy is simulated using advice ao.
Since each strategy is in PSPACE ⊆ NP/ log, the entire simulation is computable in PNP.

Since some advice string a is the correct advice string, either a will be in IN and P1 using this
advice will defeat P2 using any advice from OUT or vice versa. If the good advice string is in IN
(and hence causes P1 to always beat P2), then we know x is in L and we will accept correctly. If
we discover a to be in OUT we reject.

Proof of Lemma 10:

From Theorem 6, we know that the ODDMAXBIT language consisting of the set of formulas
whose lexicographically minimum satisfying assignment sets the last variable to true is complete
for PNP. Hence, it suffices to give a PNP

|| algorithm for deciding ODDMAXBIT.
Given a formula φ of n variables, let ai be the setting of the ith variable in the minimum

satisfying assignment (ai = 0 if there is no satisfying assignment). We can compute ai in PNP and
thus in NP/ log. Hence, given the correct advice we can compute ai with one query to NP.

For each possible advice string b, we compute a1, . . . , an via n parallel queries to NP (we can
do this since each bit is computable by assumption by one independent query to NP). Given all of
these purported minimum assignments, we find the lexicographically minimum assignment a′ that
satisfies φ. Since at least one advice is correct a′ is the minimum satisfying assignment and the last
bit of a′ gives us the answer to the ODDMAXBIT question.

3.1 Extending the Proof to PSPACE and P#P

The proof of Theorem 8 in Shaltiel and Umans [22] extends to PSPACE and P#P.

Theorem 11 (Shaltiel-Umans) If PSPACE is in PNP

|| then PSPACE is in NP/poly. If P#P is in
PNP

|| then P#P is in NP/poly.
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To prove Theorem 2 note that the proof of Theorem 1 goes through directly using PSPACE

instead of EXP.
To prove Theorem 3 that P#P is in PNP

|| if and only if P#P is in NP/ log we need a little more
work. To show the “if” direction we first need the following lemma.

Lemma 12 If P#P is in NP/poly then for every L in P#P there exists an NP machine M and a
sequence of advice strings a1, . . . where

1. For all x, x is in L if and only if M(x, a|x|) accepts,

2. For all n, |an| is bounded by a fixed polynomial in n, and

3. The language D = {1n0i | the ith bit of an is one} is in P#P.

Proof:

Valiant [25] showed that Permanent (computing the ith bit of the permanent of a given 0-1
matrix) is Turing-complete for P#P. Similar to EXP, if the Permanent is in PA/poly then the
Permanent is in MAA [2, 6]. Setting A = SAT we have Permanent in the polynomial-time hierarchy.

Let L be in P#P and let M be an NP machine such that there exists a sequence of polynomially-
long advice strings b1, . . . where x in L if and only if M(x, b|x|) accepts. Consider the language D
consisting of the strings 1n0i where the ith bit of the lexicographically least advice that computes
L correctly on all inputs on length n is one. We can define D with a few quantifiers over L and
L is reducible to the permanent which is in the polynomial-time hierarchy. This puts D in the
polynomial-time hierarchy and thus in P#P because of Toda’s theorem [23] that every language in
the polynomial-time hierarchy is in P#P.

We can now prove that P#P in PNP

|| implies P#P in NP/ log using the same techniques as the
proof of Theorem 1 using Theorem 11 and Lemma 12.

Since PNP ⊆ P#P, the other direction of Theorem 3 follows from the appropriate analog of
Lemma 9.

Lemma 13 If P#P ⊆ NP/ log then P#P ⊆ PNP.

Proof:

Fix a P#P complete language L. If L is in NP/ log then L is in Σp
3, the third level of the

polynomial-time hierarchy [18, 26]. We can view Σp
3 as a three round game between two players

and a polynomial-time judge. Each player’s strategy is computable in the polynomial-time hier-
archy and thus in P#P by Toda [23]. We can now show L is in PNP by the same argument as the
proof of Lemma 9.

4 On the Non-Uniform Complexity of NEXP

We would like to to extend the equivalence in Theorem 1 to hold for NEXP. We can do so, but
the equivalence holds vacuously in the sense that NEXP is not contained in either class. Fu, Li and
Zhong [10] showed that NEXP 6⊆ PNP

|| . This result and Theorem 1 does not immediately imply that
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NEXP is not contained in NP/ log since we do not know how to directly show NEXP in NP/ log
implies NEXP = EXP. Instead we prove the separation directly.

Theorem 14 NEXP 6⊂ NP/ log.

Proof:

Assume by way of contradiction that NEXP ⊆ NP/ log. Then by a padding argument,
NEEXP ⊆ NEXP/poly. I.e. non-deterministic doubly exponential time is contained in a non-
uniform analogue of NEXP. But now we apply the assumption that NEXP ⊆ NP/ log again and ob-
tain NEEXP ⊆ NP/poly. Via a standard diagonalization argument one can show that even EEXP,
deterministic doubly exponential time, does not have non-deterministic polynomial-size circuits.
This is because in doubly exponential time we can enumerate over all say quasipolynomial-size
non-deterministic circuits.

4.1 NEXP versus randomized, non-uniform classes

In light of the fact that NEXP is known to not be in NP/ log, it seems natural to consider the
consequences of NEXP being contained in BPP/ log or MA/ log. Separating NEXP from BPP is
an outstanding open question; we prove this would also imply NEXP is not contained in BPP/ log:

Theorem 15 NEXP ⊆ BPP/ log implies NEXP = BPP.

The proof follows by combining two recent results from derandomization. The first is due to
Impagliazzo et al. [12] who showed that NEXP ⊂ P/poly implies NEXP = MA. The second is
due to Trevisan and Vadhan [24] who use the instance-checkability of EXP to show that EXP ⊆
BPP/ log implies EXP ⊆ BPP. Theorem 15 follows by noticing that NEXP ⊆ BPP/ log implies
NEXP = EXP (since BPP ⊆ P/poly) and then applying the above result due to Trevisan and
Vadhan [24].

5 Challenges

Is it possible to prove a similar consequence for NEXP and MA/ log? Applying an argument from
Impagliazzo et al. one can prove that NEXP ⊆ MA/ log implies that either NEXP = EXP or
NEXP ⊆ NTIME(2nε

)/nε. Unfortunately we do not know of a hierarchy theorem strong enough
to show that the latter inclusion is false.

Another interesting avenue regarding NEXP would be to show that NEXP ⊆ PNP

|| / log implies
that NEXP = EXP.
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