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Abstract

Effective fractal dimension was defined by Lutz (2003) in order to
quantitatively analyze the structure of complexity classes. Interesting
connections of effective dimension with information theory were also
found, in fact the cases of polynomial-space and constructive dimen-
sion can be precisely characterized in terms of Kolmogorov complexity,
while analogous results for polynomial-time dimension haven’t been
found.

In this paper we remedy the situation by using the natural concept
of reversible time-bounded compression for finite strings. We com-
pletely characterize polynomial-time dimension in terms of polynomial-
time compressors.

1 Introduction

Effective fractal dimension was defined in [10] in order to quantitatively
analyze the structure of complexity classes. See [9, 14] for a summary of the
main results.

In parallel, the connections of this effective dimension with algorithmic
information started being patent. The cases of constructive, recursive and
polynomial-space dimension were characterized precisely as the best case
asymptotic compression rate when using plain, recursive, and polynomial-
space-bounded Kolmogorov complexity, respectively [13, 11, 6].

But the case of polynomial-time bounds remained elusive [8]. This is
not strange since computing even approximately the value of time-bounded
Kolmogorov complexity seems to require an exponential search. The main
difference with space-bounded Kolmogorov complexity is reversibility, in this
later case the encoding phase can be performed within similar space-bounds.
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In this paper we look at the usual notion of compression algorithm for
finite strings. A polynomial-time compression scheme is just a pair of en-
coder and decoder algorithms, both working in polynomial-time. We con-
sider encoders that do not completely start from scratch when working on
an extension of a previous input. This last condition is formalized in section
3 with a conditional-entropy like inequality.

We exactly characterize p-dimension as the best case asymptotical (that
is, i.o.) compression ratio attained by these polynomial-time compression
schemes.

Several results on the polynomial-time dimension of complexity classes
can be now interpreted as compressibility results. For example, the (char-
acteristic sequences of) languages in a class of p-dimension 1 cannot be i.o.
compressed by more that a sublinear amount. Here we obtain results on the
compressibility of complete and autoreducible languages.

Buhrman and Longprè have given a characterization of p-measure in
terms of compressibility in [4], but in that case the compressors are restricted
to extenders and the encoder is required to give several alternatives, one of
them being the correct output. In the light of our present results we can view
effective dimension as an information content measure for infinite strings,
whereas resource-bounded measure can only distinguish the extreme case of
measure 1 classes.

2 Preliminaries

The Cantor space C is the set of all infinite binary sequences. If w ∈ {0, 1}∗

and x ∈ {0, 1}∗ ∪C, w v x means that w is a prefix of x. For 0 ≤ i ≤ j, we
write x[i . . . j] for the string consisting of the i-th through the j-th bits of x.

Let p be the set of polynomial-time computable functions. Let E=
DTIME(2O(n)).
Definition. Let s ∈ [0,∞).

1. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.

2. A martingale is a 0-gale, that is, a function d : {0, 1}∗ → [0,∞)
satisfying

d(w) =
d(w0) + d(w1)

2
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for all w ∈ {0, 1}∗.

2

We will often use the following basic result.

Theorem 2.1 [10] Let s, s′ ∈ [0,∞). If d is an s-gale them d′(w) =
2(s′−s)|w|d(w) is an s′-gale.

Definition. Let s ∈ [0,+∞) and d be an s-gale.

1. We say that d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S[0 . . . n]) = ∞

The success set of d is S∞[d] = {S ∈ C | d succeeds onS}

2. We say that d succeeds strongly on a sequence S ∈ C if

lim inf
n→∞

d(S[0 . . . n]) = ∞

The strong success set of d is S∞
str[d] = {S ∈ C | d succeeds strongly on S}

2

Definition. Let X ⊆ C,

1. The p-dimension of X is

dimp(X) = inf{s ∈ [0,+∞) |∃ d p-computable s-gale s.t.X ⊆ S∞[d]}

2. The strong p-dimension of X is

Dimp(X) = inf{s ∈ [0,+∞) |∃ d p-computable s-gale s.t. X ⊆ S∞
str[d]}

2

For a complete introduction and motivation of effective dimension and
effective strong dimension see [9].
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3 Compressors that do not start from scratch

In this section we develop the notion of compressors that “do not start from
scratch” in the sense that when encoding successively longer extensions of
an input, the outputs are restricted in the way we make precise below. The
extreme case of this behavior is when the compressor is a mere extender,
that is, C(w) is always a prefix of C(wu). We consider here a much weaker
restriction than extension.
Definition. A pair of functions (C,D) (C the encoder, D the decoder)
C,D : {0, 1}∗ → {0, 1}∗ is a polynomial-time compressor if:

(i) C and D can be computed in polynomial-time on their corresponding
input length.

(ii) For all w ∈ {0, 1}∗, D(C(w), |w|) = w.

2

In this paper, we could make all codes prefix-free, that is, C({0, 1}n) is
a prefix set for each n. For the asymptotic compression rates the difference
is not significant.

Notice that in the previous definition there is no restriction whatsoever
on the behavior of C, the encoder, when working on two inputs that are one
an extension of the other. For instance, we can have |C(wu)| � |C(w)| and
C(wu) can have no common prefix with C(w).

We introduce a restriction on the compressor that has an effect on the
variety of C(wu) for different u, that will be controlled by |C(w)|. Compres-
sors under this condition are still far more general that extenders or length
increasing compressors.
Definition. A polynomial-time compressor (C,D) does not start from

scratch if for all but finitely many k ∈ N and w ∈ {0, 1}∗

∑

|u|=k

2−|C(wu)| ≤ 2k/ log k2−|C(w)|. (1)

2

We will consider only compressors that do not start from scratch.
Notice that when

∑

|u|=k 2−|C(wu)| ≤ 2−|C(w)|, condition (1) is trivial,

while in general
∑

|u|=k 2−|C(wu)| can be as large as 1.

Remark 3.1 Polynomial-time compressors (C,D) that satisfy the following
two conditions don’t start from scratch.
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i) For all w, u ∈ {0, 1}∗, |C(wu)| ≥ |C(w)|

ii) For all but finitely many k ∈ N, w ∈ {0, 1}∗, and ∀i ≥ 0

Ni = Ni(w, k) = #
{

u ∈ {0, 1}k
∣

∣

∣
|C(wu)| = |C(w)| + i

}

≤ 2i+ k

log k
−log k

Example 3.2 For the following polynomial-time compressors condition (1)
holds

• C is an extender, that is, ∀w,w′ ∈ {0, 1}∗

w v w′ ⇒ C(w) v C(w′).

• Compressors with common prefixes: ∀w, u ∈ {0, 1}∗ C(wu) and C(w)
have a common prefix of length at least

|C(w)| −
|u|

log(|u|)
+ log(|u|).

In fact, we have a weaker restriction on compressors that still implies
our main result of equivalence with p-dimension:

For all ε > 0, for all but finitely many w ∈ {0, 1}∗, there exist k =
k(w) = O(log(|w|)) that verifies

∑

|u|=k

2−|C(wu)| ≤ 2εk2−|C(w)|.

This weaker condition also restricts the behavior of C in the sense of not
starting from scratch, but in this case in a much less local way. For instance
we admit a compressor C in which for all w, u with |u| = log(|w|), C(wu)
and C(w) have a common prefix of length |C(w)| − ε log(|w|) + log log(|w|).

In this paper we have preferred to stick to simpler condition (1).

4 Main theorem

We first define the notion of a.e.(almost everywhere) and i.o.(infinitely often)
compressibility for sets of infinite sequences as the asymptotic best (respec-
tively worse) compression ratio.

Definition. For α ∈ [0, 1] and X ⊆ C,
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1. X is α-i.o. polynomial-time compressible if there is a polynomial-time
compressor (C,D) that does not start from scratch and such that for
every A ∈ X

lim inf
n

|C(A[0 . . . n − 1])|

n
≤ α

2. X is α-a.e. polynomial-time compressible if there is a polynomial-time
compressor (C,D) that does not start from scratch and such that for
every A ∈ X

lim sup
n

|C(A[0 . . . n − 1])|

n
≤ α

2

Definition. Let X ⊆ C,

1. X is i.o. polynomial-time incompressible if for every (C,D) polynomial-
time compressor that does not start from scratch, there exist A ∈ X
such that

lim inf
n

|C(A[0 . . . n − 1])|

n
= 1

2. X is a.e. polynomial-time incompressible if for every (C,D) polynomial-
time compressor that does not start from scratch, there exist A ∈ X
such that

lim sup
n

|C(A[0 . . . n − 1])|

n
= 1

2

Our main theorem characterizes p-dimension in terms of polynomial-time
compression.

Theorem 4.1 Let X ⊆ C,

dimp(X) = inf{α |X is α-i.o. polynomial-time compressible}

Dimp(X) = inf{α |X is α-a.e. polynomial-time compressible}

We include a detailed proof of this result in section 6.
Hitchcock showd in [7] that p-dimension can be characterized in terms of

on-line prediction algorithms, using the well-studied log-loss prediction ratio.
Our result can thus be interpreted as a joining bridge between the perfor-
mance of polynomial-time prediction and compression algorithms, both in
the best and the worse case.
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5 Applications of the main result

In this section we obtain interesting consequences of our characterization
for the polynomial-time compressibility of complete and autoreducible sets
from previously known p-dimension results.

Notice that in this section we identify each language A with its char-
acteristic sequence χA, therefore compressibility of a class always means
compressibility of the corresponding characteristic sequences.

We start by showing that no polynomial-time compressor works on all
many-one complete sets.

Theorem 5.1 The class of polynomial-time many-one complete sets for E
is i.o. polynomial-time incompressible.

Proof. Ambos-Spies et al. prove in [1] that the class has p-dimension 1.
2

Next we consider degP
m(A), the class of sets that are equivalent to A by

≤P
m-reductions. The compression ratio of degP

m(A) and degP
m(B), for A≤P

mB,
is related by the following theorem.

Theorem 5.2 Let A,B be sets in E such that A≤P
mB, then

1. the i.o. p-compression ratio of degP
m(A) is at most the i.o. p-compression

ratio of degP
m(B).

2. The a.e. p-compression ratio of degP
m(A) is at most the a.e. p-

compression ratio of degP
m(B).

Proof. Ambos-Spies et al. prove 1. in [1] for p-dimension. Athreya et al.
prove in [2] the strong dimension result for 2. 2

We next consider the property of autoreducibility. A set A is autore-
ducible if A can be decided by using A as an oracle but without asking
query x on input x. We obtain incompressibility results both in the case
of polynomial-time many-one autoreducibility and for the complement of
i.o. p-Turing autoreducible sets. Therefore for each polynomial-time bound
there are i.o. incompressible sets that are ≤P

m-autoreducible and other that
are not even i.o. ≤P

T-autoreducible.

Theorem 5.3 The class of polynomial-time many-one autoreducible sets
are i.o. polynomial-time incompressible.

Proof. Ambos-Spies et al. prove in [1] that the class has p-dimension 1.
2
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Theorem 5.4 The class of sets that are NOT i.o. polynomial-time Turing
autoreducible are i.o. polynomial-time incompressible.

Proof. Beigel et al. prove in [3] that the class has p-dimension 1. 2

We next show that there exist polynomial-time many-one degrees with
every possible value for both a.e. and i.o. compressibility.

Theorem 5.5 Let x, y be computable reals such that 0 ≤ x ≤ y ≤ 1. Then
there is a set A in E such that the i.o. p-compression ratio of degP

m(A) is x
and the a.e. p-compression ratio of degP

m(A) is y.

Proof. Athreya et al. prove in [2] the result for p-dimension and strong
p-dimension. 2

This last theorem includes the extreme case for which the i.o. compres-
sion ratio is 1 whereas the a.e. ratio is 0.

Finally, the hypothesis “NP has positive p-dimension” can be interpreted
in terms of incompressibility. This hypothesis has interesting consequences
on the approximation algorithms for MAX3SAT.

Theorem 5.6 If for some α > 0 NP is not α-i.o-compressible in polynomial-
time then any approximation algorithm A for MAX3SAT must satisfy at
least one of the following

1. For some δ > 0, A uses time at least 2nδ

2. For all ε > 0, A has performance ratio less than 7/8 + ε on an expo-
nentially dense set of satisfiable instances.

Proof. Hitchcock proves in [5] that the consequence follows from NP having
positive p-dimension. 2

6 Proof of theorem 4.1

We first proof that a dimension upper bound gives a compression upper
bound.

Theorem 6.1 Let X ⊆ {0, 1}∗,

dimp(X) < s ⇒ X is s − i.o. polynomial-time compressible.

Dimp(X) < s ⇒ X is s − a.e. polynomial-time compressible.
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To prove theorem 6.1 we need to make sure simple gales are sufficient in
the definition of p-dimension.

Lemma 6.2 [12] Let d1 be a martingale. Let c : {0, 1}∗ → [0,+∞) be a
polynomial-time computable function such that for each w ∈ {0, 1}∗, |c(w)−
d1(w)| ≤ 2−|w|. Let d2 be recursively defined as follows

d2(λ) = c(λ) + 2

d2(wb) = d2(w) +
c(wb) − c(wb̄)

2

Then d2 is a martingale in p such that |d1(w) − d2(w)| ≤ 4.

Lemma 6.3 Let X ⊆ C. If dimp(X) = α then ∀s > α there exists an s-
gale d with X ⊆ S∞[d] such that for all w ∈ {0, 1}∗, there exists mw, nw ∈ N

with nw ≤ |w| + 1 and

d(w)2−|w|s = mw2−(nw+|w|)

Proof. If dimp(X) = α then ∀s > α there exists an s-gale d′, with d′(λ) = 1,
that succeeds on X.
Let d1 be the martingale d1(w) = 2(1−s)|w|d′(w) and let c : {0, 1}∗ → [0,+∞)
be such that c(w) = m′

w2−n′

w where

n′
w = min {n ∈ N | ∃m s.t. |m2−n − d1(w)| < 2−|w|}

m′
w = min {m ∈ N | |m2−nw − d1(w)| < 2−|w|}

Notice that n′
w ≤ |w| + 1 because within an interval of length 2−|w| there

exists at at least least one dyadic number m2−n with n = |w| + 1.
Let d2 be as in lemma 6.2. There exists mw, nw ∈ N such that d2(w) =
mw2−nw with nw ≤ |w| + 1. We prove this by induction, if |w| = 0 then
d2(λ) = 3 = 3 · 2−0.

d2(wb) = d2(w) +
c(wb) − c(wb̄)

2

= mw2−nw +
m′

wb2
−n′

wb − m′
wb̄

2−n′

wb̄

2

= 2−nwbmwb

where nwb = max{nw, n′
w0 + 1, n′

w1 + 1} ≤ |w| + 2.
Let d(w) = 2(s−1)|w|d2(w) be an s-gale, then
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(i) d(w)2−|w|s = 2−|w|d2(w) = mw2−(nw+|w|) is a dyadic number and
nw ≤ |w| + 1.

(ii) |d′(w) − d(w)| = 2(s−1)|w||d1(w) − d2(w)| ≤ 2(s−1)|w|4 so S∞[d′] =
S∞[d].

2

Lemma 6.4 Let a, b be dyadic numbers. and let I = [a, b) be an interval
of length r ∈ [0, 1), then there exists a string z of length −blog(r)c + 1 such
that a < 0.z < b and z can be computed in time polynomial in |z|.

Proof. If we make a partition of the interval [0, 1) in intervals of length
2dlog re−1 then the strings z with length |z| = −blog(r)c + 1 are just the
endpoints of those intervals and it is clear that there exists one of these
endpoints inside our interval. We can compute z bit by bit by using the
condition a < 0.z < b and choosing bit 0 if both alternatives are valid. 2

Proof Theorem 6.1. We prove the first inequality; the proof for strong
dimension is analogous. Let X be such that dimp(X) < s, then there exists
d′ a p-computable s-gale such that d′(λ) = 1, X ⊆ S∞[d′], and for all
w ∈ {0, 1}∗, there exists mw, nw ∈ N with nw ≤ |w| + 1 and

d′(w)2−|w|s = mw2−(nw+|w|).

Then, if d(w) = 2(1−s)|w|d′(w), d is a p-computable martingale such that,

i. For all A ∈ X, d(A[0 . . . n − 1]) > 2(1−s)n i.o. n

ii. For all w ∈ {0, 1}∗, there exists mw, nw ∈ N with nw ≤ |w| + 1

d(w) = mw2−nw

Let h : {0, 1}∗ → R be defined as follows.

h(w) :=
∑

|y|=|w|,y<w

d(y)2−|w|

where y < w means that y precedes x in lexicographic order. Denote by
succ(w) the successor of w in lexicographic order. Notice that h(w) is a
dyadic number m2−n with n ≤ 2|w| + 1, therefore there is a z ∈ {0, 1}∗

such that |z| ≤ 2|w| + 2 and h(w) < 0.z < h(succ(w)). Let zw be the first
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shortest string such that h(w) < 0.z < h(succ(w)). We define the encoder
as C(w) = zw.

To define our decoder D, let z ∈ {0, 1}∗ and n ∈ N, then to generate
a string of length n from (z, n), simulate the martingale starting at λ on
successively longer strings. Suppose we have generated the string w so far.
If h(w1) ≤ 0.z, then append 0 to w, if h(w1) > 0.z, then append 1 to x.
Continue until |w| = n. At the end of this process, we have the string w of
length n such that h(w) ≤ 0.z < h(succ(w)).

We next show that the polynomial-time compressor (C,D) does not start
from scratch.

Notice that for each w the interval [h(w), h(succ(w))) has length exactly
d(w)2−|w|. Then by lemma 6.4, there is a string z of length −blog(2−|w|d(w))c+
1 ≤ |w| − blog(d(w))c + 1 such that h(w) < 0.z < h(succ(w)). So,

|zw| ≤ |w| − blog(d(w))c + 1.

To see that C verifies condition (1), we will prove that C verifies the two
conditions of remark 3.1.

i) It is clear that for all w, u ∈ {0, 1}∗, |C(wu)| ≥ |C(w)| because the
interval [h(wu), h(succ(wu))) is included in [h(w), h(succ(w))).

ii) Fix k ∈ N, w ∈ {0, 1}∗ and i ∈ N,

Ni = #
{

u ∈ {0, 1}∗
∣

∣

∣
|u| = k and |zwu| = |zw| + i

}

We have that
(Ni − 1)2−(|zw |+i) < d(w)2−|w|

Ni < 1 + d(w)2−|w|+|zw |+i

but since |zw| ≤ |w| − blog d(w)c + 1,

Ni < 1 + 2log(d(w))−blog d(w)c2i+1 ≤ 1 + 2i+2 ≤ 2i+k/ log k−log k

for all but finitely many k.
Finally, let us see that (C,D) compresses X. For all A ∈ X,

|C(A[0 . . . n − 1]| = |zA[0...n−1]|

≤ n − blog(d(A[0 . . . n − 1])c + 1

≤ n − log(2(1−s)n) + 1

= sn + 1

2

Next we show that compressibility is an upper bound on dimension.
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Theorem 6.5 Let X ⊆ C.

X is s-i.o. polynomial-time compressible ⇒ dimp(X) ≤ s.

X is s-a.e. polynomial-time compressible ⇒ Dimp(X) ≤ s.

Proof. We prove the first inequality; the proof for strong dimension is anal-
ogous. Let s′ > s and let k ∈ N be such that s′ − s > 1/ log(k), we define

d(w) :=
2|w|−|C(w)|

2|w|/ log k
, if |w| = mk for some m ∈ N,

d(w) :=
∑

|u|=mk−|w|

d(wu)

2mk−|w|
if (m − 1)k < |w| < mk for some m ∈ N

Notice that d is a martingale because of condition (1). d is also com-
putable in polynomial-time. Let d′(w) = 2(s′−1)|w|d(w) be an s′-gale in p.
For all A ∈ X,

lim inf
n

|C(A[0 . . . n − 1])|

n
≤ s

so there exists (bn)n∈N a sequence of natural numbers such that

lim
n

|C(A[0 . . . bn − 1])|

bn
≤ s

Let (an)n∈N a sequence of natural numbers such that ank < bn ≤ (an + 1)k.
Then we have that

d′(A[0 . . . ank − 1]) = 2(s′−1)ank ·
2ank−|C(A[0...ank−1])|

2ank/ log k

=
2s′ank

2ank/ log k
· 2−|C(A[0...ank−1])|

By condition (1), 2−|C(A[0...bn−1])| ≤ 2k/ log k2−|C(A[0...ank−1])|. Let s′′ = s′ −
s − 1/ log k.

d′(A[0 . . . ank − 1]) ≥ 2anks′′−k/ log k

and d′ succeeds on X. 2
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