
New Results on the Complexity of the Middle Bit of

Multiplication

Ingo Wegener and Philipp Woelfel

FB Informatik 2, Univ. Dortmund, D-44221 Dortmund, Germany

{ingo.wegener,philipp.woelfel}@cs.uni-dortmund.de

Abstract

It is well known that the hardest bit of integer multiplication is the middle
bit, i.e. MULn−1,n. This paper contains several new results on its complexity.
First, the size s of randomized read-k branching programs, or, equivalently,
its space (log s) is investigated. A randomized algorithm for MULn−1,n with
k = O(log n) (implying time O(n log n)), space O(log n) and error probability
n−c for arbitrarily chosen constants c is presented. This is close to the known
deterministic lower bound for the space requirement in the order of n ·2−O(k).

Second, the size of general branching programs and formulas is investi-
gated. Applying Nechiporuk’s technique, lower bounds of Ω

(

n3/2/ log n
)

and

Ω
(

n3/2
)

, respectively, are obtained. Moreover, by bounding the number of
subfunctions of MULn−1,n, it is proven that Nechiporuk’s technique cannot
provide larger lower bounds than O(n7/4/ log n) and O(n7/4), respectively.

1 Introduction

Integer multiplication is certainly one of the most important functions for com-
puter science. Therefore, a lot of effort has been spent in designing good algo-
rithms and small and shallow circuits and in determining its complexity. Most
algorithms such as the Schönhage-Strassen method require at least linear space
in order to compute the product of two n-bit integers. On the other hand, the
school method can easily be implemented with O(log n) space, but for the price
of a higher, almost quadratic Ω(n2/ log n) running time. This is not surprising,
because even in general nonuniform computation models such as branching pro-
grams a time-space product of Ω(n2) is necessary [7, 9]. On the other hand, in
nonuniform computation models, any boolean function f : {0, 1}n → {0, 1}m can
be implemented in O(n) time and O(m) space by simply using table-lookups. It
is interesting, though, that regarding time-space tradeoffs in nonuniform models,
the school method is the most general algorithm because for any log n ≤ k ≤ n it
can be implemented in O(k) space and O(n2/k) time.

However, the complexity of computing single output bits of integer multi-
plication is far from being as well bounded as that of computing all output

1

Electronic Colloquium on Computational Complexity, Report No. 107 (2004)

ISSN 1433-8092

bits. The main reason is probably, that for single output bit boolean functions
f : {0, 1}n → {0, 1} the known lower bound techniques are yet too weak to obtain
better than only slightly super-linear time-space products (and even such lower
bounds are rare [2, 3]). Therefore, it is not surprising that e.g. in the unrestricted
branching program model no super-logarithmic space lower bounds have been
proven, yet, even if one allows only 2 queries of each input bit during the com-
putation. However, good space lower bounds can been shown in more restricted
computation models.

Definition 1 A branching program for a function f : {0, 1}n → {0, 1}m is a
directed acyclic graph with one source and one sink and the following properties.
The internal nodes are marked with the n input variables x1, . . . , xn and have two
outgoing edges, a 0-edge and a 1-edge. Some edges may additionally be marked
with a pair (yi, c) where yi, 1 ≤ i ≤ m, is an output variable and c is either 0 or 1.
Then any assignment (a1, . . . , an) defines a computation path, which starts at the
source and leaves any internal node marked with xi via the ai-edge. Finally, each
computation path for an input (a1, . . . , an) for all 1 ≤ i ≤ m passes over exactly
one edge marked with (yi, bi), bi ∈ {0, 1}, in such a way that f(x1, . . . , xn) =
(b1, . . . , bm). A randomized branching program may use additional randomized
nodes at which the outgoing edge a computation path uses is chosen randomly. In
this case, the computation of f may err with a certain probability.

The size of a branching program is the number of its nodes, its space is the
logarithm of its size, and its time or length is the length of the longest compu-
tation path. The branching program size of f is the size of a branching program
computing f with minimal size. A branching program is called read-k, if any
source-to-sink path contains each variable at most k times.

If a branching program computes only one output bit (i.e. m = 1), then it is more
convenient to define it in such a way that it has two sinks instead of marked output
edges — a 0-sink and a 1-sink, corresponding to the two possible outputs. In the
following discussion we restrict ourselves to branching programs computing only
one output bit.

Branching programs are such a general computation model that Turing ma-
chines or register machines can be simulated by them with essentially the same
time and space resources. On the other hand, it is easy to see that branching pro-
grams can be simulated by nonuniform Turing machines or nonuniform register
machines using asymptotically as much time and space as the branching program
(at least as long as the space is Ω(log n)).

While using counting arguments one can show that almost all boolean function
have an exponential branching program size, such lower bounds cannot be proven
for explicitly defined functions (i.e. functions in NP). Since 40 years, the best
lower bounds for explicitly defined functions are of the order n2/ log2 n and all
lower bounds close to n2 have been proven with the same arguments, namely with
Nechiporuk’s technique.

2

However, restrictions on e.g. the number of queries of each variable have led
to good lower bound results. It should be pointed out that the read-k restriction
is syntactic in the sense that it applies to graph-theoretical paths in a branching
program and not only to computation paths. While —as we have mentioned
earlier— lower bounds for time-restricted branching programs with one output
bit are hard to prove (due to the fact that a time restriction is semantical) and
therefore rarely exist, good lower bound techniques for read-k branching programs
have been known for quite some time (the first superpolynomial size lower bounds
can be found in [6] and [11] and an overview of several other results can be found in
the monograph [14]). There are also good lower bound results for the computation
of product bits.

Let MULn : {0, 1}n × {0, 1}n → {0, 1}2n be the function mapping two
n-bit integers to their 2n-bit product and let MULi,n : {0, 1}n × {0, 1}n →
{0, 1} be the boolean function which computes the ith least significant bit of
the product of two n-bit integers, i.e. (xn−1 . . . x0, yn−1 . . . y0) 7→ zi, where
z2n−1 . . . z0 = MULn(xn−1 . . . x0, yn−1 . . . y0). It is well known that the “middle
bit”, that is the function MULn−1,n, is the most difficult to compute. More pre-
cisely, MULi,n can be computed by any branching program for MULj−1,j, where
j = min {i + 1, 2n − i − 1}, if one reorders the input bits and replaces some inputs
either by their negations or by the constants 0 or 1 [4].

For read-once branching programs computing MULn−1,n, Ponzio [12] was the
first to prove a superlogarithmic space lower bound of Ω(

√
n), and later, even

a linear lower bound was obtained [5]. Only recently, in [13] a space lower
bound of Ω

(

n · k−2 · 3−4k
)

was proven for deterministic read-k branching pro-
grams, if k ≤ γ log n for some constant γ. Hence, a log-space computation is
only possible for k = Ω(log n). The authors of [13] also give a lower bound of
Ω
(

log(1/ε) · k−2 · 3−2k
)

for randomized read-k branching programs, where ε is the
maximal error probability. Thus, if we restrict ourselves to polynomial small error,
then a log-space computation of MULn−1,n requires k = Ω(log log n).

These results as well as our inability to design fast deterministic log-space
algorithms for computing single product bits indicate that MULn−1,n is a “hard“
function. Therefore, it is quite surprising that one can approximate it even with
read-once branching programs in log-space and with polynomially small error [13].
(Approximating f with error ε means computing a function f ′ which equals f on all
but an ε-fraction of the inputs.) In addition, it is easy to see that using arithmetics
modulo a randomly chosen prime, one can verify in logarithmic space and with
a small error-probability whether the product of two integers equals some given
output [1]. However, computing the middle output bit of integer multiplication is
harder than approximating it and apparently also harder than verifying all output
bits. Therefore, the following upper bound which we prove in this paper is also
rather surprising.

3

Theorem 1 For any constant c and for k(n) = O(log n) there is a randomized
read-k(n) branching program for MULn−1,n of size nO(1) with a two-sided error
probability of at most n−c.

Hence, querying each input bit only logarithmically many times allows a log-space
computation of any product bit with a polynomially small error probability. This
is the first upper bound on the time-space product of randomized computations
of product bits which is better than Ω(n2) and it shows that using randomization
and a very moderate error probability, we can at least reach the theoretical lower
bound for deterministic computations.

We remark that due to the fact that the algorithm merely uses arithmetics
over O(log n)-bit registers, the same time and space bounds hold e.g. for nonuni-
form word-RAMs with word size Θ(log n). With constant word size, the time
increases by an O(log n)-factor. Furthermore, the only reason why the algorithm
is nonuniform is that it requires to choose a prime number randomly.

After proving the upper bound in the following section, we consider the branch-
ing program and formula size of the function MULn−1,n for unrestricted branching
programs. As we have mentioned before, today, the best lower bounds one can
prove for explicitly defined functions are of the order n2/ log2 n for the branching
program size and of the order n2/ log n for the formula size. All lower bounds
in this order of magnitude were proven with Nechiporuk’s method [10], and it
is known that this method cannot yield better lower bounds than O(n2/ log2 n)
for branching programs. Moreover, most lower bounds had been proven for func-
tions which are nor really interesting for implementations or hardware realization.
This is obviously different for integer multiplication, and therefore the branching
program and formula size of MULn−1,n should be investigated.

Theorem 2

1. Any branching program for MULn−1,n has at least Ω
(

n3/2/ log n
)

nodes and

any formula for MULn−1,n has size at least Ω(n3/2).

2. Using Nechiporuk’s technique, it is not possible to prove a better lower bound
than O

(

n7/4/ log n
)

and O
(

n7/4
)

for the branching program and formula size
of MULn−1,n, respectively.

The second part of the theorem tells us that we should not attempt to prove better
lower bounds than O(n7/4) until we are aware of a new lower bound technique.

In the following section, we first introduce some notation and then present
the randomized space-bounded algorithm for MULn−1,n and prove Theorem 1. In
Section 3 we count the number of subfunctions of MULn−1,n in order to obtain
Theorem 2.

4

2 A Randomized Algorithm for Space-Bounded Com-

putation of Product Bits

In order to compute the product of two n-bit integers, we will consider the
corresponding problem of adding n n-bit integers, as it is done in the school
method for multiplication. We use the operations mod and div, where mod is
the usual modulo operation and div is the integer division without remainder, i.e.
xdiv y = bx/yc. Let x be an n-bit integer represented by the bit string xn−1 . . . x0.
Then we say that xi is the ith bit of x (the least significant bit is the 0th bit).
If i < 0 or i ≥ n, then the ith bit of x, xi, is 0. Further, let 〈x〉ji , i ≤ j, be the
integer represented by the sub-bitstring xj . . . xi. Formally,

〈x〉ji = xdiv 2i mod 2j−i+1 (= x mod 2j+1 div 2i for j ≥ 0).

We abbreviate 〈x〉ii by 〈x〉i. Finally, we denote by
�

k the set of integers
{0, . . . , k − 1}.

Assume that we want to compute k consecutive bits of the sum of m integers
w1, . . . , wm ∈ �

2n . Let

Sa,k(w1, . . . , wm) = 〈w1 + . . . + wm〉a+k−1
a =

(

(w1 + · · · + wm) mod 2a+k
)

div 2a.

For x ∈ �
≥0 let H(x) = xdiv 2a be the “high part” of x, M(x) = 〈x〉a−1

a−` =

x mod 2a div 2a−` be the “middle part” and L(x) = x mod 2a−` be the “low part”.
Then x = 2a · H(x) + 2a−` · M(x) + L(x). We can get an approximation of Sa,k

by summing only the high and middle part of the integers and ignoring the low
part. Thus, let H =

∑m
i=1 H(wi), M =

∑m
i=1 M(wi) and L =

∑m
i=1 L(wi). Note

that

Sa,k(w1, . . . , wm) =
〈

2aH + 2a−`M + L
〉a+k−1

a
.

In order to approximate this value, we may compute

S∗∗
a,k,`(w1, . . . , wm) =

(

2` · H + M
)

mod 2k+` =

(

m
∑

i=1

wi div 2a−l

)

mod 2k+`

and let the approximation be

S∗
a,k,`(w1, . . . , wm) = S∗∗

a,k,`(w1, . . . , wm) div 2` =
(

2`H + M
)

mod 2`+k div 2`

=
〈

2` · H + M
〉`+k−1

`
=
〈

m
∑

i=1

wi div 2a−`
〉`+k−1

`
.

In order to simplify the notation, we abbreviate Sa,k(w1, . . . , wm) by Sa,k and
analogously use the abbreviations S∗

a,k,` and S∗∗
a,k,`, if it is clear from the context

which integers we use for the sums.

5

2.1 The Approximation Lemma

The idea is that ignoring the low part of the sum, we can compute the approxi-
mation S∗

a,k,` of Sa,k with less space if k + ` is small. On the other hand, in most
cases the carry induced by the low part should not influence the more significant
bits of the sum if ` is not too small. If ` is somewhat larger than log n, then the
carry induced by L (which has a value of at most n) can only carry over all the
following ` bits, if they have a value of at least 2` − n. We remark that this was
already observed in [13]. However, the following lemma is more general. E.g., it
tells us how we can detect the situations in which the approximation is correct
and will later help us to obtain the true value even if the approximation failed.

Lemma 1 Let m ≥ 2, ` ≥ dlog me + 1, a, k ≥ 1 and z = S∗
a,k,`(w1, . . . , wm).

(a) Sa,k(w1, . . . , wm) ∈
{

z, (z + 1) mod 2k
}

and

(b) Sa,k(w1, . . . , wm) 6= z if and only if the following two inequalities are both
true:

(i) S∗∗
a,k,`(w1, . . . , wm) mod 2` > 2` − m

(ii) Sa−`,`(w1, . . . , wm) < m.

For the proof of this lemma, the following obvious statement is helpful.

Proposition 1 Let a, b ∈ �
≥0 and k ∈ �

>0. Then

(a) (a + b) div k ∈ {z, z + 1}, where z = adiv k + bdiv k.

(b) The following three statements are equivalent:

1. (a + b) div k = adiv k + bdiv k,

2. a mod k + b mod k < k,

3. (a + b) mod k ≥ a mod k.

Proof of Lemma 1: Recall the definitions of H, M and L from above. First of
all note that L is the sum of m (a−`)-bit integers and thus bounded by m(2a−`−1).
Hence, Ldiv 2a < m · 2−` and thus Ldiv 2a = 0 by the assumption on `. Let

r := 2aH + 2a−`M + L and z′ := 2aH + 2a−`M.

Using Ldiv 2a = 0 and Proposition 1 (a) we obtain

r div 2a ∈
{

z′ div 2a, z′ div 2a + 1
}

.

Now part (a) follows because Sa,k = r div 2a mod 2k and

z′ div 2a mod 2k = (2`H + M) div 2` mod 2k = S∗
a,k,`.

6

For part (b) first note that r div 2a 6= z′ div 2a is equivalent to Sa,k 6= S∗
a,k,`

because z′ div 2a mod 2k 6= (z′ div 2a + 1) mod 2k. Furthermore, r mod 2a =
(2a−`M + L) mod 2a and z′ mod 2a = (2a−`M) mod 2a. Hence, by Proposi-
tion 1 (b) each of the following two statements is equivalent to Sa,k 6= S∗

a,k,`

(and to r div 2a 6= z′ div 2a):

(

2a−`M
)

mod 2a + L mod 2a ≥ 2a and (∗)
(

2a−`M + L
)

mod 2a < L mod 2a. (∗∗)

Recalling that L < m ·2a−` < 2a and dividing both sides of inequality (∗) by 2a−`,
we obtain

M mod 2` ≥ 2` − L/2a−` > 2` − m.

This shows that inequality (i) in part (b) of the lemma is fulfilled because S∗∗
a,k,` ≡

M (mod 2`). Similarly, dividing both sides of inequality (∗∗) by 2a−` yields

(2a−`M + L) mod 2a div 2a−` < m.

By definition, the left part of this inequality equals Sa−`,`. Hence, inequality (ii)
is true.

Finally, assume that inequalities (i) and (ii) are both fulfilled. Then
M mod 2` > 2` − m and (2a−`M + L) mod 2a div 2a−` ≤ m− 1. Multiplying with
2a−` this implies

(2a−`M) mod 2a > 2a − m · 2a−` and (2a−`M + L) mod 2a < m · 2a−`.

Due to the assumption ` ≥ dlog me+1 we know that m·2a−` ≤ 2a−1 ≤ 2a−m·2a−`.
Hence, we conclude

(2a−`M) mod 2a > (2a−`M + L) mod 2a.

But then (∗) follows right from Proposition 1. As we have shown above, this
inequality is equivalent to the inequality Sa,k 6= S∗

a,k,`. Since z = S∗
a,k,` we have

shown that the inequalities (i) and (ii) imply Sa,k 6= z. This completes the proof
of part (b).

2.2 Computing and Testing the Approximation Value

Now knowing that the approximation S∗
a,k,` cannot differ much from the true value

Sa,k we shall verify that it can in fact be efficiently computed by a space-bounded
algorithm if the sum consists of the addends obtained from the school method
for multiplication. Unfortunately, this is only true for small values of k (and `).
However, if k is large we can at least test randomly whether S∗

a,k,` equals some
arbitrary k-bit value.

7

Lemma 2 Let x, y ∈ �
2n and z ∈ �

2k be given by their binary representations
and let wi = x · 2i, 0 ≤ i < n.

(a) For any c > 0 and ` > dlog ne there is a nonuniform ran-
domized algorithm which queries each input bit at most 4
times, uses space max {4`, 3c(log n + log log n)} + O(1), accepts if
S∗

a,k,`(w0 · 〈y〉0, . . . , wn−1 · 〈y〉n−1) = z and otherwise rejects with a
probability of at least 1 − O(k log n/nc).

(b) There is a deterministic algorithm which queries each input bit at most once
and computes S∗

a,k,`(w0 · 〈y〉0, . . . , wn−1 · 〈y〉n−1) in space 2(k + `) + O(1).

The following statement is well known and has been widely used in randomized
algorithms such as pattern matching or fingerprinting.

Fact 1 Let Qt be the set of all primes smaller than t and let d ∈ � − {0}. Then
the probability that d ≡ 0 (mod p) for a randomly chosen prime p ∈ Qt − {2} is
bounded by O

(

(log |d|) · (log t) · t−1
)

.

Proof: It is well known that there are Θ(i) primes in Qidlog ie and thus Qt con-
sists of Ω(t/ log t) different primes. Since |d| is a multiple of less than log |d|
different primes, the probability that one of them is in Qt − {2} is bounded by
O
(

(log |d| · (log t)/t
)

.

Proof of Lemma 2:

Proof of part (a): Let

w′
i := 〈wi〉a+k−1

a−` = 〈x〉a+k−1−i
a−`−i

for 1 ≤ i ≤ n (recall that 〈x〉j = 0 for j < 0). Further, let S =
∑n−1

i=0 w′
i. Then

S∗
a,k,`(w0, . . . , wn−1) =

(

n−1
∑

i=0

〈

x · 2i
〉a+k−1

a−`
· 〈y〉i

)

mod 2k+` div 2`

=

(

n−1
∑

i=0

w′
i

)

mod 2k+` div 2` = 〈S〉k+`−1
` = S`,k(w

′
0, . . . , w

′
n−1).

In the following we use the abbreviation S... for S...(w
′
0, . . . , w

′
n−1) and the analo-

gously defined abbreviations S∗
... and S∗∗

... .

8

Let t > 2 be an integer to be determined later. Our algorithm executes the
following three main steps:

1. Compute S∗
k+`,`,`.

2. Compute S mod 2`.

3. Randomly choose a prime number p ∈ Qt − {2}. For

z∗ = S − 2k+` · S∗
k+`,`,` − (S mod 2`)

accept if (z∗ − 2` · z) mod p ∈
{

0, 2k+` mod p
}

and otherwise reject.

We first discuss the implementation details and resource bounds and later
prove the claimed bound on the error probability. Since our computation model
is nonuniform, we can assume that in Step 3 the algorithm randomly samples a
prime p ∈ Q by simply choosing a random value r ∈ {1, . . . , |Q|}. All computations
involving p then are uniquely determined by r.

Let w∗
i = 〈wi〉k+2`−1

k = 〈x〉n+`−i−1
n−`−i . Then

S∗
k+`,`,` =

(

n−1
∑

i=0

(

w′
i · 〈y〉i

)

div 2k
)

mod 22` div 2` =
(

n−1
∑

i=0

w∗
i · 〈y〉i

)

mod 22` div 2`.

It is easy to see that knowing w∗
i it suffices to query one x-bit (namely the bit

〈x〉n−`−i−1) in order to obtain w∗
i+1. Hence, S∗

k+`,`,` can be computed by querying
each x- and y-bit at most once and using two registers — one storing the subtotals
modulo 22` and the other the value w∗

i . Since w∗
i is a 2`-bit value, the total amount

of space required for the first step is 4` + O(1).
In the second step S mod 2` can be computed by summing up the n `-bit

integers (w′
i · 〈y〉i) mod 2` in

�
/2` �

. Analogously to w∗
i in the first step, w′

i+1 mod
2` can be computed from w′

i mod 2` by reading one x-bit. Therefore, querying
each x- and each y-bit once suffices in order to compute S mod 2` if we use one
`-bit register for storing the subtotals and one for storing w ′

i mod 2`. Hence, for
the Steps 1 and 2 the time bounds total to O(n) and the space bounds total to
4` + O(1).

Now we investigate the computation of the sum S in
�

/p
�

in the third step.
The binary value of w′

i+1 is obtained from w′
i by first removing its most significant

bit (i.e. by subtracting 2k+`−1 · 〈w′
i〉k+`−1 = 2k+`−1 〈x〉n−i−1), then shifting the

result by one bit position to the left (i.e. multiplying it with 2), and finally adding
the least significant bit of w′

i+1, which is 〈x〉a−`−i−1. Hence,

w′
i+1 = 2 ∗ w′

i − 2k+`−1 〈x〉n−i−1 + 〈x〉a−`−i−1 .

Therefore, if we know w′
i mod p we can easily compute w′

i+1 mod p by simply
querying two x-bits and doing the above computation in

�
/p

�
. Hence, once the

results of the Steps 1 and 2 are known and their sum is taken modulo p, the

9

algorithm can compute z∗ mod p by querying each x-variable twice and each y-
variable once. Besides storing p, it suffices to store the subtotals and in the ith
step the addend w′

i in one dlog pe-bit register, each. Finally, (z∗−2` ·z) mod p can
be obtained by querying each z-variable, using again one dlog pe-bit register for
the subtotals. Altogether, Step 3 of the algorithm is possible with 3n + k variable
queries and with 3 log p+O(1) space. Totaling over all three steps we obtain that
each variable needs to be queried at most 4 times and that max {4`, 3 log p}+O(1)
space suffices.

We shall now bound the error probability of the algorithm depending on the
choice of t (the number of primes we can choose p from). Since S is the sum of
n (k + `)-bit integers and thus bounded by 2log n+k+`, we have S mod 2k+2` = S
(recall that ` ≥ dlog ne + 1). Therefore, Sk+`,` = S div 2k+`, which implies

S − 2k+` · Sk+`,` − (S mod 2`) = S − 2k+` · (S div 2k+`) − (S mod 2`)

= 2` · 〈S〉k+`−1
` = 2` · S`,k.

By first plugging this into the definition of z∗ and then applying Lemma 1 (a) we
obtain

z∗ − 2` · S`,k = 2k+` ·
(

Sk+`,` − S∗
k+`,`,`

)

∈
{

0, 2k+`
}

. (1)

Hence, if S`,k = z then (z∗ − 2` · z) mod p ∈
{

0, 2k+` mod p
}

and the algorithm
accepts correctly.

Now assume that this is not the case, i.e. S`,k 6= z, and let d = z − S`,k. Then
d ∈

{

±1, . . . ,±(2k − 1)
}

and using (1) yields

r := z∗ − 2` · z = z∗ − 2` · S`,k − 2` · d ∈
{

−2` · d, 2`(2k − d)
}

.

The algorithm only falsely accepts if r ≡ 0 or (2k+` − r) ≡ 0 (mod p). But since
p 6= 2 and r is a multiple of 2`, this is equivalent to r′ ≡ 0 or (r′−2k) ≡ 0 (mod p),
where r′ = r div 2`. According to Fact 1 the probability that this is the case is
bounded by O(k log t/t), because |r′| < 2k+1 and |r′| 6∈

{

0, 2k
}

. Hence, for c > 1
and t = dnce we obtain an error probability of O(k log n/nc). Using the fact that
any prime p ∈ Qt is bounded by O(t log t) the space of our algorithm is bounded
by max {3c(log n + log log n), 4`} + O(1).

Proof of part (b): The proof of this part is already implicitly contained in
the proof of part (a). Recall the first step of the randomized algorithm, in which
S∗

k+`,`,` is computed. Exactly the same arguments show that we can compute
S∗

a,k,` by the summation of (k + `)-bit integers w′
0 · 〈y〉0 , . . . , w′

n−1 · 〈y〉n−1 modulo

2k+`, where w′
i+1 can be computed by querying only one x-bit if we know w ′

i. It
suffices to query each x-variable and each y variable once and to store w ′

i and
the partial sums in two (k + `)-bit registers. Hence, the sum can be computed in
2(k + `) + O(1) space.

10

2.3 The Algorithm

We now state an algorithm which computes 〈w1 + · · · + wm〉n−1 =
Sn−1,1(w1, . . . , wm) for m integers w1, . . . , wm ∈ �

2n . As subroutines we
use the algorithms for computing and testing S∗

a,k,` from the former section. The
time bounds of these subroutines are meaningful only if the addends wi are the
values x · 2i · 〈y〉i from the school method for integer multiplication. Hence, the
following algorithm is only useful for multiplication and not for adding multiple
integers. However, its correctness can be proven for arbitrary sums.

Let ` = dlog me+1, a = bn/2c and k = n − a.

Algorithm for computing Sn−1,1(w1, . . . , wm):

1. If n ≤ 3`, then compute s =
∑m

i=1 wi and return 〈s〉n−1.

2. Otherwise, compute z∗ := S∗
n−1,1,`(w1, . . . , wm).

3. Test whether the equation S∗
a,k−1,`(w1, . . . , wm) = 2k−1 − 1 is true.

(a) If true, then compute recursively s′ = Sa,1(w1, . . . , wm) and return
(z∗ + s′ + 1) mod 2.

(b) If false, then let w′
i = wi div 2a−` (for 1 ≤ i ≤ m) and compute recur-

sively Sk+`−1,1(w
′
1, . . . , w

′
m). Return the result.

In order to prove the correctness, we need the following statement, which can
be verified easily by plugging in the definitions of S∗

... and S....

Proposition 2 Let w1, . . . , wm ∈ �
≥0. Then

S∗
a,b,c(w1, . . . , wm) = Sc,b(w1 div 2a−c, . . . , wm div 2a−c).

Proof of Correctness: As before, we use the abbreviation S... for
S...(w1, . . . , wm) and do the same for S∗

... and S∗∗
... . If n ≤ 3`, the correctness

is obvious by Step 1 of the algorithm. Hence, assume in the following n > 3`.
Assume first that the algorithm executes Step 3 (b). We have to prove that

in this case Sk+`−1,1(w
′
1, . . . , w

′
m) = Sn−1,1. Using Proposition 2 we know that

Sk+`−1,1(w
′
1, . . . , w

′
m) = S∗

n−1,1,k+`−1. Assume that Step 3 (b) does not return the
correct result, i.e. S∗

n−1,1,k+`−1 6= Sn−1,1. Then by Lemma 1 we get

S∗∗
n−1,1,k+`−1 mod 2k+`−1 > 2k+`−1 − m

and thus (using ` > log m)

S∗∗
n−1,1,k+`−1 mod 2k+`−1 div 2` ≥

⌊

2k−1 − m/2`
⌋

≥ 2k−1 − 1.

11

We investigate the left side of this inequality:

S∗∗
n−1,1,k+`−1 mod 2k+`−1 div 2` =

(

m
∑

i=1

wi div 2n−k−`

)

mod 2k+`−1 div 2` = S∗
a,k−1,`.

As derived above, this term is at least 2k−1 − 1 and since S∗
a,k−1,` is a (k − 1)-bit

value we even have equality, i.e. S∗
a,k−1,` = 2k−1 − 1. But if this is the case, then

the test in Step 3 is positive which contradicts our assumption that Step 3 (b) is
being executed.

Now assume that the algorithm executes Step 3 (a) and thus S∗
a,k−1,` = 2k−1−1.

Consider first the case that this approximation is correct, i.e. Sa,k−1 = 2k−1 − 1.

Let R =
∑m

i=1 wi. Then the binary representation of Sa,k−1 = 〈R〉a+k−2
a = 〈R〉n−2

a

consists only of ones. Hence, s′ = Sa,1 = 〈R〉a = 1. Since the algorithm returns
(z∗ + s′ +1) mod 2, it suffices to show that Sn−1,1 = z∗. If this is not the case, i.e.
S∗

n−1,1,` 6= Sn−1,1, then by Lemma 1

m > Sn−1−`,` = 〈R〉n−2
n−1−` .

Since ` < n/2 (ensured by the first step of the algorithm), n − 1 − ` ≥ a. Hence,
the binary representation of 〈R〉n−2

n−1−` consists of ` ones and thus Rn−2
n−1−` = 2`−1.

But then the above inequality simplifies to m > 2`−1 which contradicts the choice
of `.

The last case we have to consider is that the algorithm executes Step 3 (a) but
Sa,k−1 6= S∗

a,k−1,` = 2k−1−1. Then Lemma 1 (a) tells us that Sa,k−1 mod 2k−1 = 0

and now the binary representation of Sa,k−1 = 〈R〉a+k−2
a is a 0-string. Using the

same arguments as in the former case, this implies s′ = 0 and that it suffices to
show Sn−1,1 6= z∗. Assume that this is note the case, i.e. Sn−1,1 = S∗

n−1,1,`. We

already know that Sn−`,` = 〈R〉n−1
n−` = 0 < m. Hence, inequality (i) of Lemma 1 (b)

cannot be true, which means

S∗∗
n−1,1,` mod 2` ≤ 2` − m. (2)

Due to the assumption Sa,k−1 6= S∗
a,k−1,` = 2k−1 − 1 we have by Lemma 1 (b)

S∗∗
a,k−1,` mod 2` > 2` − m.

This way we obtain

S∗∗
a,k−1,` = S∗

a,k−1,` · 2` + S∗∗
a,k−1,` mod 2` > (2k−1 − 1) · 2` + 2` − m

= 2k+`−1 − m. (3)

Now let A =
∑m

i=0 〈wi〉n−1
n−`−1 and B =

∑m
i=0 〈wi〉n−`−2

n−k−`. Using the definition
of S∗∗

n−1,1,` and inequality (2)

A mod 2`+1 = S∗∗
n−1,1,` ≤ 2` − m.

12

Note that B is the sum of m (k − 1)-bit numbers, and thus bounded above by
m · (2k−1 − 1). Therefore, we obtain

(

A · 2k−1 + B
)

mod 2k+`−1 ≤ (2` −m) ·2k−1 +m · (2k−1−1) = 2k+`−1−m.

But this contradicts (3), because

(

A · 2k−1 + B
)

mod 2k+`−1 =

(

m
∑

i=1

wi div 2a−`

)

mod 2k+`−1 = S∗∗
a,k−1,`.

Now that we know that the algorithm is correct, we finally discuss its resource
requirements and show that it can in fact be implemented by read-k(n) branching
programs, k(n) = O(log n), as claimed in Theorem 1.

Let x, y ∈ �
2n and let wi = 2i · x · 〈y〉i, 1 ≤ i ≤ n, be the ith addend used in

the school method for integer multiplication. It is obvious that MULn−1,n(x, y) =
Sn−1,1(w1, . . . , wn) =: Sn−1,1. If we use the algorithm in order to compute Sn−1,1

then it recursively computes Sn′,1, where n′ ≤ max {a, k + ` − 1} ≤ n/2 + `.
Hence, as long as n′ > 3`, the value n′′ used in the next recursion call is at
most n′/2 + n′/3 = (5/6)n′. Therefore, after O(log n) recursive calls, n′ ≤ 3` and
the algorithm terminates after the execution of Step 1.

The algorithm may only err in the test of Step 3. But by Lemma 2 we may
obtain an error probability of n−d for this step, where d is an aribtrary large
constant (increasing the space requirements only by a constant factor). Since
Step 3 is executed at most O(log n) times, the overall error probability can be
bounded by n−c for any constant c.

In order to bound the space requirements, consider first the terminal case
(n′ ≤ 3`), in which the algorithm executes Step 1. According to Proposition 2
〈s〉n′−1 = Sn′−1,1(w1, . . . , wn) is the same as S∗

n′−1,1,n′ . By Lemma 2, this can
be computed by querying each input bit at most once and in space O(log n′) =
O(`) = O(log n). If the algorithm is not in the terminal case, then it is easy to
see by Lemma 2 that the algorithm can execute all steps in O(log n) space and
with a constant number of queries of each variable. Since the number of recursive
calls is logarithmic and the argument of one recursive call is an O(log n)-bit digit,
the total space requirement is O(log n). Furthermore, each variable needs to be
queried O(log n) times.

Now it is obvious that there is a branching program computing MULn−1,n

in O(log n) space such that on each computation path each variable appears at
most k(n) = O(log n) times. However, due to the syntactic restriction of read-
k(n) branching programs we have to ensure that there is no graph theoretical path
such that some variable appears on it more than k(n) times. But any computation
corresponding to an arbitrary graph theoretical path of the branching program can
be simulated by “faking” the input variables. That is, if the algorithm queries a
variable, an arbitrary value in {0, 1} is returned instead of a value corresponding to
some assignment. It is obvious that if the algorithm queries each variable at most

13

k(n) times even for all faked inputs, then it corresponds to a read-k(n) branching
program.

But if one looks at the subroutines as described in the proof of Lemma 2 and
used to determine S∗

n−1,1,` (in Step 2) and to test S∗
a,k−1,` (in Step 3), then it is

easy to see that the order in which the variables are queried during the execution
of such a subroutine is even oblivious (i.e. it only depends on n, a, k and ` but
not on the outcome of the variable queries). The same is true in the terminal case
(Step 1). Hence, if we fake the input, we can influence the results of the subroutine
calls, and thus the decision of the algorithm whether to execute Step 3 (a) or 3 (b),
but in both cases the recursion is continued properly. Hence, a branching program
satisfying the syntactic read-k(n) property and the claimed space bounds exists.
This completes the proof of Theorem 1.

3 Formulas and General Branching Programs

We now present Nechiporuk’s technique for proving lower bounds for the branching
program and formula size of boolean functions.

Theorem 3 (Nechiporuk’s method [10]) Let f : {0, 1}n → {0, 1} be a func-
tion essentially depending on the n variables in X = {x1, . . . , xn}. Further, let
V1, . . . , V` ⊆ X be disjoint sets of variables, and let vi be the number of subfunc-
tions of f on Vi. Then the number of nodes of any branching program for f is
bounded below by Ω

(
∑`

i=1 log vi/ log log vi

)

and any formula for f has size at least

Ω
(
∑`

i=1 log vi

)

.

In order to obtain a lower bound for the branching program size of MULn−1,n, it
suffices to find many disjoint sets Vi such that almost all subfunctions of MULn−1,n

on each set are different.

Lemma 3 Let n = k2 and X = {x0, . . . , xn−1} and Y = {y0, . . . , yn−1}. For
any 0 ≤ i ≤ k − 2 let Vi = {xi+kj | 0 ≤ j ≤ k − 1} ∪

{

yn−k(i+1)−i+j

∣

∣ 0 ≤ j < k
}

.

Then MULn−1,n has at least 2n−2k−i+1 = 2Ω(k2) subfunctions on Vi.

Plugging this lemma in Nechiporuk’s method, part (a) of Theorem 2 follows easily:
We can assume w.l.o.g. that n = k2. It is obvious that MULn−1,n depends on all x-
and y-variables. We choose the sets Vi, 0 ≤ i ≤ k− 2, as in the proof of Lemma 3.
One can easily verify that these sets are in fact disjoint. Since MULn−1,n has

2Ω(k2) subfunctions on Vi and since there are k − 1 disjoint sets Vi, the branching
program size of MULn−1,n is Ω

(

k · k2/ log(k2)
)

= Ω
(

n3/2/ log n
)

and the formula

size is Ω(k3) = Ω(n3/2). Hence, part (a) of Theorem 2 follows.
Before we prove Lemma 3, we state an obvious proposition.

Proposition 3 Let a, b ∈ �
, ` ≥ 0 and k ≥ 1. If 〈a〉` = 〈b〉` = 0, then

〈a + b〉`+k
`+1 =

(

〈a〉`+k
`+1 + 〈b〉`+k

`+1

)

mod 2k.

14

Proof of Lemma 3: Fix 0 ≤ i ≤ k − 2 arbitrarily. Throughout this proof
we assign all variables xj ∈ X − Vi the value 0. Clearly, the subfunction
MUL′

n−1,n obtained by this assignment has at most as many subfunctions on
Vi as MULn−1,n. Further, for 0 ≤ j < k we let σ(j) = n − i − k(j + 1). Hence,
Vi ∩ Y =

{

yσ(i), . . . , yσ(i)+k−1

}

.
Consider now all assignments a to the y-variables not in Vi. Each such as-

signment defines a unique integer b(a) in
�

2n if we assume the other y-variables
to be 0 (although not all integers in

�
2n are possible, of course). If we assign all

variables in Y − Vi the value 0 and choose an assignment ŷ to the y-variables in
Vi, we obtain another integer b(ŷ) ∈ Mi :=

{

r · 2σ(i)
∣

∣ 0 ≤ r < 2k
}

. In fact, by
choosing an appropriate assignment ŷ all the values in Mi are possible. The bit
string obtained by the assignment a together with the assignment ŷ corresponds
to the integer b(a, ŷ) = b(a) + b(ŷ) ∈ �

2n . Note also that for ŷ = r · 2σ(i) and
0 ≤ j < k

〈

b(a, ŷ)
〉σ(j)+k−1

σ(j)
=











〈

b(ŷ)
〉σ(i)+k−1

σ(i)
= r if j = i

〈

b(a)
〉σ(j)+k−1

σ(j)
otherwise.

(4)

We consider now all assignments a to the y-variables not in Vi where
b(a) < 2n−i and 〈b(a)〉σ(j) = 0 for all 0 ≤ j < k, j 6= i + 1. Similarly, we will
consider only choices of ŷ where 〈b(ŷ)〉σ(i) = 0, thus restricting the choice of b(ŷ)

to the set of integers r · 2σ(i) where r ∈
{

0, . . . , 2k − 2
}

is even. This way we
achieve that for all assignments a and all choices of ŷ we have 〈b(a, ŷ)〉σ(j) = 0 for
0 ≤ j < k.

Consider two arbitrary such assignments a 6= a′. We prove that the two sub-
functions of MUL′

n−1,n obtained by the assignments a and a′ differ. Let t be an

arbitrary value in {0, . . . , k − 1} such that 〈b(a)〉σ(t)+k−1
σ(t) 6= 〈b(a′)〉σ(t)+k−1

σ(t) . Such a

t exists due to the assumption b(a), b(a′) < 2n−i. Since 〈b(a)〉σ(t) = 〈b(a′)〉σ(t) = 0,
we even have

b :=
〈

b(a)
〉σ(t)+k−1

σ(t)+1
6=
〈

b(a′)
〉σ(t)+k−1

σ(t)+1
=: b′. (5)

Now we choose xkt+i = xki+i = 1 and let all other x-variables in Vi be 0 (recall
that all x-variables not in Vi have been assigned the value 0, too). We can still
choose an arbitrary ŷ such that b(ŷ) ∈ Mi. For each choice of ŷ the product of
b(a, ŷ) and the integer represented by the x-assignment equals the sum

S
(

a, ŷ
)

:=

n−1
∑

j=0

xj · 2j · b(a, ŷ) =
(

2kt+i + 2ki+i
)

· b(a, ŷ)

=
(

2kt+i + 2ki+i
)

· (b(a) + b(ŷ)).

Hence, in order to show that the subfunctions of MUL′
n−1,n obtained by the as-

signments a and a′ differ, it suffices to prove that there is an even value 0 ≤ r < 2k

15

such that for b(ŷ) = r · 2σ(i)

S
(

a, ŷ
)

n−1
6= S

(

a′, ŷ
)

n−1
.

Recall that for r being even we have 〈b(a, ŷ)〉σ(j) = 0 for all 0 ≤ j < k, and thus
〈

2kj+ib(a, ŷ)
〉

n−k
= 〈b(a, ŷ)〉σ(j) = 0. Hence, using Proposition 3 we obtain

〈S(a, ŷ)〉n−1
n−k+1 =

〈

2kt+ib(a, ŷ) + 2ki+ib(a, ŷ)
〉n−1

n−k+1

=
(

〈

2kt+ib(a, ŷ)
〉n−1

n−k+1
+
〈

2ki+ib(a, ŷ)
〉n−1

n−k+1

)

mod 2k−1

=
(

〈

b(a, ŷ)
〉σ(t)+k−1

σ(t)+1
+
〈

b(a, ŷ)
〉σ(i)+k−1

σ(i)+1

)

mod 2k−1

=
(

〈

b(a)
〉σ(t)+k−1

σ(t)+1
+
〈

b(ŷ)
〉σ(i)+k−1

σ(i)+1

)

mod 2k−1

= (b + r/2) mod 2k−1.

Analogously, we obtain 〈S(a′, ŷ)〉n−1
n−k+1 = (b′ + r/2) mod 2k−1. Since b 6≡ b′

(mod 2k−1) according to (5), it is easy to choose an even value r ∈
{

0, . . . , 2k − 2
}

such that 〈S(a, ŷ)〉n−1
n−k+1 ≥ 2k−2 and 〈S(a′, ŷ)〉n−1

n−k+1 < 2k−2 or vice versa. In any
case, S(a, ŷ)n−1 6= S(a′, ŷ)n−1. Hence, the two subfunctions of MUL′ obtained by
the assignents a and a′ are different.

It remains to count the number of valid assignment a to the y-variables not in
Vi. There are n − k variables in Y − Vi. Out of these, at most k − 1 variables,
namely the variables yσ(j) with 0 ≤ j < k, j 6= i, have the fixed assignment 0.
Finally, we required that b(a) < 2n−i which is achieved by assigning the i variables
yn−i, . . . , yn−1 the variable 0. Hence, there remain n − 2k − i + 1 free variables.
This yields 2n−2k−i+1 possibilities to choose an assignment a, each of which defines
another subfunction of MUL on Vi.

Now we state an upper bound on the number of subfunctions of MULn−1,n

on any arbitrary set V of variables. Since Nechiporuk’s method requires many
such subfunctions, this can show that one cannot prove lower bounds very close
to n2/ log2 n for the branching program size of MULn−1,n.

Lemma 4 Let X = {x0, . . . , xn−1}, Y = {y0, . . . , yn−1} and V ⊆ X ∪ Y . The
number of subfunctions of MULn−1,1 on V is bounded above by 2O(k4).

The idea for the proof of this lemma is that we can represent any subfunction
of MULn−1,n by multiple functions from the well-investigated class of quadratic
threshold functions. In fact, it turns out that each subfunction of MULn−1,n on
k variables is the parity of O(k) quadratic threshold functions. Our result follows
easily due to the well known fact that the number of quadratic threshold functions
is bounded by 2O(n3).

16

Definition 2 A boolean function f : {0, 1}n → {0, 1} is called quadratic threshold
function if there are a threshold T ∈ �

and weights wi,j ∈
�
, 1 ≤ i ≤ j ≤ n, such

that f(x1, . . . , xn) = 1 if and only if
∑n

1≤i≤j≤n wi,j · xi · xj > T .

Proof of Lemma 4: Let k = |V | and let Ix be the set of indices i ∈
{0, . . . , n − 1} for which V contains the variable xi. For y-variables we analogously
define the set Iy. The product of two integers x, y ∈ �

2n given by assignments to
the variables in X ∪ Y is defined as

S(x, y) :=
∑

0≤i,j<n

xi · yj · 2i+j .

Hence, MULn−1,n(x, y) = 〈S(x, y)〉n−1.
Consider a fixed subfunction S ′ of S on V obtained by assigning arbitrary

bit values to all variables not in V . Then by factoring out first all xi ∈ X ∩ V
and then all yj ∈ Y ∩ V we obtain nonnegative integer weights w and wi, w

′
j for

(i, j) ∈ Ix × Iy such that

S′(x|V , y|V) =
∑

i∈Ix

wi · xi +
∑

j∈Iy

wj · yj +
∑

(i,j)∈Ix×Iy

2i+j · xi · yj

Note that the weights do only depend on the assignments to the variables not in
V . Since we are only interested in the value S ′(x|V , y|V) mod 2n, we replace all
weights wi and w′

j by their mod 2n values and consider the sum

S∗(x|V , y|V) :=
∑

i∈Ix

(wi) mod 2n · xi +
∑

j∈Iy

(w′
j) mod 2n · yj +

∑

(i,j)∈Ix×Iy
i+j<n

2i+j · xi · yj

Since Ix and Iy contain together k variables, for any 0 ≤ ` < n, there are at most
bk/2c pairs (i, j) ∈ Ix×Iy with i+j = `. Hence, all powers 2i+j with (i, j) ∈ Ix×Iy

and i + j < n sum up to a value of at most (2n−1 + · · · + 20) · k/2 = (2n − 1) ·
k/2. In addition, all weights wi mod 2n and w′

j mod 2n are bounded by 2n − 1.

Therefore, we obtain S∗(x|V , y|V) < 3k · 2n−1. Note that S∗(x|V , y|V) div 2n−1

is even if and only if an even number of values T ∈ {1, . . . , 3k − 1} satisfies T ≤
S∗(x|V , y|V) div 2n−1 (or equivalently T · 2n−1 ≤ S∗(x|V , y|V)). We let fT (x|V , y|V)
for 1 ≤ T < 3k be the quadratic threshold function with a function value of 1 if
and only if S∗(x|V , y|V) ≥ 2n−1 · T . Then by the discussion above

MULn−1,n(x, y) = 〈S(x, y)〉n−1 = S∗(x|V , y|V) div 2n−1 mod 2

= f1(x|V , y|V) ⊕ f1(x|V , y|V) ⊕ · · · ⊕ f3k−1(x|V , y|V).

(Here ⊕ denotes parity.) Each of these functions fT , 1 ≤ T < 3k, is a quadratic
threshold function on k variables. It is known (see e.g. [8]) that the number of
such threshold functions is bounded by 2O(k3). Since —as we have shown— for
each assignment to the variables not in V we obtain a subfunction of MULn−1,n

which is uniquely defined by 3k − 1 quadratic threshold functions, the number of

subfunctions of MULn−1,n is bounded above by
(

2k3)3k−1
= 2O(k4).

17

We can now show how the last lemma yields part (b) of Theorem 2. Assume
one can prove with Theorem 3 for all constants c a lower bound better than
c ·n7/4/ log n for the branching program size of MULn−1,n. Let V1, . . . , V` ⊆ X ∪Y
be the disjoint sets used for the proof and let ki = |Vi| and vi be the number of
subfunctions of MULn−1,n on Vi. Clearly, there are only 22n−|Vi| possibilities to
choose an assignment to the variables not in Vi. Hence, vi = 2O(n). On the other
hand, according to Lemma 4 vi = 2O(ki

4). Therefore, the lower bound obtained
by Nechiporuk’s method is O(S), where S =

∑`
i=1 min

{

n/ log n, ki
4/ log ki

}

. If

` ≤ n3/4, this sum is bounded by n7/4/ log n. Therefore assume ` > n3/4. Since
∑`

i=1 ki ≤ 2n, S is maximal if ki ∈ {b2n/`c, d2n/`e} for all 1 ≤ i ≤ `. Thus,

S = O

(

∑̀

i=1

n4

`4 · log(n/`)

)

= O

(

n4

`3 · log(n/`)

)

= O

(

n4

n(9/4) · log(n/n3/4)

)

= O

(

n7/4

log n

)

.

This contradicts the assumption that we can prove for all constants c a lower
bound of c ·n7/4/ log n. Exactly the same arguments (but without the logarithmic
terms in the denominators of the above computations) show that a lower bound of
c ·n7/4 for the formula size cannot be proven for all constants c with Nechiporuk’s
technique. This completes the proof of Theorem 2.

References

[1] F. Ablayev and M. Karpinski. A lower bound for integer multiplication on
randomized ordered read-once branching programs. Information and Com-
putation, 186:78–89, 2003.

[2] M. Ajtai. A non-linear time lower bound for boolean branching programs. In
Proceedings of the 40th Annual IEEE Symposium on Fountations of Computer
Science (FOCS), pp. 60–70. 1999.

[3] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space tradeoff lower bounds for
randomized computation of decision problems. Journal of the ACM, 50:154–
195, 2003.

[4] B. Bollig and I. Wegener. Read-once projections and formal circuit verification
with binary decision diagrams. In Proceedings of the 13th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 1046 of Lecture
Notes in Computer Science, pp. 491–502. 1996.

[5] B. Bollig and P. Woelfel. A read-once branching program lower bound of
Ω(2n/4) for integer multiplication using universal hashing. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp.
419–424. 2001.

18

[6] A. Borodin, A. Razborov, and R. Smolensky. On lower bounds for read-k-
times branching programs. Computational Complexity, 3:1–18, 1993.

[7] M. Dietzfelbinger. Universal hashing and k-wise independent random vari-
ables via integer arithmetic without primes. In Proceedings of the 13th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume
1046 of Lecture Notes in Computer Science, pp. 569–580. 1996.

[8] M. H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, first
edition, 1995.

[9] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of
universal hashing. Theoretical Computer Science, 107:121–133, 1993.

[10] E. I. Nečiporuk. A Boolean function. Soviet Mathematics Doklady, 7:999–
1000, 1966.

[11] E. A. Okol’nishnikova. On lower bounds for branching programs. Siberian
Advances in Mathematics, 3:152–166, 1993.

[12] S. Ponzio. A lower bound for integer multiplication with read-once branching
programs. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing (STOC), pp. 130–139. 1995.

[13] M. Sauerhoff and P. Woelfel. Time-space tradeoff lower bounds for integer
multiplication and graphs of arithmetic functions. In Proceedings of the 35th
Annual ACM Symposium on Theory of Computing (STOC), pp. 186–195.
2003.

[14] I. Wegener. Branching Programs and Binary Decision Diagrams - Theory
and Applications. SIAM, 2000.

19

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

