
Topology inside NC1

Eric Allender
Rutgers University, New Brunswick, NJ, USA

allender@cs.rutgers.edu

Samir Datta
Rutgers University, New Brunswick, NJ, USA

sdatta@winlab.rutgers.edu

Sambuddha Roy
Rutgers University, New Brunswick, NJ, USA

samroy@paul.rutgers.edu

Abstract

We show that ACC0 is precisely what can be computed with constant-width circuits of polynomial size and
polylogarithmic genus. This extends a characterization given by Hansen, showing that planar constant-width
circuits also characterize ACC0. Thus polylogarithmic genus provides no additional computational power in this
model. We consider other generalizations of planarity, including crossing number and thickness. We show that
thickness two already suffices to capture all of NC1.

1 Introduction

The complexity class ACC0 is one of the most important subclasses of NC1. Barrington’s characterization of
NC1 in terms of constant-width branching programs [1] highlighted the importance of algebraic considerations in
studying small circuit complexity classes, and initiated a productive line of research reinforcing the connections
between circuit complexity and formal language theory [4, 2, 8]. In this framework, computation over non-solvable
monoids gives complete problems for NC1, while computation over solvable monoids yields problems in ACC0.

The class ACC0 also attracts attention, because it lies at the frontier of current lower bound techniques. ACC0

is the union of the classes AC0[m] of problems computed by constant-depth polynomial-size circuits of AND,
OR, and MODm gates. If m is prime, then AC0[m] is known to be a proper subclass of ACC0 [11, 10], but for m

composite, it remains unknown if NEXP is contained in (nonuniform) AC0[m].
Last year, Hansen [6] proved a very surprising new characterization of ACC0, in terms of constant-width cir-

cuits. Barrington’s theorem [1] yields as a corollary a characterization of NC1 as precisely the problems solvable
by constant-width circuits of polynomial size. If NOT gates are allowed, then these circuits can be made to be
planar, but if NOT gates are allowed only at the leaves (i.e., at the inputs), then Hansen is able to build on earlier
work [7] to show that ACC0 is precisely the class of languages accepted by polynomial-size constant-width planar
circuits. This is a beautiful and unexpected characterization, making no blatant reference to counting mod m or to
the algebraic considerations that have been central to all previous work on ACC0.

Motivated by a desire to understand the ramifications of Hansen’s characterization of ACC0, we consider gen-
eralizations of planarity. The three most common generalizations of planarity are crossing number, genus, and
thickness. (For definitions, please consult a graph theory text, such as [5].) Planar graphs have crossing number 0,
genus 0, and thickness 1. For any graph G, thickness(G) − 1 ≤ genus(G) ≤ crossing.number(G).

1

Electronic Colloquium on Computational Complexity, Report No. 108 (2004)

ISSN 1433-8092

Our main theorem is that constant-width polynomial size circuits of polylogarithmic genus compute exactly the
problems in ACC0. As a corollary, the same is true for circuits with polylogarithmic crossing number. In contrast,
constant-width circuits of thickness two already suffice to compute all problems in NC1.

2 Definitions and Preliminaries

We first define a layered digraph :

Definition 1 We call a digraph layered if there is a partition of the vertex set into sets V0, V1, · · · , Vl (and we call
them layers or levels) and every (directed) edge in the graph is from some layer Vi to Vi+1.

Definition 2 The width of a layered digraph with layers V0, . . . , Vl is max{|Vi| : 0 ≤ i ≤ l}.

A constant-width circuit is a layered digraph where each gate is labeled either as an AND gate, an OR gate, an
input variable xi, or a negated input variable ¬xi. It is important to note that inputs can appear on any level, and
inputs can appear more than once.

A circuit is planar if it can be embedded in the plane with no two edges crossing. More generally, a circuit
has genus k if it can embedded on a surface of genus k with no edges crossing. We will find it useful to fix our
attention on a particular class of genus k surfaces, consisting of a plane with k “handles”. (Informally, a “handle”
is a bent cylinder that is attached to the plane at each end. The two circles on the plane where the handle is attached
are called the “handle connections”. For any handle h, arbitrarily label one of its handle connections the “east”
connection he and the other one the “west” connection hw. When we embed a graph into a plane with k handles,
we will consider only embeddings where each vertex is embedded in the plane.

Given a graph embedded on a plane with k handles h1, . . . , hk, for any directed edge e = (u, v) in the graph
there is a word we over the alphabet {p} ∪ {hi, hi,e, hi,w : 1 ≤ i ≤ k} recording the regions of the surface that
are encountered while traversing the edge from u to v. Note that we begins and ends with p because all vertices
are embedded in the plane. A traversal of handle hi is a subword of the form phi,exhi,wp or phi,wxhi,ep, where
x ∈ {hi,e, hi,w, hi}

∗. (That is, e traverses handle hi if it enters at one end and exits at the other end.)
The following theorem can be viewed as presenting a “normal form” for genus k graphs, that will be convenient

for us to work with.

Theorem 1 Given a graph G = (V,E) with genus k, there is an embedding of G into a plane with k handles such
that

• Every vertex is embedded in the plane.

• E = EP ∪ EH where each edge in EH traverses at least one handle, and each edge in EP traverses
no handle (and thus without loss of generality is embedded entirely in the plane, since one can slide any
“partial traversal” out of the handle).

• Each handle connection lies in a face of the planar graph (V,EP).

• For each edge e ∈ EH and each handle h, e traverses h at most twice.

Proof: This proof was suggested to us by Carsten Thomassen; we thank him for allowing us to present it here.
For the proof, we borrow terminology and definitions from [9]. Given a graph G, consider an embedding onto
its genus surface. Since the surface is orientable, every cycle in the embedding of G is two-sided. We borrow
definitions of “left side”, and “right side” of a cycle from [9], as also the definitions of surface-nonseparating
cycles and noncontractible cycles. Also, every surface-nonseparating cycle is a noncontractible cycle (by the

2

above definitions). Every graph embedded on a surface of genus k > 0 has surface-nonseparating (and hence
noncontractible) cycles [9, Lemma 4.2.4 and the following discussion]. Choose one such surface-nonseparating
cycle C1 in our graph G and cut along it ([9, p. 105]) - let C1 = {v1,1, v1,2, · · · , v1,r1

} be the cycle and let
G1 be the graph obtained from G by cutting along the cycle C . The graph G1 has two copies of each of the
vertices {v1,1, v1,2, · · · , v1,r1

}, which we denote by {v1,1,1, v1,2,1, · · · , v1,r1,1}, and {v1,1,2, v1,2,2, · · · , v1,r1,2}. For
every undirected edge (u, v1,j) on the right side of the cycle C1 we have the edge (u, v1,j,1) in G1, and for every
undirected edge (u, v1,j) on the left side of the cycle C1 we have the edge (u, v1,j,2) in G1. The graph G1 also
has two copies of the cycle C1, which we denote by C1,1 and C1,2. That is, we have edges between v1,j,b and
v1,j+1,b for each b ∈ {1, 2} and each 1 ≤ j ≤ r1. An important property of cutting along the cycle C1 is that
in the resulting graph G1, the copies C1,1 and C1,2 are facial cycles ([9, p. 106,Lemma 4.2.4]). That is, in the
embedding of G1 on the new surface, each C1,b forms the boundary of a face. Label the face corresponding to
C1,b with the name “C1,b”; since C1,b is facial it cannot be noncontractible and hence it will never be selected as
the cycle Cj in subsequent stages (although individual vertices on C1,b might appear on such a cycle Cj). That is,
we will maintain the property that in all of the graphs Gj that are constructed in subsequent stages, there will be a
face labeled C1,b.

It is important to observe that the orientation of the vertices is reversed in C1,1 and C1,2; equivalently, if we were
to connect a handle to the faces that have boundaries C1,1 and C1,2, then we could embed edges connecting v1,j,1

and v1,j,2 through the handle without introducing any edge crossings. We emphasize that G1 contains exactly r1

more edges than G, corresponding to the duplication of cycle C1.
By Lemma 4.2.4 of [9], the genus of the graph G1 is less than that of G.
If the genus of G1 is still greater than zero, we can choose a surface-nonseparating cycle C2 = {v2,1, v2,2, · · · , v2,r2

}
in G1 and cut it along C2 to obtain graph G2, which has smaller genus than G1 and which contains two facial
cycles labeled C2,1 and C2,2. After k steps we obtain a graph Gk of genus zero, which we embed in the plane.

The graph Gk has faces labeled Cj,b for 1 ≤ j ≤ k and 1 ≤ b ≤ 2. Create a handle hj with connections in the
faces Cj,1 and Cj,2.

A single vertex v in G may correspond to many different vertices in Gk if copies of it were made in the various
steps of cutting along the cycles Cj . For each v, we will create a tree Tv that connects all of these copies, as
follows. For each pair of cycles Cj,1 and Cj,2 in Gk, add “temporary” edges through handle hj connecting the
vertices vj,i,1 and vj,i,2. The “temporary” edges that are added in this way connect all of the copies of each original
vertex v with each other, but it will not in general be a tree. For each vertex v of the original graph, select one
representative copy of v and create a rooted tree Tv consisting of “temporary” edges that connect v to each of its
copies.

Now consider the graph H that results by taking graph Gk and performing the following steps:

1. Delete all edges that occur on any cycle Cj,b.

2. For each vertex v in turn, contract the “temporary” edges of Tv , and pull the copies of v to the root of Tv

across the handles, bringing along the edges that are adjacent to the vertices of Tv .

This graph H has the same number of vertices as G. Any two vertices that are adjacent in H are adjacent in G.
No edge of H crosses any bridge more than once. H is embedded in a plane with k handles.

However, H is a proper subgraph of G. The only edges of G that are not present in H are the edges that
correspond to edges of some cycle Cj,b of Gk that were deleted in the first step of our construction of H . We need
to embed those edges.

Consider any edge (v, u) of G that is absent in H . (v, u) corresponds to some edge (v ′, u′) on a cycle Cj,b in
Gk. We embed an edge from v to u by following a path through the handles from v to the spot on the plane where
v′ was embedded (corresponding to a path in the spanning tree Tv), and continuing on to the spot on the plane
where u′ was embedded, and then through the handles (corresponding to a path in the spanning tree Tu) toward

3

vertex u. The path from v to v′ uses each handle at most once, and the same is true for the path from u′ to u. Thus
no edge traverses any handle more than twice.

Theorem 1 leaves open the possibility that a single edge will traverse several handles. When discussing circuits,
however, this complication can be avoided, as the following lemma demonstrates.

Lemma 2 Given a layered circuit C of width w, genus k, and size s, there is an equivalent layered circuit C ′

of width O(w2), genus k, and size O(skw2) that can be embedded onto a plane with k handles satisfying the
conditions of Theorem 1 with the additional restriction that no edge of C ′ traverses more than one handle.

Proof: Consider an embedding of C into a plane with k handles, as guaranteed by Theorem 1. For any edge that
traverses more than one handle, or that traverses some handle more than once, insert a new vertex between any two
handle traversals. At most 2k − 1 new vertices are added per edge. Since there are at most w2 edges between any
two layers of C , this adds at most O(kw2) new vertices. The modified graph is no longer layered. For each two
adjacent levels l, l + 1 of C (that might now be separated by paths of length 2k − 1), insert additional “dummy”
gates (i.e., OR gates with one input and one output) to create the layered circuit C ′. The new graph has width at
most w2 because at most w2 “dummy” gates appear on any level of the resulting graph.

The embedding of circuit C ′ guaranteed by Lemma 2 might have several handle connections attached to any
given face of the planar part of the circuit. We find it convenient to modify the graph by adding additional non-
functional edges to subdivide faces, so that no face contains more than one handle connection. This transformation
might cause the width of the graph to increase, but because the new edges are purely an augmentation to the
embedding and do not contain functional circuit edges, it will not cause problems for us.

Theorem 3 Given a layered graph G = (V,EP ∪ EH) embedded in a plane with k handles satisfying the con-
clusions of Lemma 2, there is a layered graph G

′

= (V ∪ V
′

, EP ∪ E
′

P ∪ EH) whose embedding extends the
embedding of G such that the graph G

′′

= (V ∪ V
′

, EP ∪ E
′

P) is embedded in the plane and no face of G
′′

has
more than one handle connection inside it.

Proof: Consider any face of the embedding of the planar graph (V,EP). We will partition this face into a finite
number of regions, assigning a color to each region. Let there be d handle connections inside this face, h1, . . . , hd.
Assign color ci to connection hi. For each edge e that enters (or exits) connection hi, color e with color ci on that
portion of the edge that lies between the boundary of the face and the point at which it touches the connection h i.
(No segment receives two colors in this way.) If there are l edge segments adjacent to a handle connection h i, then
this gives rise to a partition of the face into l segments and l regions arranged around the handle connection like
slices of pie. Some of these regions might contain other handle connections; those that do not contain other handle
connections receive color ci. No region receives more than one color in this way; regions that do not receive a
color are said to be white. Any vertex on the boundary of the face that is adjacent only to regions of one color c i

receives color ci; any vertex on the boundary of the face that is adjacent to regions of two or more different colors
(one of which must be white) is colored white. If there is more than one handle connection in the face, then every
handle connection is adjacent to some white region, and every white region is adjacent to some white vertex on
the boundary.

Consider any white region that is adjacent to some handle connection hi. The border of this white region
includes some arc of the handle connection hi (and it includes the entire handle connection if only one edge
segment connects hi to the border of the face). The ends of this arc are connected to edge segments that attach
to some white vertices u and v on the border of the face (and note that u = v in the degenerate case mentioned
above). We can now embed a new edge in the white region, attaching u to v and creating a new face, which we
now color with color ci, thereby decreasing by one the number of white regions adjacent to the handle connection.

4

Repeat this process, until each handle connection hi is completely surrounded by regions colored ci. The
boundary of the region colored ci is now a planar face that contains exactly one handle connection. The graph
might now no longer be layered, but it is straightforward to insert new vertices in the middle of the new edges, to
obtain a layered graph.

Cylindrical graphs play an important role in our analysis, just as they do in Hansen’s work [6]. Cylindrical
graphs are a subclass of layered planar graphs, consisting of those graphs that can be embedded on the surface of
a cylinder, where each layer of vertices is placed on a ring around the cylinder between its neighbor layers, and all
edges lie on the surface of the cylinder going from one layer to the next, with no crossings.

We quote the theorem from [6]:

Theorem 4 A layered digraph G is layered cylindrical if and only if it is the subgraph of an acyclic planar layered
digraph with a unique source and sink.

We will need some additional information about the transformation that Hansen uses to prove Theorem 4.
Consider a marked face of the acyclic planar layered digraph G that is a subgraph of an acyclic planar layered
digraph with a unique source and sink. In Hansen’s transformation, this face corresponds to a marked face on the
embedding of G on the cylinder. (That is, if a face on an acyclic planar layered digraph has vertices {v1, v2, · · · vr},
then there is a face on the cylinder with the same vertices in the same order.)

When we have a genus k graph G = (V,EP ∪ EH) embedded on a plane with k handles and additionally the
planar graph (V,EP) is cylindrical, then we obtain an embedding of G on a cylinder with k handles, where each
face of the planar graph (V,EP) corresponds to a face of the cylindrical embedding, and the handle connections
are similarly attached to to faces on the cylinder. We summarize this discussion in the following theorem.

Theorem 5 Let G = (V,EP ∪ EH) be a layered digraph embedded in a plane with k handles satisfying the
conclusions of Lemma 2, where the graph (V,EP) is the subgraph of an acyclic planar digraph with a unique
source and sink. Then there is a layered graph G

′

= (V ∪ V
′

, EP ∪ E
′

P ∪ EH) embedded into a cylinder with k

handles such that the embedding of the subgraph G
′′

= (V ∪V
′

, EP ∪E
′

P) into the cylinder has the property that
no face of G

′′

contains more than one handle connection.

3 Small Genus Characterizes ACC0

Theorem 6 Let A be a language. A is in ACC0 if and only if A is accepted by a family of constant-width circuits
of polynomial size and polylogarithmic genus.

Proof: One direction follows immediately from Hansen’s characterization [6] where the genus is even required
to be zero. For the other direction, we follow Hansen’s basic strategy and prove the theorem by induction on the
width w of the circuit family accepting A. More precisely, we will prove the following claim:

∀w∀k∀l∃c∃d Circuits of width w and genus logl n and size nk

can be simulated by ACC0 circuits of depth d and size nc.

The basis, when w = 1 is trivially true.
For the inductive step, consider a circuit family {Cn} of width w + 1, size nk and genus logl n. Let G

′

=
(V ∪V

′

, EP ∪E
′

P ∪EH) be the graph guaranteed by Theorem 3, such that G = (V,EP ∪EH) is the graph of the
constant-width circuit Cn, where G is embedded into a plane with logl n handles and no face of the planar graph
(V ∪ V

′

, EP ∪ E
′

P) contains more than one handle connection.
Without loss of generality, there is a vertex s in layer 1 of G that is connected by a path to some vertex t in the

rightmost layer of G. Let Gcyl be the subgraph of G consisting of all edges of G that lie on some path from s to t

5

in G, and let Grest be the remainder of G; the vertices of Gcyl and Grest partition the vertices of G. Note that Grest

has width at most w because Gcyl contains at least one vertex from every level. Also note that by Theorem 4, Gcyl

can be embedded on a cylinder with logl n handles, because the planar part of Gcyl has a unique source and sink.
If we consider Grest as a circuit note that there are some gates whose inputs lie in Gcyl; for each such gate h that is
connected to a gate g of Gcyl, create an input node and label it with variable yg. Similarly, for each gate g of Gcyl

that receives input from a gate h of Grest, create an input node and label it with variable zh.
For each input variable zh of Gcyl the subcircuit of Grest on which gate h depends computes a function entirely

of the original input variables (because if it relied on a variable yg this would constitute a path from s to g to h to
t and thus h would be part of Gcyl). By induction hypothesis, the value of each such gate h can be computed by
ACC0 circuits of some fixed depth and size.

We show in Lemma 7 below that the value of each gate of Gcyl can be computed in ACC0 by circuits that
take the values zh as input, along with the original input values. Combining these circuits with the ACC0 circuits
computing the values of the corresponding gates h of Grest yields ACC0 circuits that compute the values that each
gate g of Gcyl takes on in the original circuit Cn.

Thus we can compute the correct values yg that we can provide as input to the remaining parts of Grest, in order
to compute the values of the output gates of Cn. The proof is now complete, once we have established Lemma 7.

Lemma 7 ∀w∀k∀l∃c∃d such that circuits of width w and size nk that are embedded on a cylinder with logl n

handles can be simulated by ACC0 circuits of depth d and size nc.

Proof: Let G = (V,EP ∪EH) be the graph of a circuit of width w and size nk embedded on a cylinder with logl n

handles. Let G
′

= (V ∪ V
′

, EP ∪E
′

P ∪EH) be the graph embedded on the same surface, such that no face of the
cylindrical part of G

′

contains more than one handle connection, as guaranteed by Theorem 5. Let the levels of
the layered graph G

′

be numbered 1, . . . , p(n). Let the handle attachments of G
′

be h1, . . . , hs (for s ≤ 2 logl n).
Our first step will be to chop the cylinder into a polylogarithmic number of segments, corresponding to levels

where handles start and stop. For a handle attachment hi, define start(hi) to be the least element of the set {j :
there is an edge (u, v) that traverses the handle attached at hi such that u is on level j}. Similarly, define end(hi)
to be the largest element of the set {j : there is an edge (u, v) ∈ EH that traverses the handle attached at hi such
that v is on level j}. Let a1 < a2 < . . . < ar be numbers such that {aj : 1 ≤ j ≤ r} = {start(hi), start(hi) + 1,
end(hi), end(hi) − 1 : 1 ≤ i ≤ s}. Note that r is polylogarithmic in n.

Slice the cylinder into r + 1 segments, where segment 1 consists of layers 1 . . . a1, segment 2 consists of layers
a1 . . . , a2, . . . and segment r + 1 consists of layers ar . . . , ap(n).

We argue below that there is a function f computable in ACC0 where f takes as input a triple (x, v, i) and
outputs a string z such that v and z are bit strings of length w, having the property that if the w gates at the start
of segment i have the values given by the vector v and the string x is used to provide values to the input gates
appearing in segment i, then the gates at the output level of segment i will take on the values given by the vector
z.

Assume for the moment that we have such a function f computable in ACC0. Then we can build a graph with
width 2w and polylogarithmically many levels, such that there is an edge from node v to node z in level j if and
only if f(x, v, j) = z. Finding paths in such graphs can be done in AC0. (For instance, we can build a DNF of
polynomial size that computes paths of length log n, and in depth 4 we can compute paths of length log 2 n, etc.)
Thus the proof will be complete if we can show that f is computable in ACC0.

Consider a segment that starts in layer aj and ends in layer aj+1. If aj + 1 = aj+1 then the circuitry in this
segment is computable in NC0 and thus certainly the desired function f can be computed in ACC0.

Otherwise, aj + 1 < aj+1, so that the jth segment has length more than one. Let us say that handle connection
hi is active if start(hi) ≤ aj and end(hi) ≥ aj+1. Because of the way the sequence of slice points a1, . . . , ar

6

E

W

a j a j+1

h i

ih’

Figure 1. Handle attachment

was defined and because we are dealing with the case where aj + 1 < aj+1, it follows that start(hi) < aj and
end(hi) > aj+1; that is, no handle connection is actually starting or ending at the start or end of this segment.
It is important to note that, although G has width bounded by the constant w, there might be polylogarithmically
many handles that are active in this segment, and the cylindrical part (V ∪ V

′

, EP ∪ E
′

P) of the graph G
′

(which
has the property that at most one handle attachment is in any face) might also have polylogarithmic width. Let
h1, h2, . . . , hd be the handles that are active in segment j.

Consider any handle attachment hi that is active in segment j. Consider the face of the cylindrical part of G
′

to which hi is attached. As illustrated in Figure 1, there are edges from levels before aj and after aj+1 that enter
or exit hi. Although we draw our constant-width circuits with the outputs on the right end (so that computation
proceeds from left to right), it will be convenient to use the compass points to refer to directions on the cylinder
using the convention that the output level is North, so that the computation proceeds from South to North. Thus
as depicted in the figure, East is to the bottom of the figure, and West is at the top. Using this convention, we can
speak of the face around hi has having an East side and a West side. The faces that surround h1, . . . , hd all start
before the start of segment j and end after segment j. Thus we can view them as being stripes arranged along the
sides of the cylinder. In this way, each handle connection hi has an East neighbor and a West neighbor (where the
East neighbor of hi is the handle connection whose face is encountered first when moving East from the face of hi

around the cylinder). The handle that is connected to hi on one end is connected to some other handle connection
hi′ on the other end. (This handle connection hi′ need not be an East or West neighbor of hi.) Because of the edges
that connect hi and hi′ to levels outside segment j, it is clear that edges in EH that traverse the handle between hi

and hi′ must connect the East side of one face with the West side of the other face; any attempt to embed an edge
between the West sides of the two faces would necessarily cross the edges that extend beyond segment j.

We claim that all of the edges in segment j are embedded onto at most d disjoint cylinders. This is illustrated
in Figure 2 (with d = 2), which presents a cross-section of a cylinder (with East to the right and West to the left).
The d handle connections h1, . . . , hd are arranged around the cylinder, each attached to a face of the cylindrical
part of G

′

. We can diagram this cross-section by building a graph with vertices for the East and West sides of the
faces around each handle connection hi. The East side of each face is connected to its West neighbor; edges from
the circuit can be embedded along this surface. The East side of each face is also connected to the West side of
the face to which its handle jumps. Note that there are no edges from the East side of a face to the West side of

7

1,e
h’1,wh’1,e

h1,wh

Figure 2. Cross-section of a cylinder with one handle in a segment

the same face; no circuit edges are embedded in this region. The graph that is constructed in this way is 2-regular,
and thus it is the union of disjoint cycles. If we create a 2-dimensional surface connecting these cycles at each
end of segment j, we create a cylinder (in Figure 3, this process leads to exactly one cylinder). Every circuit edge
appearing in segment j lies on one of these cylinders. For each cylinder, the circuit that is embedded on it is planar
and has width at most w. Thus by [6] the function it computes lies in ACC0.

4 A new characterization of NC1

Genus is just one of several possible generalizations of planarity. In this section we consider thickness, and we
show that all problems in NC1 can be solved by constant-width polynomial-size circuits of thickness two. We
actually prove a stronger result showing that a very limited type of circuit with thickness two suffices for this task.
(For a definition of thickness, see any standard text on graph theory, such as [5]).

Consider Figure 4, showing three half-planes joined at a common intersecting line called the spine. This is the
type of surface on which we will embed our constant-width circuits, with the restriction that the subgraph on any
one half-plane is upward planar. It is clear that any graph that can be embedded on three pages in this way has
thickness two. It is also clear that if only two pages are used, then the entire graph is upward planar, and by [3]
such circuits can compute only languages in AC0.

Now the question arises as to what happens when we allow more pages in our circuit. Defining kPages to be
the class of languages captured by computation on k pages, each of O(1) width, we prove that

Theorem 8 NC1 = 3Pages.

In order to present our characterization of NC1 in terms of constant-width circuits on three pages, it is useful to
define a simple nonuniform model of computation:

Definition 3 Define stacks(a, b, c) to be the class of languages accepted by machines with three pushdown stores
(with heights bounded by a, b, and c, respectively) and a computation register. Only binary values can be stored

8

h
1,e h’1,w h’

1,eh h h’ h’
2,w 2,e 2,w 2.e1,wh

Figure 3. Cross-section of a cylinder with multiple handles in a segment

spine

Figure 4. A circuit on three pages

9

b1

b2

b3

b4

b5

Figure 5. stacks(3,3,2) with canonical placement of bits

on the stacks. The program for the machine consists of a sequence of instructions (one instruction for each time
step), telling the machine which bit of the input to consult, and (depending on the value of the input bit that was
read), doing one of the following: (a) pushing the register value into one or more stacks; (b) popping a value from
a stack into the register; (c) discarding the topmost value of a stack or (d) computing the ∨ or ∧ of the the topmost
entries of two stacks and storing it in the register. The output of the machine is the final value that is stored in the
register, and we restrict the running time to be polynomial in the length of the input.

See Figure 5 which illustrates stacks(3,3,2).
It is easy to see that computation with 3 stacks can be simulated by computation with 3 pages. The height of

the stacks corresponds to the width of the pages with the spine serving as the register. Notice that popping a bit
corresponds to copying all the bits on the corresponding page towards the spine while pushing is the reverse. An
operation like the ∨ of the topmost bits of two stacks can be simulated by bringing the corresponding bits towards
the spine where the ∨ operation is performed. Therefore we have the following proposition:

Proposition 9 stacks(O(1),O(1),O(1)) ⊆ 3Pages.

Since 3Pages consists of problems computable by polynomial length constant width circuits, we have:

Fact 10 3Pages ⊆ NC1

Thus the following lemma will show that NC1, 3Pages and stacks(3,3,2) all coincide.

Lemma 11 NC1 ⊆ stacks(3,3,2)

Proof: Consider Barrington’s proof that languages in NC1can be computed by permutation branching programs
over S5 [1]. This yields a uniform way of converting a word in the language to a sequence of permutations over S5

whose product is the identity if the word is in the language and is a fixed 5-cycle otherwise. Thus we just need to
find out whether the product of the permutations maps any of the elements (say 1) of the set over which the group
S5 is based, to itself.

We can also write each permutation in S5 as a product of transpositions in a uniform way. Thus, the problem
reduces to finding whether the product of a sequence of transpositions maps 1 to 1. Notice that the position of 1
can be represented as a sequence of 5 bits, of which exactly one is 1.

The idea of the proof is that we put the 5 bits in the 3 stacks using heights 2, 2, 1 respectively in a canonical
way. Now each transposition acts upon the 3 stacks by exchanging two specific bits. We show how to exchange
any two bits within the specified bounds:

Lemma 12 1. Two bits which are the topmost bits of two different stacks can be exchanged by using exactly
one extra place in the third stack.

2. Two bits which are the two top bits of one stack can be exchanged by using exactly one more space in each
of the other two remaining stacks.

10

b b’

b’b

b b’

b’ b

b’

b

b’ b

b b’

b b’

b

b’

Figure 6. Two simple transpositions

Proof: See Figure.6.

The proof now follows from observing that any transposition of two bits can be performed as a sequence of
transpositions of the form above using extra space at most 1, 1, 0 which can be accommodated in total heights
3, 3, 2 because an operation of type 2 above on the first column requires heights 2, 3, 2, while that on the second
column requires 3, 2, 2 for a maximum of 3, 3, 2. Any other operation requires less overhead.

We also note, in passing, the following corresponding theorems for Logspace :

Theorem 13 L = O(log n)Pages, where each pagewidth is 2.

Theorem 14 L = 4Pages, where each pagewidth is O(log n).

Acknowledgments

We thank Robin Thomas, Dan Archdeacon, Bojan Mohar, Meena Mahajan, Kasturi Varadarajan, and Carsten
Thomassen for their generous help in answering our questions about graph genus.

References

[1] D. A. Barrington. Bounded-width polynomial size branching programs recognize exactly those languages in NC1.
Journal of Computer and System Sciences, 38:150–164, 1989.

[2] D. A. M. Barrington, K. J. Compton, H. Straubing, and D. Thérien. Regular languages in NC1. Journal of Computer
and System Sciences, 44:478–499, 1992.

[3] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. On monotone planar circuits. In IEEE Conference on
Computational Complexity, pages 24–, 1999.

[4] D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the ACM, 35:941–952,
1988.

[5] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.
[6] K. A. Hansen. Constant width planar computation characterizes ACC0. In 21th International Symposium on Theoretical

Aspects of Computer Science (STACS), pages 44–55, 2004.

11

[7] K. A. Hansen, P. B. Miltersen, and V. Vinay. Circuits on cylinders. In International Symposium on Fundamentals of
Computation Theory (FCT), volume 2751 of Lecture Notes in Computer Science, pages 171–182, 2003.

[8] P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata-theoretic viewpoint. Computational Complexity,
1:330–359, 1991.

[9] B. Mohar and C. Thomassen. Graphs on surfaces. John Hopkins University Press, Maryland, 1 edition, 2001.
[10] A. A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis with logical addition.

Matem. Zametki, 41(4):598–607, 1987.
[11] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proceedings of the

Nineteenth Annual ACM Symposium on Theory of Computing, pages 77–82, 1987.

12

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

