New Results on the Complexity of the Middle Bit of Multiplication

Ingo Wegener and Philipp Woelfel
FB Informatik 2, Univ. Dortmund, D-44221 Dortmund, Germany
\{ingo.wegener, philipp.woelfel\}@cs.uni-dortmund.de

Abstract

It is well known that the hardest bit of integer multiplication is the middle bit, i.e. $\mathrm{MUL}_{n-1, n}$. This paper contains several new results on its complexity. First, the size s of randomized read- k branching programs, or, equivalently, its space $(\log s)$ is investigated. A randomized algorithm for $\mathrm{MUL}_{n-1, n}$ with $k=O(\log n)$ (implying time $O(n \log n)$), space $O(\log n)$ and error probability n^{-c} for arbitrarily chosen constants c is presented. This is close to the known deterministic lower bound for the space requirement in the order of $n \cdot 2^{-O(k)}$.

Second, the size of general branching programs and formulas is investigated. Applying Nechiporuk's technique, lower bounds of $\Omega\left(n^{3 / 2} / \log n\right)$ and $\Omega\left(n^{3 / 2}\right)$, respectively, are obtained. Moreover, by bounding the number of subfunctions of $\mathrm{MUL}_{n-1, n}$, it is proven that Nechiporuk's technique cannot provide larger lower bounds than $O\left(n^{7 / 4} / \log n\right)$ and $O\left(n^{7 / 4}\right)$, respectively.

1 Introduction

Integer multiplication is certainly one of the most important functions for computer science. Therefore, a lot of effort has been spent in designing good algorithms and small and shallow circuits and in determining its complexity. Most algorithms such as the Schönhage-Strassen method require at least linear space in order to compute the product of two n-bit integers. On the other hand, the school method can easily be implemented with $O(\log n)$ space, but for the price of a higher, almost quadratic $\Omega\left(n^{2} / \log n\right)$ running time. This is not surprising, because even in general nonuniform computation models such as branching programs a time-space product of $\Omega\left(n^{2}\right)$ is necessary [7, 9]. On the other hand, in nonuniform computation models, any boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ can be implemented in $O(n)$ time and $O(m)$ space by simply using table-lookups. It is interesting, though, that regarding time-space tradeoffs in nonuniform models, the school method is the most general algorithm because for any $\log n \leq k \leq n$ it can be implemented in $O(k)$ space and $O\left(n^{2} / k\right)$ time.

However, the complexity of computing single output bits of integer multiplication is far from being as well bounded as that of computing all output
bits. The main reason is probably, that for single output bit boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ the known lower bound techniques are yet too weak to obtain better than only slightly super-linear time-space products (and even such lower bounds are rare $[2,3]$). Therefore, it is not surprising that e.g. in the unrestricted branching program model no super-logarithmic space lower bounds have been proven, yet, even if one allows only 2 queries of each input bit during the computation. However, good space lower bounds can been shown in more restricted computation models.

Definition $1 A$ branching program for a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a directed acyclic graph with one source and one sink and the following properties. The internal nodes are marked with the n input variables x_{1}, \ldots, x_{n} and have two outgoing edges, a 0-edge and a 1-edge. Some edges may additionally be marked with a pair $\left(y_{i}, c\right)$ where $y_{i}, 1 \leq i \leq m$, is an output variable and c is either 0 or 1 . Then any assignment $\left(a_{1}, \ldots, a_{n}\right)$ defines a computation path, which starts at the source and leaves any internal node marked with x_{i} via the a_{i}-edge. Finally, each computation path for an input $\left(a_{1}, \ldots, a_{n}\right)$ for all $1 \leq i \leq m$ passes over exactly one edge marked with $\left(y_{i}, b_{i}\right), b_{i} \in\{0,1\}$, in such a way that $f\left(x_{1}, \ldots, x_{n}\right)=$ $\left(b_{1}, \ldots, b_{m}\right)$. A randomized branching program may use additional randomized nodes at which the outgoing edge a computation path uses is chosen randomly. In this case, the computation of f may err with a certain probability.

The size of a branching program is the number of its nodes, its space is the logarithm of its size, and its time or length is the length of the longest computation path. The branching program size of f is the size of a branching program computing f with minimal size. A branching program is called read- k, if any source-to-sink path contains each variable at most k times.

If a branching program computes only one output bit (i.e. $m=1$), then it is more convenient to define it in such a way that it has two sinks instead of marked output edges - a 0 -sink and a 1 -sink, corresponding to the two possible outputs. In the following discussion we restrict ourselves to branching programs computing only one output bit.

Branching programs are such a general computation model that Turing machines or register machines can be simulated by them with essentially the same time and space resources. On the other hand, it is easy to see that branching programs can be simulated by nonuniform Turing machines or nonuniform register machines using asymptotically as much time and space as the branching program (at least as long as the space is $\Omega(\log n)$).

While using counting arguments one can show that almost all boolean function have an exponential branching program size, such lower bounds cannot be proven for explicitly defined functions (i.e. functions in NP). Since 40 years, the best lower bounds for explicitly defined functions are of the order $n^{2} / \log ^{2} n$ and all lower bounds close to n^{2} have been proven with the same arguments, namely with Nechiporuk's technique.

However, restrictions on e.g. the number of queries of each variable have led to good lower bound results. It should be pointed out that the read- k restriction is syntactic in the sense that it applies to graph-theoretical paths in a branching program and not only to computation paths. While -as we have mentioned earlier - lower bounds for time-restricted branching programs with one output bit are hard to prove (due to the fact that a time restriction is semantical) and therefore rarely exist, good lower bound techniques for read- k branching programs have been known for quite some time (the first superpolynomial size lower bounds can be found in [6] and [11] and an overview of several other results can be found in the monograph [14]). There are also good lower bound results for the computation of product bits.

Let $\mathrm{MUL}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be the function mapping two n-bit integers to their $2 n$-bit product and let $\operatorname{MUL}_{i, n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow$ $\{0,1\}$ be the boolean function which computes the i th least significant bit of the product of two n-bit integers, i.e. $\left(x_{n-1} \ldots x_{0}, y_{n-1} \ldots y_{0}\right) \mapsto z_{i}$, where $z_{2 n-1} \ldots z_{0}=\operatorname{MUL}_{n}\left(x_{n-1} \ldots x_{0}, y_{n-1} \ldots y_{0}\right)$. It is well known that the "middle bit", that is the function $\mathrm{MUL}_{n-1, n}$, is the most difficult to compute. More precisely, $\mathrm{MUL}_{i, n}$ can be computed by any branching program for $\mathrm{MUL}_{j-1, j}$, where $j=\min \{i+1,2 n-i-1\}$, if one reorders the input bits and replaces some inputs either by their negations or by the constants 0 or 1 [4].

For read-once branching programs computing $\mathrm{MUL}_{n-1, n}$, Ponzio [12] was the first to prove a superlogarithmic space lower bound of $\Omega(\sqrt{n})$, and later, even a linear lower bound was obtained [5]. Only recently, in [13] a space lower bound of $\Omega\left(n \cdot k^{-2} \cdot 3^{-4 k}\right)$ was proven for deterministic read- k branching programs, if $k \leq \gamma \log n$ for some constant γ. Hence, a \log-space computation is only possible for $k=\Omega(\log n)$. The authors of [13] also give a lower bound of $\Omega\left(\log (1 / \epsilon) \cdot k^{-2} \cdot 3^{-2 k}\right)$ for randomized read- k branching programs, where ϵ is the maximal error probability. Thus, if we restrict ourselves to polynomial small error, then a \log-space computation of $\mathrm{MUL}_{n-1, n}$ requires $k=\Omega(\log \log n)$.

These results as well as our inability to design fast deterministic log-space algorithms for computing single product bits indicate that $\mathrm{MUL}_{n-1, n}$ is a "hard" function. Therefore, it is quite surprising that one can approximate it even with read-once branching programs in log-space and with polynomially small error [13]. (Approximating f with error ϵ means computing a function f^{\prime} which equals f on all but an ϵ-fraction of the inputs.) In addition, it is easy to see that using arithmetics modulo a randomly chosen prime, one can verify in logarithmic space and with a small error-probability whether the product of two integers equals some given output [1]. However, computing the middle output bit of integer multiplication is harder than approximating it and apparently also harder than verifying all output bits. Therefore, the following upper bound which we prove in this paper is also rather surprising.

Theorem 1 For any constant c and for $k(n)=O(\log n)$ there is a randomized read- $k(n)$ branching program for $\mathrm{MUL}_{n-1, n}$ of size $n^{O(1)}$ with a two-sided error probability of at most n^{-c}.

Hence, querying each input bit only logarithmically many times allows a log-space computation of any product bit with a polynomially small error probability. This is the first upper bound on the time-space product of randomized computations of product bits which is better than $\Omega\left(n^{2}\right)$ and it shows that using randomization and a very moderate error probability, we can at least reach the theoretical lower bound for deterministic computations.

We remark that due to the fact that the algorithm merely uses arithmetics over $O(\log n)$-bit registers, the same time and space bounds hold e.g. for nonuniform word-RAMs with word size $\Theta(\log n)$. With constant word size, the time increases by an $O(\log n)$-factor. Furthermore, the only reason why the algorithm is nonuniform is that it requires to choose a prime number randomly.

After proving the upper bound in the following section, we consider the branching program and formula size of the function $\mathrm{MUL}_{n-1, n}$ for unrestricted branching programs. As we have mentioned before, today, the best lower bounds one can prove for explicitly defined functions are of the order $n^{2} / \log ^{2} n$ for the branching program size and of the order $n^{2} / \log n$ for the formula size. All lower bounds in this order of magnitude were proven with Nechiporuk's method [10], and it is known that this method cannot yield better lower bounds than $O\left(n^{2} / \log ^{2} n\right)$ for branching programs. Moreover, most lower bounds had been proven for functions which are nor really interesting for implementations or hardware realization. This is obviously different for integer multiplication, and therefore the branching program and formula size of $\mathrm{MUL}_{n-1, n}$ should be investigated.

Theorem 2

1. Any branching program for $\mathrm{MUL}_{n-1, n}$ has at least $\Omega\left(n^{3 / 2} / \log n\right)$ nodes and any formula for $\mathrm{MUL}_{n-1, n}$ has size at least $\Omega\left(n^{3 / 2}\right)$.
2. Using Nechiporuk's technique, it is not possible to prove a better lower bound than $O\left(n^{7 / 4} / \log n\right)$ and $O\left(n^{7 / 4}\right)$ for the branching program and formula size of $\mathrm{MUL}_{n-1, n}$, respectively.

The second part of the theorem tells us that we should not attempt to prove better lower bounds than $O\left(n^{7 / 4}\right)$ until we are aware of a new lower bound technique.

In the following section, we first introduce some notation and then present the randomized space-bounded algorithm for $\mathrm{MUL}_{n-1, n}$ and prove Theorem 1. In Section 3 we count the number of subfunctions of $\mathrm{MUL}_{n-1, n}$ in order to obtain Theorem 2.

2 A Randomized Algorithm for Space-Bounded Computation of Product Bits

In order to compute the product of two n-bit integers, we will consider the corresponding problem of adding $n n$-bit integers, as it is done in the school method for multiplication. We use the operations mod and div, where mod is the usual modulo operation and div is the integer division without remainder, i.e. $x \operatorname{div} y=\lfloor x / y\rfloor$. Let x be an n-bit integer represented by the bit string $x_{n-1} \ldots x_{0}$. Then we say that x_{i} is the i th bit of x (the least significant bit is the 0th bit). If $i<0$ or $i \geq n$, then the i th bit of x, x_{i}, is 0 . Further, let $\langle x\rangle_{i}^{j}, i \leq j$, be the integer represented by the sub-bitstring $x_{j} \ldots x_{i}$. Formally,

$$
\langle x\rangle_{i}^{j}=x \operatorname{div} 2^{i} \bmod 2^{j-i+1} \quad\left(=x \bmod 2^{j+1} \operatorname{div} 2^{i} \text { for } j \geq 0\right) .
$$

We abbreviate $\langle x\rangle_{i}^{i}$ by $\langle x\rangle_{i}$. Finally, we denote by \mathbb{Z}_{k} the set of integers $\{0, \ldots, k-1\}$.

Assume that we want to compute k consecutive bits of the sum of m integers $w_{1}, \ldots, w_{m} \in \mathbb{Z}_{2^{n}}$. Let
$S_{a, k}\left(w_{1}, \ldots, w_{m}\right)=\left\langle w_{1}+\ldots+w_{m}\right\rangle_{a}^{a+k-1}=\left(\left(w_{1}+\cdots+w_{m}\right) \bmod 2^{a+k}\right) \operatorname{div} 2^{a}$.
For $x \in \mathbb{Z}_{\geq 0}$ let $H(x)=x \operatorname{div} 2^{a}$ be the "high part" of $x, M(x)=\langle x\rangle_{a-\ell}^{a-1}=$ $x \bmod 2^{a} \operatorname{div} 2^{a-\ell}$ be the "middle part" and $L(x)=x \bmod 2^{a-\ell}$ be the "low part". Then $x=2^{a} \cdot H(x)+2^{a-\ell} \cdot M(x)+L(x)$. We can get an approximation of $S_{a, k}$ by summing only the high and middle part of the integers and ignoring the low part. Thus, let $H=\sum_{i=1}^{m} H\left(w_{i}\right), M=\sum_{i=1}^{m} M\left(w_{i}\right)$ and $L=\sum_{i=1}^{m} L\left(w_{i}\right)$. Note that

$$
S_{a, k}\left(w_{1}, \ldots, w_{m}\right)=\left\langle 2^{a} H+2^{a-\ell} M+L\right\rangle_{a}^{a+k-1} .
$$

In order to approximate this value, we may compute

$$
\mathrm{S}_{a, k, \ell}^{* *}\left(w_{1}, \ldots, w_{m}\right)=\left(2^{\ell} \cdot H+M\right) \bmod 2^{k+\ell}=\left(\sum_{i=1}^{m} w_{i} \operatorname{div} 2^{a-l}\right) \bmod 2^{k+\ell}
$$

and let the approximation be

$$
\begin{array}{r}
\mathrm{S}_{a, k, \ell}^{*}\left(w_{1}, \ldots, w_{m}\right)=\mathrm{S}_{a, k, \ell}^{* *}\left(w_{1}, \ldots, w_{m}\right) \operatorname{div} 2^{\ell}=\left(2^{\ell} H+M\right) \bmod 2^{\ell+k} \operatorname{div} 2^{\ell} \\
=\left\langle 2^{\ell} \cdot H+M\right\rangle_{\ell}^{\ell+k-1}=\left\langle\sum_{i=1}^{m} w_{i} \operatorname{div} 2^{a-\ell}\right\rangle_{\ell}^{\ell+k-1}
\end{array}
$$

In order to simplify the notation, we abbreviate $S_{a, k}\left(w_{1}, \ldots, w_{m}\right)$ by $S_{a, k}$ and analogously use the abbreviations $\mathrm{S}_{a, k, \ell}^{*}$ and $\mathrm{S}_{a, k, \ell}^{* *}$, if it is clear from the context which integers we use for the sums.

2.1 The Approximation Lemma

The idea is that ignoring the low part of the sum, we can compute the approximation $\mathrm{S}_{a, k, \ell}^{*}$ of $S_{a, k}$ with less space if $k+\ell$ is small. On the other hand, in most cases the carry induced by the low part should not influence the more significant bits of the sum if ℓ is not too small. If ℓ is somewhat larger than $\log n$, then the carry induced by L (which has a value of at most n) can only carry over all the following ℓ bits, if they have a value of at least $2^{\ell}-n$. We remark that this was already observed in [13]. However, the following lemma is more general. E.g., it tells us how we can detect the situations in which the approximation is correct and will later help us to obtain the true value even if the approximation failed.

Lemma 1 Let $m \geq 2, \ell \geq\lceil\log m\rceil+1, a, k \geq 1$ and $z=\mathrm{S}_{a, k, \ell}^{*}\left(w_{1}, \ldots, w_{m}\right)$.
(a) $S_{a, k}\left(w_{1}, \ldots, w_{m}\right) \in\left\{z,(z+1) \bmod 2^{k}\right\}$ and
(b) $S_{a, k}\left(w_{1}, \ldots, w_{m}\right) \neq z$ if and only if the following two inequalities are both true:
(i) $\mathrm{S}_{a, k, \ell}^{* *}\left(w_{1}, \ldots, w_{m}\right) \bmod 2^{\ell}>2^{\ell}-m$
(ii) $S_{a-\ell, \ell}\left(w_{1}, \ldots, w_{m}\right)<m$.

For the proof of this lemma, the following obvious statement is helpful.
Proposition 1 Let $a, b \in \mathbb{Z}_{\geq 0}$ and $k \in \mathbb{Z}_{>0}$. Then
(a) $(a+b) \operatorname{div} k \in\{z, z+1\}$, where $z=a \operatorname{div} k+b \operatorname{div} k$.
(b) The following three statements are equivalent:

1. $(a+b) \operatorname{div} k=a \operatorname{div} k+b \operatorname{div} k$,
2. $a \bmod k+b \bmod k<k$,
3. $(a+b) \bmod k \geq a \bmod k$.

Proof of Lemma 1: Recall the definitions of H, M and L from above. First of all note that L is the sum of $m(a-\ell)$-bit integers and thus bounded by $m\left(2^{a-\ell}-1\right)$. Hence, $L \operatorname{div} 2^{a}<m \cdot 2^{-\ell}$ and thus $L \operatorname{div} 2^{a}=0$ by the assumption on ℓ. Let

$$
r:=2^{a} H+2^{a-\ell} M+L \quad \text { and } \quad z^{\prime}:=2^{a} H+2^{a-\ell} M .
$$

Using $L \operatorname{div} 2^{a}=0$ and Proposition 1 (a) we obtain

$$
r \operatorname{div} 2^{a} \in\left\{z^{\prime} \operatorname{div} 2^{a}, z^{\prime} \operatorname{div} 2^{a}+1\right\} .
$$

Now part (a) follows because $S_{a, k}=r \operatorname{div} 2^{a} \bmod 2^{k}$ and

$$
z^{\prime} \operatorname{div} 2^{a} \bmod 2^{k}=\left(2^{\ell} H+M\right) \operatorname{div} 2^{\ell} \bmod 2^{k}=\mathrm{S}_{a, k, \ell}^{*}
$$

For part (b) first note that $r \operatorname{div} 2^{a} \neq z^{\prime} \operatorname{div} 2^{a}$ is equivalent to $S_{a, k} \neq \mathrm{S}_{a, k, \ell}^{*}$ because $z^{\prime} \operatorname{div} 2^{a} \bmod 2^{k} \neq\left(z^{\prime} \operatorname{div} 2^{a}+1\right) \bmod 2^{k}$. Furthermore, $r \bmod 2^{a}=$ $\left(2^{a-\ell} M+L\right) \bmod 2^{a}$ and $z^{\prime} \bmod 2^{a}=\left(2^{a-\ell} M\right) \bmod 2^{a}$. Hence, by Proposition 1 (b) each of the following two statements is equivalent to $S_{a, k} \neq \mathrm{S}_{a, k, \ell}^{*}$ (and to $r \operatorname{div} 2^{a} \neq z^{\prime} \operatorname{div} 2^{a}$):

$$
\begin{align*}
& \left(2^{a-\ell} M\right) \bmod 2^{a}+L \bmod 2^{a} \geq 2^{a} \quad \text { and } \tag{*}\\
& \left(2^{a-\ell} M+L\right) \bmod 2^{a}<L \bmod 2^{a} \tag{**}
\end{align*}
$$

Recalling that $L<m \cdot 2^{a-\ell}<2^{a}$ and dividing both sides of inequality $(*)$ by $2^{a-\ell,}$ we obtain

$$
M \bmod 2^{\ell} \geq 2^{\ell}-L / 2^{a-\ell}>2^{\ell}-m
$$

This shows that inequality (i) in part (b) of the lemma is fulfilled because $\mathrm{S}_{a, k, \ell}^{* *} \equiv$ $M\left(\bmod 2^{\ell}\right)$. Similarly, dividing both sides of inequality $(* *)$ by $2^{a-\ell}$ yields

$$
\left(2^{a-\ell} M+L\right) \bmod 2^{a} \operatorname{div} 2^{a-\ell}<m
$$

By definition, the left part of this inequality equals $S_{a-\ell, \ell}$. Hence, inequality (ii) is true.

Finally, assume that inequalities (i) and (ii) are both fulfilled. Then $M \bmod 2^{\ell}>2^{\ell}-m$ and $\left(2^{a-\ell} M+L\right) \bmod 2^{a} \operatorname{div} 2^{a-\ell} \leq m-1$. Multiplying with $2^{a-\ell}$ this implies

$$
\left(2^{a-\ell} M\right) \bmod 2^{a}>2^{a}-m \cdot 2^{a-\ell} \text { and } \quad\left(2^{a-\ell} M+L\right) \bmod 2^{a}<m \cdot 2^{a-\ell} .
$$

Due to the assumption $\ell \geq\lceil\log m\rceil+1$ we know that $m \cdot 2^{a-\ell} \leq 2^{a-1} \leq 2^{a}-m \cdot 2^{a-\ell}$. Hence, we conclude

$$
\left(2^{a-\ell} M\right) \bmod 2^{a}>\left(2^{a-\ell} M+L\right) \bmod 2^{a}
$$

But then $(*)$ follows right from Proposition 1. As we have shown above, this inequality is equivalent to the inequality $S_{a, k} \neq \mathrm{S}_{a, k, \ell}^{*}$. Since $z=\mathrm{S}_{a, k, \ell}^{*}$ we have shown that the inequalities (i) and (ii) imply $S_{a, k} \neq z$. This completes the proof of part (b).

2.2 Computing and Testing the Approximation Value

Now knowing that the approximation $\mathrm{S}_{a, k, \ell}^{*}$ cannot differ much from the true value $S_{a, k}$ we shall verify that it can in fact be efficiently computed by a space-bounded algorithm if the sum consists of the addends obtained from the school method for multiplication. Unfortunately, this is only true for small values of k (and ℓ). However, if k is large we can at least test randomly whether $\mathrm{S}_{a, k, \ell}^{*}$ equals some arbitrary k-bit value.

Lemma 2 Let $x, y \in \mathbb{Z}_{2^{n}}$ and $z \in \mathbb{Z}_{2^{k}}$ be given by their binary representations and let $w_{i}=x \cdot 2^{i}, 0 \leq i<n$.
(a) For any $c>0$ and $\ell>\lceil\log n\rceil$ there is a nonuniform randomized algorithm which queries each input bit at most 4 times, uses space $\max \{4 \ell, 3 c(\log n+\log \log n)\}+O(1)$, accepts if $\mathrm{S}_{a, k, \ell}^{*}\left(w_{0} \cdot\langle y\rangle_{0}, \ldots, w_{n-1} \cdot\langle y\rangle_{n-1}\right)=z$ and otherwise rejects with a probability of at least $1-O\left(k \log n / n^{c}\right)$.
(b) There is a deterministic algorithm which queries each input bit at most once and computes $\mathrm{S}_{a, k, \ell}^{*}\left(w_{0} \cdot\langle y\rangle_{0}, \ldots, w_{n-1} \cdot\langle y\rangle_{n-1}\right)$ in space $2(k+\ell)+O(1)$.

The following statement is well known and has been widely used in randomized algorithms such as pattern matching or fingerprinting.

Fact 1 Let Q_{t} be the set of all primes smaller than t and let $d \in \mathbb{Z}-\{0\}$. Then the probability that $d \equiv 0(\bmod p)$ for a randomly chosen prime $p \in Q_{t}-\{2\}$ is bounded by $O\left((\log |d|) \cdot(\log t) \cdot t^{-1}\right)$.

Proof: It is well known that there are $\Theta(i)$ primes in $Q_{i\lceil\log i\rceil}$ and thus Q_{t} consists of $\Omega(t / \log t)$ different primes. Since $|d|$ is a multiple of less than $\log |d|$ different primes, the probability that one of them is in $Q_{t}-\{2\}$ is bounded by $O((\log |d| \cdot(\log t) / t)$.

Proof of Lemma 2:

Proof of part (a): Let

$$
w_{i}^{\prime}:=\left\langle w_{i}\right\rangle_{a-\ell}^{a+k-1}=\langle x\rangle_{a-\ell-i}^{a+k-1-i}
$$

for $1 \leq i \leq n$ (recall that $\langle x\rangle_{j}=0$ for $j<0$). Further, let $S=\sum_{i=0}^{n-1} w_{i}^{\prime}$. Then

$$
\begin{aligned}
& \mathrm{S}_{a, k, \ell}^{*}\left(w_{0}, \ldots, w_{n-1}\right)=\left(\sum_{i=0}^{n-1}\left\langle x \cdot 2^{i}\right\rangle_{a-\ell}^{a+k-1} \cdot\langle y\rangle_{i}\right) \bmod 2^{k+\ell} \operatorname{div} 2^{\ell} \\
& =\left(\sum_{i=0}^{n-1} w_{i}^{\prime}\right) \bmod 2^{k+\ell} \operatorname{div} 2^{\ell}=\langle S\rangle_{\ell}^{k+\ell-1}=S_{\ell, k}\left(w_{0}^{\prime}, \ldots, w_{n-1}^{\prime}\right)
\end{aligned}
$$

In the following we use the abbreviation S_{\ldots} for $S_{\ldots}\left(w_{0}^{\prime}, \ldots, w_{n-1}^{\prime}\right)$ and the analogously defined abbreviations $S_{\text {*... }}^{*}$ and $S_{\ldots *}^{* *}$.

Let $t>2$ be an integer to be determined later. Our algorithm executes the following three main steps:

1. Compute $S_{k+\ell, \ell, \ell}^{*}$.
2. Compute $S \bmod 2^{\ell}$.
3. Randomly choose a prime number $p \in Q_{t}-\{2\}$. For

$$
z^{*}=S-2^{k+\ell} \cdot \mathrm{S}_{k+\ell, \ell, \ell}^{*}-\left(S \bmod 2^{\ell}\right)
$$

accept if $\left(z^{*}-2^{\ell} \cdot z\right) \bmod p \in\left\{0,2^{k+\ell} \bmod p\right\}$ and otherwise reject.
We first discuss the implementation details and resource bounds and later prove the claimed bound on the error probability. Since our computation model is nonuniform, we can assume that in Step 3 the algorithm randomly samples a prime $p \in Q$ by simply choosing a random value $r \in\{1, \ldots,|Q|\}$. All computations involving p then are uniquely determined by r.

Let $w_{i}^{*}=\left\langle w_{i}\right\rangle_{k}^{k+2 \ell-1}=\langle x\rangle_{n-\ell-i}^{n+\ell-i-1}$. Then
$\mathrm{S}_{k+\ell, \ell, \ell}^{*}=\left(\sum_{i=0}^{n-1}\left(w_{i}^{\prime} \cdot\langle y\rangle_{i}\right) \operatorname{div} 2^{k}\right) \bmod 2^{2 \ell} \operatorname{div} 2^{\ell}=\left(\sum_{i=0}^{n-1} w_{i}^{*} \cdot\langle y\rangle_{i}\right) \bmod 2^{2 \ell} \operatorname{div} 2^{\ell}$.
It is easy to see that knowing w_{i}^{*} it suffices to query one x-bit (namely the bit $\langle x\rangle_{n-\ell-i-1}$) in order to obtain w_{i+1}^{*}. Hence, $\mathrm{S}_{k+\ell, \ell, \ell}^{*}$ can be computed by querying each x - and y-bit at most once and using two registers - one storing the subtotals modulo $2^{2 \ell}$ and the other the value w_{i}^{*}. Since w_{i}^{*} is a 2ℓ-bit value, the total amount of space required for the first step is $4 \ell+O(1)$.

In the second step $S \bmod 2^{\ell}$ can be computed by summing up the $n \ell$-bit integers $\left(w_{i}^{\prime} \cdot\langle y\rangle_{i}\right) \bmod 2^{\ell}$ in $\mathbb{Z} / 2^{\ell} \mathbb{Z}$. Analogously to w_{i}^{*} in the first step, $w_{i+1}^{\prime} \bmod$ 2^{ℓ} can be computed from $w_{i}^{\prime} \bmod 2^{\ell}$ by reading one x-bit. Therefore, querying each x - and each y-bit once suffices in order to compute $S \bmod 2^{\ell}$ if we use one ℓ-bit register for storing the subtotals and one for storing $w_{i}^{\prime} \bmod 2^{\ell}$. Hence, for the Steps 1 and 2 the time bounds total to $O(n)$ and the space bounds total to $4 \ell+O(1)$.

Now we investigate the computation of the sum S in $\mathbb{Z} / p \mathbb{Z}$ in the third step. The binary value of w_{i+1}^{\prime} is obtained from w_{i}^{\prime} by first removing its most significant bit (i.e. by subtracting $2^{k+\ell-1} \cdot\left\langle w_{i}^{\prime}\right\rangle_{k+\ell-1}=2^{k+\ell-1}\langle x\rangle_{n-i-1}$), then shifting the result by one bit position to the left (i.e. multiplying it with 2), and finally adding the least significant bit of w_{i+1}^{\prime}, which is $\langle x\rangle_{a-\ell-i-1}$. Hence,

$$
w_{i+1}^{\prime}=2 * w_{i}^{\prime}-2^{k+\ell-1}\langle x\rangle_{n-i-1}+\langle x\rangle_{a-\ell-i-1} .
$$

Therefore, if we know $w_{i}^{\prime} \bmod p$ we can easily compute $w_{i+1}^{\prime} \bmod p$ by simply querying two x-bits and doing the above computation in $\mathbb{Z} / p \mathbb{Z}$. Hence, once the results of the Steps 1 and 2 are known and their sum is taken modulo p, the
algorithm can compute $z^{*} \bmod p$ by querying each x-variable twice and each y variable once. Besides storing p, it suffices to store the subtotals and in the i th step the addend w_{i}^{\prime} in one $\lceil\log p\rceil$-bit register, each. Finally, $\left(z^{*}-2^{\ell} \cdot z\right) \bmod p$ can be obtained by querying each z-variable, using again one $\lceil\log p\rceil$-bit register for the subtotals. Altogether, Step 3 of the algorithm is possible with $3 n+k$ variable queries and with $3 \log p+O(1)$ space. Totaling over all three steps we obtain that each variable needs to be queried at most 4 times and that $\max \{4 \ell, 3 \log p\}+O(1)$ space suffices.

We shall now bound the error probability of the algorithm depending on the choice of t (the number of primes we can choose p from). Since S is the sum of $n(k+\ell)$-bit integers and thus bounded by $2^{\log n+k+\ell}$, we have $S \bmod 2^{k+2 \ell}=S$ (recall that $\ell \geq\lceil\log n\rceil+1$). Therefore, $S_{k+\ell, \ell}=S$ div $2^{k+\ell}$, which implies

$$
\begin{aligned}
& S-2^{k+\ell} \cdot S_{k+\ell, \ell}-\left(S \bmod 2^{\ell}\right)=S-2^{k+\ell} \cdot\left(S \operatorname{div} 2^{k+\ell}\right)-\left(S \bmod 2^{\ell}\right) \\
&=2^{\ell} \cdot\langle S\rangle_{\ell}^{k+\ell-1}=2^{\ell} \cdot S_{\ell, k}
\end{aligned}
$$

By first plugging this into the definition of z^{*} and then applying Lemma 1 (a) we obtain

$$
\begin{equation*}
z^{*}-2^{\ell} \cdot S_{\ell, k}=2^{k+\ell} \cdot\left(S_{k+\ell, \ell}-S_{k+\ell, \ell, \ell}^{*}\right) \in\left\{0,2^{k+\ell}\right\} \tag{1}
\end{equation*}
$$

Hence, if $S_{\ell, k}=z$ then $\left(z^{*}-2^{\ell} \cdot z\right) \bmod p \in\left\{0,2^{k+\ell} \bmod p\right\}$ and the algorithm accepts correctly.

Now assume that this is not the case, i.e. $S_{\ell, k} \neq z$, and let $d=z-S_{\ell, k}$. Then $d \in\left\{ \pm 1, \ldots, \pm\left(2^{k}-1\right)\right\}$ and using (1) yields

$$
r:=z^{*}-2^{\ell} \cdot z=z^{*}-2^{\ell} \cdot S_{\ell, k}-2^{\ell} \cdot d \in\left\{-2^{\ell} \cdot d, 2^{\ell}\left(2^{k}-d\right)\right\} .
$$

The algorithm only falsely accepts if $r \equiv 0$ or $\left(2^{k+\ell}-r\right) \equiv 0(\bmod p)$. But since $p \neq 2$ and r is a multiple of 2^{ℓ}, this is equivalent to $r^{\prime} \equiv 0$ or $\left(r^{\prime}-2^{k}\right) \equiv 0(\bmod p)$, where $r^{\prime}=r \operatorname{div} 2^{\ell}$. According to Fact 1 the probability that this is the case is bounded by $O(k \log t / t)$, because $\left|r^{\prime}\right|<2^{k+1}$ and $\left|r^{\prime}\right| \notin\left\{0,2^{k}\right\}$. Hence, for $c>1$ and $t=\left\lceil n^{c}\right\rceil$ we obtain an error probability of $O\left(k \log n / n^{c}\right)$. Using the fact that any prime $p \in Q_{t}$ is bounded by $O(t \log t)$ the space of our algorithm is bounded by $\max \{3 c(\log n+\log \log n), 4 \ell\}+O(1)$.

Proof of part (b): The proof of this part is already implicitly contained in the proof of part (a). Recall the first step of the randomized algorithm, in which $S_{k+\ell, \ell, \ell}^{*}$ is computed. Exactly the same arguments show that we can compute $\mathrm{S}_{a, k, \ell}^{*}$ by the summation of $\left(k+\ell\right.$)-bit integers $w_{0}^{\prime} \cdot\langle y\rangle_{0}, \ldots, w_{n-1}^{\prime} \cdot\langle y\rangle_{n-1}$ modulo $2^{k+\ell}$, where w_{i+1}^{\prime} can be computed by querying only one x-bit if we know w_{i}^{\prime}. It suffices to query each x-variable and each y variable once and to store w_{i}^{\prime} and the partial sums in two $(k+\ell)$-bit registers. Hence, the sum can be computed in $2(k+\ell)+O(1)$ space.

2.3 The Algorithm

We now state an algorithm which computes $\left\langle w_{1}+\cdots+w_{m}\right\rangle_{n-1}=$ $S_{n-1,1}\left(w_{1}, \ldots, w_{m}\right)$ for m integers $w_{1}, \ldots, w_{m} \in \mathbb{Z}_{2^{n}}$. As subroutines we use the algorithms for computing and testing $S_{a, k, \ell}^{*}$ from the former section. The time bounds of these subroutines are meaningful only if the addends w_{i} are the values $x \cdot 2^{i} \cdot\langle y\rangle_{i}$ from the school method for integer multiplication. Hence, the following algorithm is only useful for multiplication and not for adding multiple integers. However, its correctness can be proven for arbitrary sums.

Let $\ell=\lceil\log m\rceil+1, a=\lfloor n / 2\rfloor$ and $k=n-a$.

Algorithm for computing $\boldsymbol{S}_{\boldsymbol{n}-1,1}\left(w_{1}, \ldots, w_{m}\right)$:

1. If $n \leq 3 \ell$, then compute $s=\sum_{i=1}^{m} w_{i}$ and return $\langle s\rangle_{n-1}$.
2. Otherwise, compute $z^{*}:=\mathrm{S}_{n-1,1, \ell}^{*}\left(w_{1}, \ldots, w_{m}\right)$.
3. Test whether the equation $S_{a, k-1, \ell}^{*}\left(w_{1}, \ldots, w_{m}\right)=2^{k-1}-1$ is true.
(a) If true, then compute recursively $s^{\prime}=S_{a, 1}\left(w_{1}, \ldots, w_{m}\right)$ and return $\left(z^{*}+s^{\prime}+1\right) \bmod 2$.
(b) If false, then let $w_{i}^{\prime}=w_{i} \operatorname{div} 2^{a-\ell}$ (for $1 \leq i \leq m$) and compute recursively $S_{k+\ell-1,1}\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$. Return the result.

In order to prove the correctness, we need the following statement, which can be verified easily by plugging in the definitions of S_{\ldots}^{*} and $S_{\text {... }}$.

Proposition 2 Let $w_{1}, \ldots, w_{m} \in \mathbb{Z}_{\geq 0}$. Then

$$
\mathrm{S}_{a, b, c}^{*}\left(w_{1}, \ldots, w_{m}\right)=S_{c, b}\left(w_{1} \operatorname{div} 2^{a-c}, \ldots, w_{m} \operatorname{div} 2^{a-c}\right)
$$

Proof of Correctness: As before, we use the abbreviation S... for $S_{\ldots} \ldots\left(w_{1}, \ldots, w_{m}\right)$ and do the same for S_{\ldots}^{*} and $S_{\ldots}^{* *}$. If $n \leq 3 \ell$, the correctness is obvious by Step 1 of the algorithm. Hence, assume in the following $n>3 \ell$.

Assume first that the algorithm executes Step $3(\mathrm{~b})$. We have to prove that in this case $S_{k+\ell-1,1}\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)=S_{n-1,1}$. Using Proposition 2 we know that $S_{k+\ell-1,1}\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)=\mathrm{S}_{n-1,1, k+\ell-1}^{*}$. Assume that Step 3 (b) does not return the correct result, i.e. $S_{n-1,1, k+\ell-1}^{*} \neq S_{n-1,1}$. Then by Lemma 1 we get

$$
\mathrm{S}_{n-1,1, k+\ell-1}^{* *} \bmod 2^{k+\ell-1}>2^{k+\ell-1}-m
$$

and thus (using $\ell>\log m$)

$$
\mathrm{S}_{n-1,1, k+\ell-1}^{* *} \bmod 2^{k+\ell-1} \operatorname{div} 2^{\ell} \geq\left\lfloor 2^{k-1}-m / 2^{\ell}\right\rfloor \geq 2^{k-1}-1 .
$$

We investigate the left side of this inequality:

$$
\mathrm{S}_{n-1,1, k+\ell-1}^{* *} \bmod 2^{k+\ell-1} \operatorname{div} 2^{\ell}=\left(\sum_{i=1}^{m} w_{i} \operatorname{div} 2^{n-k-\ell}\right) \bmod 2^{k+\ell-1} \operatorname{div} 2^{\ell}=\mathrm{S}_{a, k-1, \ell}^{*}
$$

As derived above, this term is at least $2^{k-1}-1$ and since $\mathrm{S}_{a, k-1, \ell}^{*}$ is a $(k-1)$-bit value we even have equality, i.e. $\mathrm{S}_{a, k-1, \ell}^{*}=2^{k-1}-1$. But if this is the case, then the test in Step 3 is positive which contradicts our assumption that Step 3 (b) is being executed.

Now assume that the algorithm executes Step 3 (a) and thus $\mathrm{S}_{a, k-1, \ell}^{*}=2^{k-1}-1$. Consider first the case that this approximation is correct, i.e. $S_{a, k-1}=2^{k-1}-1$. Let $R=\sum_{i=1}^{m} w_{i}$. Then the binary representation of $S_{a, k-1}=\langle R\rangle_{a}^{a+k-2}=\langle R\rangle_{a}^{n-2}$ consists only of ones. Hence, $s^{\prime}=S_{a, 1}=\langle R\rangle_{a}=1$. Since the algorithm returns $\left(z^{*}+s^{\prime}+1\right) \bmod 2$, it suffices to show that $S_{n-1,1}=z^{*}$. If this is not the case, i.e. $\mathrm{S}_{n-1,1, \ell}^{*} \neq S_{n-1,1}$, then by Lemma 1

$$
m>S_{n-1-\ell, \ell}=\langle R\rangle_{n-1-\ell}^{n-2}
$$

Since $\ell<n / 2$ (ensured by the first step of the algorithm), $n-1-\ell \geq a$. Hence, the binary representation of $\langle R\rangle_{n-1-\ell}^{n-2}$ consists of ℓ ones and thus $R_{n-1-\ell}^{n-2}=2^{\ell}-1$. But then the above inequality simplifies to $m>2^{\ell}-1$ which contradicts the choice of ℓ.

The last case we have to consider is that the algorithm executes Step 3 (a) but $S_{a, k-1} \neq \mathrm{S}_{a, k-1, \ell}^{*}=2^{k-1}-1$. Then Lemma 1 (a) tells us that $S_{a, k-1} \bmod 2^{k-1}=0$ and now the binary representation of $S_{a, k-1}=\langle R\rangle_{a}^{a+k-2}$ is a 0 -string. Using the same arguments as in the former case, this implies $s^{\prime}=0$ and that it suffices to show $S_{n-1,1} \neq z^{*}$. Assume that this is note the case, i.e. $S_{n-1,1}=\mathrm{S}_{n-1,1, \ell}^{*}$. We already know that $S_{n-\ell, \ell}=\langle R\rangle_{n-\ell}^{n-1}=0<m$. Hence, inequality (i) of Lemma 1 (b) cannot be true, which means

$$
\begin{equation*}
\mathrm{S}_{n-1,1, \ell}^{* *} \bmod 2^{\ell} \leq 2^{\ell}-m \tag{2}
\end{equation*}
$$

Due to the assumption $S_{a, k-1} \neq \mathrm{S}_{a, k-1, \ell}^{*}=2^{k-1}-1$ we have by Lemma 1 (b)

$$
\mathrm{S}_{a, k-1, \ell}^{* *} \bmod 2^{\ell}>2^{\ell}-m
$$

This way we obtain

$$
\begin{align*}
\mathrm{S}_{a, k-1, \ell}^{* *}=\mathrm{S}_{a, k-1, \ell}^{*} \cdot 2^{\ell}+\mathrm{S}_{a, k-1, \ell}^{* *} \bmod 2^{\ell}>\left(2^{k-1}-1\right) \cdot 2^{\ell} & +2 \ell-m \\
& =2^{k+\ell-1}-m . \tag{3}
\end{align*}
$$

Now let $A=\sum_{i=0}^{m}\left\langle w_{i}\right\rangle_{n-\ell-1}^{n-1}$ and $B=\sum_{i=0}^{m}\left\langle w_{i}\right\rangle_{n-k-\ell}^{n-\ell-2}$. Using the definition of $S_{n-1,1, \ell}^{* *}$ and inequality (2)

$$
A \bmod 2^{\ell+1}=\mathrm{S}_{n-1,1, \ell}^{* *} \leq 2^{\ell}-m
$$

Note that B is the sum of $m(k-1)$-bit numbers, and thus bounded above by $m \cdot\left(2^{k-1}-1\right)$. Therefore, we obtain

$$
\left(A \cdot 2^{k-1}+B\right) \bmod 2^{k+\ell-1} \leq\left(2^{\ell}-m\right) \cdot 2^{k-1}+m \cdot\left(2^{k-1}-1\right)=2^{k+\ell-1}-m
$$

But this contradicts (3), because

$$
\left(A \cdot 2^{k-1}+B\right) \bmod 2^{k+\ell-1}=\left(\sum_{i=1}^{m} w_{i} \operatorname{div} 2^{a-\ell}\right) \bmod 2^{k+\ell-1}=\mathrm{S}_{a, k-1, \ell}^{* *}
$$

Now that we know that the algorithm is correct, we finally discuss its resource requirements and show that it can in fact be implemented by read- $k(n)$ branching programs, $k(n)=O(\log n)$, as claimed in Theorem 1 .

Let $x, y \in \mathbb{Z}_{2^{n}}$ and let $w_{i}=2^{i} \cdot x \cdot\langle y\rangle_{i}, 1 \leq i \leq n$, be the i th addend used in the school method for integer multiplication. It is obvious that $\operatorname{MUL}_{n-1, n}(x, y)=$ $S_{n-1,1}\left(w_{1}, \ldots, w_{n}\right)=: S_{n-1,1}$. If we use the algorithm in order to compute $S_{n-1,1}$ then it recursively computes $S_{n^{\prime}, 1}$, where $n^{\prime} \leq \max \{a, k+\ell-1\} \leq n / 2+\ell$. Hence, as long as $n^{\prime}>3 \ell$, the value $n^{\prime \prime}$ used in the next recursion call is at most $n^{\prime} / 2+n^{\prime} / 3=(5 / 6) n^{\prime}$. Therefore, after $O(\log n)$ recursive calls, $n^{\prime} \leq 3 \ell$ and the algorithm terminates after the execution of Step 1.

The algorithm may only err in the test of Step 3. But by Lemma 2 we may obtain an error probability of n^{-d} for this step, where d is an aribtrary large constant (increasing the space requirements only by a constant factor). Since Step 3 is executed at most $O(\log n)$ times, the overall error probability can be bounded by n^{-c} for any constant c.

In order to bound the space requirements, consider first the terminal case $\left(n^{\prime} \leq 3 \ell\right)$, in which the algorithm executes Step 1. According to Proposition 2 $\langle s\rangle_{n^{\prime}-1}=S_{n^{\prime}-1,1}\left(w_{1}, \ldots, w_{n}\right)$ is the same as $\mathrm{S}_{n^{\prime}-1,1, n^{\prime}}^{*}$. By Lemma 2, this can be computed by querying each input bit at most once and in space $O\left(\log n^{\prime}\right)=$ $O(\ell)=O(\log n)$. If the algorithm is not in the terminal case, then it is easy to see by Lemma 2 that the algorithm can execute all steps in $O(\log n)$ space and with a constant number of queries of each variable. Since the number of recursive calls is logarithmic and the argument of one recursive call is an $O(\log n)$-bit digit, the total space requirement is $O(\log n)$. Furthermore, each variable needs to be queried $O(\log n)$ times.

Now it is obvious that there is a branching program computing $\mathrm{MUL}_{n-1, n}$ in $O(\log n)$ space such that on each computation path each variable appears at most $k(n)=O(\log n)$ times. However, due to the syntactic restriction of read$k(n)$ branching programs we have to ensure that there is no graph theoretical path such that some variable appears on it more than $k(n)$ times. But any computation corresponding to an arbitrary graph theoretical path of the branching program can be simulated by "faking" the input variables. That is, if the algorithm queries a variable, an arbitrary value in $\{0,1\}$ is returned instead of a value corresponding to some assignment. It is obvious that if the algorithm queries each variable at most
$k(n)$ times even for all faked inputs, then it corresponds to a read- $k(n)$ branching program.

But if one looks at the subroutines as described in the proof of Lemma 2 and used to determine $\mathrm{S}_{n-1,1, \ell}^{*}$ (in Step 2) and to test $\mathrm{S}_{a, k-1, \ell}^{*}$ (in Step 3), then it is easy to see that the order in which the variables are queried during the execution of such a subroutine is even oblivious (i.e. it only depends on n, a, k and ℓ but not on the outcome of the variable queries). The same is true in the terminal case (Step 1). Hence, if we fake the input, we can influence the results of the subroutine calls, and thus the decision of the algorithm whether to execute Step 3 (a) or 3 (b), but in both cases the recursion is continued properly. Hence, a branching program satisfying the syntactic read $-k(n)$ property and the claimed space bounds exists. This completes the proof of Theorem 1.

3 Formulas and General Branching Programs

We now present Nechiporuk's technique for proving lower bounds for the branching program and formula size of boolean functions.

Theorem 3 (Nechiporuk's method [10]) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function essentially depending on the n variables in $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Further, let $V_{1}, \ldots, V_{\ell} \subseteq X$ be disjoint sets of variables, and let v_{i} be the number of subfunctions of f on V_{i}. Then the number of nodes of any branching program for f is bounded below by $\Omega\left(\sum_{i=1}^{\ell} \log v_{i} / \log \log v_{i}\right)$ and any formula for f has size at least $\Omega\left(\sum_{i=1}^{\ell} \log v_{i}\right)$.

In order to obtain a lower bound for the branching program size of $\mathrm{MUL}_{n-1, n}$, it suffices to find many disjoint sets V_{i} such that almost all subfunctions of $\mathrm{MUL}_{n-1, n}$ on each set are different.

Lemma 3 Let $n=k^{2}$ and $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ and $Y=\left\{y_{0}, \ldots, y_{n-1}\right\}$. For any $0 \leq i \leq k-2$ let $V_{i}=\left\{x_{i+k j} \mid 0 \leq j \leq k-1\right\} \cup\left\{y_{n-k(i+1)-i+j} \mid 0 \leq j<k\right\}$. Then $\mathrm{MUL}_{n-1, n}$ has at least $2^{n-2 k-i+1}=2^{\Omega\left(k^{2}\right)}$ subfunctions on V_{i}.

Plugging this lemma in Nechiporuk's method, part (a) of Theorem 2 follows easily: We can assume w.l.o.g. that $n=k^{2}$. It is obvious that $\mathrm{MUL}_{n-1, n}$ depends on all x and y-variables. We choose the sets $V_{i}, 0 \leq i \leq k-2$, as in the proof of Lemma 3 . One can easily verify that these sets are in fact disjoint. Since $\mathrm{MUL}_{n-1, n}$ has $2^{\Omega\left(k^{2}\right)}$ subfunctions on V_{i} and since there are $k-1$ disjoint sets V_{i}, the branching program size of $\mathrm{MUL}_{n-1, n}$ is $\Omega\left(k \cdot k^{2} / \log \left(k^{2}\right)\right)=\Omega\left(n^{3 / 2} / \log n\right)$ and the formula size is $\Omega\left(k^{3}\right)=\Omega\left(n^{3 / 2}\right)$. Hence, part (a) of Theorem 2 follows.

Before we prove Lemma 3, we state an obvious proposition.
Proposition 3 Let $a, b \in \mathbb{Z}, \ell \geq 0$ and $k \geq 1$. If $\langle a\rangle_{\ell}=\langle b\rangle_{\ell}=0$, then

$$
\langle a+b\rangle_{\ell+1}^{\ell+k}=\left(\langle a\rangle_{\ell+1}^{\ell+k}+\langle b\rangle_{\ell+1}^{\ell+k}\right) \bmod 2^{k} .
$$

Proof of Lemma 3: Fix $0 \leq i \leq k-2$ arbitrarily. Throughout this proof we assign all variables $x_{j} \in X-V_{i}$ the value 0 . Clearly, the subfunction $\mathrm{MUL}_{n-1, n}^{\prime}$ obtained by this assignment has at most as many subfunctions on V_{i} as $\mathrm{MUL}_{n-1, n}$. Further, for $0 \leq j<k$ we let $\sigma(j)=n-i-k(j+1)$. Hence, $V_{i} \cap Y=\left\{y_{\sigma(i)}, \ldots, y_{\sigma(i)+k-1}\right\}$.

Consider now all assignments a to the y-variables not in V_{i}. Each such assignment defines a unique integer $b(a)$ in $\mathbb{Z}_{2^{n}}$ if we assume the other y-variables to be 0 (although not all integers in $\mathbb{Z}_{2^{n}}$ are possible, of course). If we assign all variables in $Y-V_{i}$ the value 0 and choose an assignment \hat{y} to the y-variables in V_{i}, we obtain another integer $b(\hat{y}) \in M_{i}:=\left\{r \cdot 2^{\sigma(i)} \mid 0 \leq r<2^{k}\right\}$. In fact, by choosing an appropriate assignment \hat{y} all the values in M_{i} are possible. The bit string obtained by the assignment a together with the assignment \hat{y} corresponds to the integer $b(a, \hat{y})=b(a)+b(\hat{y}) \in \mathbb{Z}_{2^{n}}$. Note also that for $\hat{y}=r \cdot 2^{\sigma(i)}$ and $0 \leq j<k$

$$
\langle b(a, \hat{y})\rangle_{\sigma(j)}^{\sigma(j)+k-1}= \begin{cases}\langle b(\hat{y})\rangle_{\sigma(i)}^{\sigma(i)+k-1}=r & \text { if } j=i \tag{4}\\ \langle b(a)\rangle_{\sigma(j)}^{\sigma(j)+k-1} & \text { otherwise }\end{cases}
$$

We consider now all assignments a to the y-variables not in V_{i} where $b(a)<2^{n-i}$ and $\langle b(a)\rangle_{\sigma(j)}=0$ for all $0 \leq j<k, j \neq i+1$. Similarly, we will consider only choices of \hat{y} where $\langle b(\hat{y})\rangle_{\sigma(i)}=0$, thus restricting the choice of $b(\hat{y})$ to the set of integers $r \cdot 2^{\sigma(i)}$ where $r \in\left\{0, \ldots, 2^{k}-2\right\}$ is even. This way we achieve that for all assignments a and all choices of \hat{y} we have $\langle b(a, \hat{y})\rangle_{\sigma(j)}=0$ for $0 \leq j<k$.

Consider two arbitrary such assignments $a \neq a^{\prime}$. We prove that the two subfunctions of $\mathrm{MUL}_{n-1, n}^{\prime}$ obtained by the assignments a and a^{\prime} differ. Let t be an arbitrary value in $\{0, \ldots, k-1\}$ such that $\langle b(a)\rangle_{\sigma(t)}^{\sigma(t)+k-1} \neq\left\langle b\left(a^{\prime}\right)\right\rangle_{\sigma(t)}^{\sigma(t)+k-1}$. Such a t exists due to the assumption $b(a), b\left(a^{\prime}\right)<2^{n-i}$. Since $\langle b(a)\rangle_{\sigma(t)}=\left\langle b\left(a^{\prime}\right)\right\rangle_{\sigma(t)}=0$, we even have

$$
\begin{equation*}
b:=\langle b(a)\rangle_{\sigma(t)+1}^{\sigma(t)+k-1} \neq\left\langle b\left(a^{\prime}\right)\right\rangle_{\sigma(t)+1}^{\sigma(t)+k-1}=: b^{\prime} \tag{5}
\end{equation*}
$$

Now we choose $x_{k t+i}=x_{k i+i}=1$ and let all other x-variables in V_{i} be 0 (recall that all x-variables not in V_{i} have been assigned the value 0 , too). We can still choose an arbitrary \hat{y} such that $b(\hat{y}) \in M_{i}$. For each choice of \hat{y} the product of $b(a, \hat{y})$ and the integer represented by the x-assignment equals the sum

$$
\begin{aligned}
S(a, \hat{y}):=\sum_{j=0}^{n-1} x_{j} \cdot 2^{j} \cdot b(a, \hat{y})=\left(2^{k t+i}+\right. & \left.2^{k i+i}\right) \cdot b(a, \hat{y}) \\
& =\left(2^{k t+i}+2^{k i+i}\right) \cdot(b(a)+b(\hat{y}))
\end{aligned}
$$

Hence, in order to show that the subfunctions of $\mathrm{MUL}_{n-1, n}^{\prime}$ obtained by the assignments a and a^{\prime} differ, it suffices to prove that there is an even value $0 \leq r<2^{k}$
such that for $b(\hat{y})=r \cdot 2^{\sigma(i)}$

$$
S(a, \hat{y})_{n-1} \neq S\left(a^{\prime}, \hat{y}\right)_{n-1}
$$

Recall that for r being even we have $\langle b(a, \hat{y})\rangle_{\sigma(j)}=0$ for all $0 \leq j<k$, and thus $\left\langle 2^{k j+i} b(a, \hat{y})\right\rangle_{n-k}=\langle b(a, \hat{y})\rangle_{\sigma(j)}=0$. Hence, using Proposition 3 we obtain

$$
\begin{aligned}
\langle S(a, \hat{y})\rangle_{n-k+1}^{n-1} & =\left\langle 2^{k t+i} b(a, \hat{y})+2^{k i+i} b(a, \hat{y})\right\rangle_{n-k+1}^{n-1} \\
& =\left(\left\langle 2^{k t+i} b(a, \hat{y})\right\rangle_{n-k+1}^{n-1}+\left\langle 2^{k i+i} b(a, \hat{y})\right\rangle_{n-k+1}^{n-1}\right) \bmod 2^{k-1} \\
& =\left(\langle b(a, \hat{y})\rangle_{\sigma(t)+1}^{\sigma(t)+k-1}+\langle b(a, \hat{y})\rangle_{\sigma(i)+1}^{\sigma(i)+k-1}\right) \bmod 2^{k-1} \\
& =\left(\langle b(a)\rangle_{\sigma(t)+1}^{\sigma(t)+k-1}+\langle b(\hat{y})\rangle_{\sigma(i)+1}^{\sigma(i)+k-1}\right) \bmod 2^{k-1} \\
& =(b+r / 2) \bmod 2^{k-1}
\end{aligned}
$$

Analogously, we obtain $\left\langle S\left(a^{\prime}, \hat{y}\right)\right\rangle_{n-k+1}^{n-1}=\left(b^{\prime}+r / 2\right) \bmod 2^{k-1}$. Since $b \not \equiv b^{\prime}$ $\left(\bmod 2^{k-1}\right)$ according to (5), it is easy to choose an even value $r \in\left\{0, \ldots, 2^{k}-2\right\}$ such that $\langle S(a, \hat{y})\rangle_{n-k+1}^{n-1} \geq 2^{k-2}$ and $\left\langle S\left(a^{\prime}, \hat{y}\right)\right\rangle_{n-k+1}^{n-1}<2^{k-2}$ or vice versa. In any case, $S(a, \hat{y})_{n-1} \neq S\left(a^{\prime}, \hat{y}\right)_{n-1}$. Hence, the two subfunctions of MUL' obtained by the assignents a and a^{\prime} are different.

It remains to count the number of valid assignment a to the y-variables not in V_{i}. There are $n-k$ variables in $Y-V_{i}$. Out of these, at most $k-1$ variables, namely the variables $y_{\sigma(j)}$ with $0 \leq j<k, j \neq i$, have the fixed assignment 0 . Finally, we required that $b(a)<2^{n-i}$ which is achieved by assigning the i variables y_{n-i}, \ldots, y_{n-1} the variable 0 . Hence, there remain $n-2 k-i+1$ free variables. This yields $2^{n-2 k-i+1}$ possibilities to choose an assignment a, each of which defines another subfunction of MUL on V_{i}.

Now we state an upper bound on the number of subfunctions of $\mathrm{MUL}_{n-1, n}$ on any arbitrary set V of variables. Since Nechiporuk's method requires many such subfunctions, this can show that one cannot prove lower bounds very close to $n^{2} / \log ^{2} n$ for the branching program size of $\mathrm{MUL}_{n-1, n}$.

Lemma 4 Let $X=\left\{x_{0}, \ldots, x_{n-1}\right\}, Y=\left\{y_{0}, \ldots, y_{n-1}\right\}$ and $V \subseteq X \cup Y$. The number of subfunctions of $\mathrm{MUL}_{n-1,1}$ on V is bounded above by $2^{O\left(k^{4}\right)}$.

The idea for the proof of this lemma is that we can represent any subfunction of $\mathrm{MUL}_{n-1, n}$ by multiple functions from the well-investigated class of quadratic threshold functions. In fact, it turns out that each subfunction of $\mathrm{MUL}_{n-1, n}$ on k variables is the parity of $O(k)$ quadratic threshold functions. Our result follows easily due to the well known fact that the number of quadratic threshold functions is bounded by $2^{O\left(n^{3}\right)}$.

Definition 2 A boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called quadratic threshold function if there are a threshold $T \in \mathbb{Z}$ and weights $w_{i, j} \in \mathbb{Z}, 1 \leq i \leq j \leq n$, such that $f\left(x_{1}, \ldots, x_{n}\right)=1$ if and only if $\sum_{1 \leq i \leq j \leq n}^{n} w_{i, j} \cdot x_{i} \cdot x_{j}>T$.

Proof of Lemma 4: Let $k=|V|$ and let I_{x} be the set of indices $i \in$ $\{0, \ldots, n-1\}$ for which V contains the variable x_{i}. For y-variables we analogously define the set I_{y}. The product of two integers $x, y \in \mathbb{Z}_{2^{n}}$ given by assignments to the variables in $X \cup Y$ is defined as

$$
S(x, y):=\sum_{0 \leq i, j<n} x_{i} \cdot y_{j} \cdot 2^{i+j}
$$

Hence, $\operatorname{MUL}_{n-1, n}(x, y)=\langle S(x, y)\rangle_{n-1}$.
Consider a fixed subfunction S^{\prime} of S on V obtained by assigning arbitrary bit values to all variables not in V. Then by factoring out first all $x_{i} \in X \cap V$ and then all $y_{j} \in Y \cap V$ we obtain nonnegative integer weights w and w_{i}, w_{j}^{\prime} for $(i, j) \in I_{x} \times I_{y}$ such that

$$
S^{\prime}\left(x_{\mid V}, y_{\mid V}\right)=\sum_{i \in I_{x}} w_{i} \cdot x_{i}+\sum_{j \in I_{y}} w_{j} \cdot y_{j}+\sum_{(i, j) \in I_{x} \times I_{y}} 2^{i+j} \cdot x_{i} \cdot y_{j}
$$

Note that the weights do only depend on the assignments to the variables not in V. Since we are only interested in the value $S^{\prime}\left(x_{\mid V}, y_{\mid V}\right) \bmod 2^{n}$, we replace all weights w_{i} and w_{j}^{\prime} by their $\bmod 2^{n}$ values and consider the sum
$S^{*}\left(x_{\mid V}, y_{\mid V}\right):=\sum_{i \in I_{x}}\left(w_{i}\right) \bmod 2^{n} \cdot x_{i}+\sum_{j \in I_{y}}\left(w_{j}^{\prime}\right) \bmod 2^{n} \cdot y_{j}+\sum_{\substack{(i, j) \in I_{x} \times I_{y} \\ i+j<n}} 2^{i+j} \cdot x_{i} \cdot y_{j}$
Since I_{x} and I_{y} contain together k variables, for any $0 \leq \ell<n$, there are at most $\lfloor k / 2\rfloor$ pairs $(i, j) \in I_{x} \times I_{y}$ with $i+j=\ell$. Hence, all powers 2^{i+j} with $(i, j) \in I_{x} \times I_{y}$ and $i+j<n$ sum up to a value of at most $\left(2^{n-1}+\cdots+2^{0}\right) \cdot k / 2=\left(2^{n}-1\right)$. $k / 2$. In addition, all weights $w_{i} \bmod 2^{n}$ and $w_{j}^{\prime} \bmod 2^{n}$ are bounded by $2^{n}-1$. Therefore, we obtain $S^{*}\left(x_{\mid V}, y_{\mid V}\right)<3 k \cdot 2^{n-1}$. Note that $S^{*}\left(x_{\mid V}, y_{\mid V}\right) \operatorname{div} 2^{n-1}$ is even if and only if an even number of values $T \in\{1, \ldots, 3 k-1\}$ satisfies $T \leq$ $S^{*}\left(x_{\mid V}, y_{\mid V}\right) \operatorname{div} 2^{n-1}$ (or equivalently $T \cdot 2^{n-1} \leq S^{*}\left(x_{\mid V}, y_{\mid V}\right)$). We let $f_{T}\left(x_{\mid V}, y_{\mid V}\right)$ for $1 \leq T<3 k$ be the quadratic threshold function with a function value of 1 if and only if $S^{*}\left(x_{\mid V}, y_{\mid V}\right) \geq 2^{n-1} \cdot T$. Then by the discussion above

$$
\begin{aligned}
& \operatorname{MUL}_{n-1, n}(x, y)=\langle S(x, y)\rangle_{n-1}=S^{*}\left(x_{\mid V}, y_{\mid V}\right) \operatorname{div} 2^{n-1} \bmod 2 \\
& \quad=f_{1}\left(x_{\mid V}, y_{\mid V}\right) \oplus f_{1}\left(x_{\mid V}, y_{\mid V}\right) \oplus \cdots \oplus f_{3 k-1}\left(x_{\mid V}, y_{\mid V}\right)
\end{aligned}
$$

(Here \oplus denotes parity.) Each of these functions $f_{T}, 1 \leq T<3 k$, is a quadratic threshold function on k variables. It is known (see e.g. [8]) that the number of such threshold functions is bounded by $2^{O\left(k^{3}\right)}$. Since - as we have shown- for each assignment to the variables not in V we obtain a subfunction of $\mathrm{MUL}_{n-1, n}$ which is uniquely defined by $3 k-1$ quadratic threshold functions, the number of subfunctions of $\mathrm{MUL}_{n-1, n}$ is bounded above by $\left(2^{k^{3}}\right)^{3 k-1}=2^{O\left(k^{4}\right)}$.

We can now show how the last lemma yields part (b) of Theorem 2. Assume one can prove with Theorem 3 for all constants c a lower bound better than $c \cdot n^{7 / 4} / \log n$ for the branching program size of $\mathrm{MUL}_{n-1, n}$. Let $V_{1}, \ldots, V_{\ell} \subseteq X \cup Y$ be the disjoint sets used for the proof and let $k_{i}=\left|V_{i}\right|$ and v_{i} be the number of subfunctions of $\mathrm{MUL}_{n-1, n}$ on V_{i}. Clearly, there are only $2^{2 n-\left|V_{i}\right|}$ possibilities to choose an assignment to the variables not in V_{i}. Hence, $v_{i}=2^{O(n)}$. On the other hand, according to Lemma $4 v_{i}=2^{O\left(k_{i}{ }^{4}\right)}$. Therefore, the lower bound obtained by Nechiporuk's method is $O(S)$, where $S=\sum_{i=1}^{\ell} \min \left\{n / \log n, k_{i}{ }^{4} / \log k_{i}\right\}$. If $\ell \leq n^{3 / 4}$, this sum is bounded by $n^{7 / 4} / \log n$. Therefore assume $\ell>n^{3 / 4}$. Since $\sum_{i=1}^{\ell} k_{i} \leq 2 n, S$ is maximal if $k_{i} \in\{\lfloor 2 n / \ell\rfloor,\lceil 2 n / \ell\rceil\}$ for all $1 \leq i \leq \ell$. Thus,

$$
\begin{array}{r}
S=O\left(\sum_{i=1}^{\ell} \frac{n^{4}}{\ell^{4} \cdot \log (n / \ell)}\right)=O\left(\frac{n^{4}}{\ell^{3} \cdot \log (n / \ell)}\right)=O\left(\frac{n^{4}}{n^{(9 / 4)} \cdot \log \left(n / n^{3 / 4}\right)}\right) \\
=O\left(\frac{n^{7 / 4}}{\log n}\right)
\end{array}
$$

This contradicts the assumption that we can prove for all constants c a lower bound of $c \cdot n^{7 / 4} / \log n$. Exactly the same arguments (but without the logarithmic terms in the denominators of the above computations) show that a lower bound of $c \cdot n^{7 / 4}$ for the formula size cannot be proven for all constants c with Nechiporuk's technique. This completes the proof of Theorem 2.

References

[1] F. Ablayev and M. Karpinski. A lower bound for integer multiplication on randomized ordered read-once branching programs. Information and Computation, 186:78-89, 2003.
[2] M. Ajtai. A non-linear time lower bound for boolean branching programs. In Proceedings of the 40 th Annual IEEE Symposium on Fountations of Computer Science (FOCS), pp. 60-70. 1999.
[3] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space tradeoff lower bounds for randomized computation of decision problems. Journal of the ACM, 50:154195, 2003.
[4] B. Bollig and I. Wegener. Read-once projections and formal circuit verification with binary decision diagrams. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 1046 of Lecture Notes in Computer Science, pp. 491-502. 1996.
[5] B. Bollig and P. Woelfel. A read-once branching program lower bound of $\Omega\left(2^{n / 4}\right)$ for integer multiplication using universal hashing. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 419-424. 2001.
[6] A. Borodin, A. Razborov, and R. Smolensky. On lower bounds for read- k times branching programs. Computational Complexity, 3:1-18, 1993.
[7] M. Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithmetic without primes. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 1046 of Lecture Notes in Computer Science, pp. 569-580. 1996.
[8] M. H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, first edition, 1995.
[9] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing. Theoretical Computer Science, 107:121-133, 1993.
[10] E. I. Nečiporuk. A Boolean function. Soviet Mathematics Doklady, 7:9991000, 1966.
[11] E. A. Okol'nishnikova. On lower bounds for branching programs. Siberian Advances in Mathematics, 3:152-166, 1993.
[12] S. Ponzio. A lower bound for integer multiplication with read-once branching programs. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC), pp. 130-139. 1995.
[13] M. Sauerhoff and P. Woelfel. Time-space tradeoff lower bounds for integer multiplication and graphs of arithmetic functions. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 186-195. 2003.
[14] I. Wegener. Branching Programs and Binary Decision Diagrams - Theory and Applications. SIAM, 2000.

