We show that ACC^0 is precisely what can be computed with constant-width circuits of polynomial size and polylogarithmic genus. This extends a characterization given by Hansen, showing that planar constant-width circuits also characterize ACC^0. Thus polylogarithmic genus provides no additional computational power in this model. We consider other generalizations of planarity, including crossing number and thickness. We show that thickness two already suffices to capture all of NC^1.

1 Introduction

The complexity class ACC^0 is one of the most important subclasses of NC^1. Barrington’s characterization of NC^1 in terms of constant-width branching programs [1] highlighted the importance of algebraic considerations in studying small circuit complexity classes, and initiated a productive line of research reinforcing the connections between circuit complexity and formal language theory [4, 2, 8]. In this framework, computation over non-solvable monoids gives complete problems for NC^1, while computation over solvable monoids yields problems in ACC^0.

The class ACC^0 also attracts attention, because it lies at the frontier of current lower bound techniques. ACC^0 is the union of the classes $\text{AC}^0[m]$ of problems computed by constant-depth polynomial-size circuits of AND, OR, and MOD$_m$ gates. If m is prime, then $\text{AC}^0[m]$ is known to be a proper subclass of ACC^0 [11, 10], but for m composite, it remains unknown if NEXP is contained in (nonuniform) $\text{AC}^0[m]$.

Last year, Hansen [6] proved a very surprising new characterization of ACC^0, in terms of constant-width circuits. Barrington’s theorem [1] yields as a corollary a characterization of NC^1 as precisely the problems solvable by constant-width circuits of polynomial size. If NOT gates are allowed, then these circuits can be made to be planar, but if NOT gates are allowed only at the leaves (i.e., at the inputs), then Hansen is able to build on earlier work [7] to show that ACC^0 is precisely the class of languages accepted by polynomial-size constant-width planar circuits. This is a beautiful and unexpected characterization, making no blatant reference to counting mod m or to the algebraic considerations that have been central to all previous work on ACC^0.

Motivated by a desire to understand the ramifications of Hansen’s characterization of ACC^0, we consider generalizations of planarity. The three most common generalizations of planarity are crossing number, genus, and thickness. (For definitions, please consult a graph theory text, such as [5].) Planar graphs have crossing number 0, genus 0, and thickness 1. For any graph G, $\text{thickness}(G) - 1 \leq \text{genus}(G) \leq \text{crossing.number}(G)$.

Abstract

We show that ACC^0 is precisely what can be computed with constant-width circuits of polynomial size and polylogarithmic genus. This extends a characterization given by Hansen, showing that planar constant-width circuits also characterize ACC^0. Thus polylogarithmic genus provides no additional computational power in this model. We consider other generalizations of planarity, including crossing number and thickness. We show that thickness two already suffices to capture all of NC^1.

1 Introduction

The complexity class ACC^0 is one of the most important subclasses of NC^1. Barrington’s characterization of NC^1 in terms of constant-width branching programs [1] highlighted the importance of algebraic considerations in studying small circuit complexity classes, and initiated a productive line of research reinforcing the connections between circuit complexity and formal language theory [4, 2, 8]. In this framework, computation over non-solvable monoids gives complete problems for NC^1, while computation over solvable monoids yields problems in ACC^0.

The class ACC^0 also attracts attention, because it lies at the frontier of current lower bound techniques. ACC^0 is the union of the classes $\text{AC}^0[m]$ of problems computed by constant-depth polynomial-size circuits of AND, OR, and MOD$_m$ gates. If m is prime, then $\text{AC}^0[m]$ is known to be a proper subclass of ACC^0 [11, 10], but for m composite, it remains unknown if NEXP is contained in (nonuniform) $\text{AC}^0[m]$.

Last year, Hansen [6] proved a very surprising new characterization of ACC^0, in terms of constant-width circuits. Barrington’s theorem [1] yields as a corollary a characterization of NC^1 as precisely the problems solvable by constant-width circuits of polynomial size. If NOT gates are allowed, then these circuits can be made to be planar, but if NOT gates are allowed only at the leaves (i.e., at the inputs), then Hansen is able to build on earlier work [7] to show that ACC^0 is precisely the class of languages accepted by polynomial-size constant-width planar circuits. This is a beautiful and unexpected characterization, making no blatant reference to counting mod m or to the algebraic considerations that have been central to all previous work on ACC^0.

Motivated by a desire to understand the ramifications of Hansen’s characterization of ACC^0, we consider generalizations of planarity. The three most common generalizations of planarity are crossing number, genus, and thickness. (For definitions, please consult a graph theory text, such as [5].) Planar graphs have crossing number 0, genus 0, and thickness 1. For any graph G, $\text{thickness}(G) - 1 \leq \text{genus}(G) \leq \text{crossing.number}(G)$.

1 Introduction

The complexity class ACC^0 is one of the most important subclasses of NC^1. Barrington’s characterization of NC^1 in terms of constant-width branching programs [1] highlighted the importance of algebraic considerations in studying small circuit complexity classes, and initiated a productive line of research reinforcing the connections between circuit complexity and formal language theory [4, 2, 8]. In this framework, computation over non-solvable monoids gives complete problems for NC^1, while computation over solvable monoids yields problems in ACC^0.

The class ACC^0 also attracts attention, because it lies at the frontier of current lower bound techniques. ACC^0 is the union of the classes $\text{AC}^0[m]$ of problems computed by constant-depth polynomial-size circuits of AND, OR, and MOD$_m$ gates. If m is prime, then $\text{AC}^0[m]$ is known to be a proper subclass of ACC^0 [11, 10], but for m composite, it remains unknown if NEXP is contained in (nonuniform) $\text{AC}^0[m]$.

Last year, Hansen [6] proved a very surprising new characterization of ACC^0, in terms of constant-width circuits. Barrington’s theorem [1] yields as a corollary a characterization of NC^1 as precisely the problems solvable by constant-width circuits of polynomial size. If NOT gates are allowed, then these circuits can be made to be planar, but if NOT gates are allowed only at the leaves (i.e., at the inputs), then Hansen is able to build on earlier work [7] to show that ACC^0 is precisely the class of languages accepted by polynomial-size constant-width planar circuits. This is a beautiful and unexpected characterization, making no blatant reference to counting mod m or to the algebraic considerations that have been central to all previous work on ACC^0.

Motivated by a desire to understand the ramifications of Hansen’s characterization of ACC^0, we consider generalizations of planarity. The three most common generalizations of planarity are crossing number, genus, and thickness. (For definitions, please consult a graph theory text, such as [5].) Planar graphs have crossing number 0, genus 0, and thickness 1. For any graph G, $\text{thickness}(G) - 1 \leq \text{genus}(G) \leq \text{crossing.number}(G)$.
Our main theorem is that constant-width polynomial size circuits of polylogarithmic genus compute exactly the problems in \(\text{ACC}^0\). As a corollary, the same is true for circuits with polylogarithmic crossing number. In contrast, constant-width circuits of thickness two already suffice to compute all problems in \(\text{NC}^1\).

2 Definitions and Preliminaries

We first define a layered digraph:

Definition 1 We call a digraph *layered* if there is a partition of the vertex set into sets \(V_0, V_1, \ldots, V_l\) (and we call them *layers* or *levels*) and every (directed) edge in the graph is from some layer \(V_i\) to \(V_{i+1}\).

Definition 2 The *width* of a layered digraph with layers \(V_0, \ldots, V_l\) is \(\max|V_i| : 0 \leq i \leq l\).

A constant-width circuit is a layered digraph where each gate is labeled either as an AND gate, an OR gate, an input variable \(x_i\), or a negated input variable \(\overline{x_i}\). It is important to note that inputs can appear on any level, and inputs can appear more than once.

A circuit is planar if it can be embedded in the plane with no two edges crossing. More generally, a circuit has genus \(k\) if it can be embedded on a surface of genus \(k\) with no edges crossing. We will find it useful to fix our attention on a particular class of genus \(k\) surfaces, consisting of a plane with \(k\) "handles". (Informally, a "handle" is a bent cylinder that is attached to the plane at each end. The two circles on the plane where the handle is attached are called the "handle connections". For any handle \(h\), arbitrarily label one of its handle connections the "east" connection \(h_e\) and the other one the "west" connection \(h_w\). When we embed a graph into a plane with \(k\) handles, we will consider only embeddings where each vertex is embedded in the plane.

Given a graph embedded on a plane with \(k\) handles \(h_1, \ldots, h_k\), for any directed edge \(e = (u, v)\) in the graph there is a word \(w_e\) over the alphabet \(\{p\} \cup \{h_i, h_{i,e}, h_{i,w} : 1 \leq i \leq k\}\) recording the regions of the surface that are encountered while traversing the edge from \(u\) to \(v\). Note that \(w_e\) begins and ends with \(p\) because all vertices are embedded in the plane. A *traversal* of handle \(h_i\) is a subword of the form \(ph_{i,e}xh_{i,w}p\) or \(ph_{i,w}xh_{i,e}p\), where \(x \in \{h_{i,e}, h_{i,w}, h_i\}^*\). (That is, \(e\) traverses handle \(h_i\) if it enters at one end and exits at the other end.)

The following theorem can be viewed as presenting a "normal form" for genus \(k\) graphs, that will be convenient for us to work with.

Theorem 1 Given a graph \(G = (V, E)\) with genus \(k\), there is an embedding of \(G\) into a plane with \(k\) handles such that

- Every vertex is embedded in the plane.
- \(E = E_P \cup E_H\) where each edge in \(E_H\) traverses at least one handle, and each edge in \(E_P\) traverses no handle (and thus without loss of generality is embedded entirely in the plane, since one can slide any "partial traversal" out of the handle).
- Each handle connection lies in a face of the planar graph \((V, E_P)\).
- For each edge \(e \in E_H\) and each handle \(h\), \(e\) traverses \(h\) at most twice.

Proof: This proof was suggested to us by Carsten Thomassen; we thank him for allowing us to present it here. For the proof, we borrow terminology and definitions from [9]. Given a graph \(G\), consider an embedding onto its genus surface. Since the surface is orientable, every cycle in the embedding of \(G\) is two-sided. We borrow definitions of "left side", and "right side" of a cycle from [9], as also the definitions of surface-nonseparating cycles and noncontractible cycles. Also, every surface-nonseparating cycle is a noncontractible cycle (by the
Every graph embedded on a surface of genus \(k > 0 \) has surface-nonseparating (and hence noncontractible) cycles [9, Lemma 4.2.4 and the following discussion]. Choose one such surface-nonseparating cycle \(C_1 \) in our graph \(G \) and cut along it (9, p. 105) - let \(C_1 = \{v_{1,1}, v_{1,2}, \cdots, v_{1,r_1}\} \) be the cycle and let \(G_1 \) be the graph obtained from \(G \) by cutting along the cycle \(C \). The graph \(G_1 \) has two copies of each of the vertices \(\{v_{1,1}, v_{1,2}, \cdots, v_{1,r_1}\} \), which we denote by \(\{v_{1,1,1}, v_{1,1,2}, \cdots, v_{1,1,r_1}\} \) and \(\{v_{1,2,1}, v_{1,2,2}, \cdots, v_{1,2,r_1}\} \). For every undirected edge \((u, v_{1,j})\) on the right side of the cycle \(C_1 \) we have the edge \((u, v_{1,j,1})\) in \(G_1 \), and for every undirected edge \((u, v_{1,j})\) on the left side of the cycle \(C_1 \) we have the edge \((u, v_{1,j,2})\) in \(G_1 \). The graph \(G_1 \) also has two copies of the cycle \(C_1 \), which we denote by \(C_{1,1} \) and \(C_{1,2} \). That is, we have edges between \(v_{1,j,b} \) and \(v_{1,j+1,b} \) for each \(b \in \{1, 2\} \) and each \(1 \leq j \leq r_1 \). An important property of cutting along the cycle \(C_1 \) is that in the resulting graph \(G_1 \), the copies \(C_{1,1} \) and \(C_{1,2} \) are facial cycles ([9, p. 106, Lemma 4.2.4]). That is, in the embedding of \(G_1 \) on the new surface, each \(C_{1,b} \) forms the boundary of a face. Label the face corresponding to \(C_{1,b} \) with the name "\(C_{1,b} \)"; since \(C_{1,b} \) is facial it cannot be noncontractible and hence it will never be selected as the cycle \(C_f \) in subsequent stages (although individual vertices on \(C_{1,b} \) might appear on such a cycle \(C_f \)). That is, we will maintain the property that in all of the graphs \(G_j \) that are constructed in subsequent stages, there will be a face labeled \(C_{1,b} \).

It is important to observe that the orientation of the vertices is reversed in \(C_{1,1} \) and \(C_{1,2} \); equivalently, if we were to connect a handle to the faces that have boundaries \(C_{1,1} \) and \(C_{1,2} \), then we could embed edges connecting \(v_{1,j,1} \) and \(v_{1,j,2} \) through the handle without introducing any edge crossings. We emphasize that \(G_1 \) contains exactly \(r_1 \) more edges than \(G \), corresponding to the duplication of cycle \(C_1 \).

By Lemma 4.2.4 of [9], the genus of the graph \(G_1 \) is less than that of \(G \).

If the genus of \(G_1 \) is still greater than zero, we can choose a surface-nonseparating cycle \(C_2 = \{v_{2,1}, v_{2,2}, \cdots, v_{2,r_2}\} \) in \(G_1 \) and cut it along \(C_2 \) to obtain graph \(G_2 \), which has smaller genus than \(G_1 \) and which contains two facial cycles labeled \(C_{2,1} \) and \(C_{2,2} \). After \(k \) steps we obtain a graph \(G_k \) of genus zero, which we embed in the plane.

The graph \(G_k \) has faces labeled \(C_{j,b} \) for \(1 \leq j \leq k \) and \(1 \leq b \leq 2 \). Create a handle \(h_j \) with connections in the faces \(C_{j,1} \) and \(C_{j,2} \).

A single vertex \(v \) in \(G \) may correspond to many different vertices in \(G_k \) if copies of it were made in the various steps of cutting along the cycles \(C_j \). For each \(v \), we will create a tree \(T_v \) that connects all of these copies, as follows. For each pair of cycles \(C_{j,1} \) and \(C_{j,2} \) in \(G_k \), add "temporary" edges through handle \(h_j \) connecting the vertices \(v_{j,1,1} \) and \(v_{j,1,2} \). The "temporary" edges that are added in this way connect all of the copies of each original vertex \(v \) with each other, but it will not in general be a tree. For each vertex \(v \) of the original graph, select one representative copy of \(v \) and create a rooted tree \(T_v \) consisting of "temporary" edges that connect \(v \) to each of its copies.

Now consider the graph \(H \) that results by taking graph \(G_k \) and performing the following steps:

1. Delete all edges that occur on any cycle \(C_{j,b} \).
2. For each vertex \(v \) in turn, contract the "temporary" edges of \(T_v \), and pull the copies of \(v \) to the root of \(T_v \) across the handles, bringing along the edges that are adjacent to the vertices of \(T_v \).

This graph \(H \) has the same number of vertices as \(G \). Any two vertices that are adjacent in \(H \) are adjacent in \(G \). No edge of \(H \) crosses any bridge more than once. \(H \) is embedded in a plane with \(k \) handles.

However, \(H \) is a proper subgraph of \(G \). The only edges of \(G \) that are not present in \(H \) are the edges that correspond to edges of some cycle \(C_{j,b} \) of \(G_k \) that were deleted in the first step of our construction of \(H \). We need to embed those edges.

Consider any edge \((v, u)\) of \(G \) that is absent in \(H \), \((v, u)\) corresponds to some edge \((v', u')\) on a cycle \(C_{j,b} \) in \(G_k \). We embed an edge from \(v \) to \(u \) by following a path through the handles from \(v \) to the spot on the plane where \(v' \) was embedded (corresponding to a path in the spanning tree \(T_v \)), and continuing on to the spot on the plane where \(u' \) was embedded, and then through the handles (corresponding to a path in the spanning tree \(T_u \)) toward
vertex u. The path from v to v' uses each handle at most once, and the same is true for the path from u' to u. Thus no edge traverses any handle more than twice.

Theorem 1 leaves open the possibility that a single edge will traverse several handles. When discussing circuits, however, this complication can be avoided, as the following lemma demonstrates.

Lemma 2 Given a layered circuit C of width w, genus k, and size s, there is an equivalent layered circuit C' of width $O(w^2)$, genus k, and size $O(skw^2)$ that can be embedded onto a plane with k handles satisfying the conditions of Theorem 1 with the additional restriction that no edge of C' traverses more than one handle.

Proof: Consider an embedding of C into a plane with k handles, as guaranteed by Theorem 1. For any edge that traverses more than one handle, or that traverses some handle more than once, insert a new vertex between any two handle traversals. At most $2k - 1$ new vertices are added per edge. Since there are at most w^2 edges between any two layers of C, this adds at most $O(kw^2)$ new vertices. The modified graph is no longer layered. For each two adjacent levels $l, l + 1$ of C (that might now be separated by paths of length $2k - 1$), insert additional “dummy” gates (i.e., OR gates with one input and one output) to create the layered circuit C'. The new graph has width at most w^2 because at most w^2 “dummy” gates appear on any level of the resulting graph.

The embedding of circuit C' guaranteed by Lemma 2 might have several handle connections attached to any given face of the planar part of the circuit. We find it convenient to modify the graph by adding additional non-functional edges to subdivide faces, so that no face contains more than one handle connection. This transformation might cause the width of the graph to increase, but because the new edges are purely an augmentation to the embedding and do not contain functional circuit edges, it will not cause problems for us.

Theorem 3 Given a layered graph $G = (V, E_P \cup E_H)$ embedded in a plane with k handles satisfying the conclusions of Lemma 2, there is a layered graph $G' = (V \cup V', E_P \cup E_P' \cup E_H)$ whose embedding extends the embedding of G such that the graph $G'' = (V \cup V', E_P \cup E'_P)$ is embedded in the plane and no face of G'' has more than one handle connection inside it.

Proof: Consider any face of the embedding of the planar graph (V, E_P). We will partition this face into a finite number of regions, assigning a color to each region. Let there be d handle connections inside this face, h_1, \ldots, h_d. Assign color c_{i_1} to connection h_{i_1}. For each edge e that enters (or exits) connection h_{i_1}, color e with color c_{i_1} on that portion of the edge that lies between the boundary of the face and the point at which it touches the connection h_{i_1}. (No segment receives two colors in this way.) If there are l edge segments adjacent to a handle connection h_i, then this gives rise to a partition of the face into l segments and l regions arranged around the handle connection like slices of pie. Some of these regions might contain other handle connections; those that do not contain other handle connections receive color c_i. No region receives more than one color in this way; regions that do not receive a color are said to be white. Any vertex on the boundary of the face that is adjacent only to regions of one color c_{i_1} receives color c_{i_1}; any vertex on the boundary of the face that is adjacent to regions of two or more different colors (one of which must be white) is colored white. If there is more than one handle connection in the face, then every handle connection is adjacent to some white region, and every white region is adjacent to some white vertex on the boundary.

Consider any white region that is adjacent to some handle connection h_{i_1}. The border of this white region includes some arc of the handle connection h_{i_1} (and it includes the entire handle connection if only one edge segment connects h_{i_1} to the border of the face). The ends of this arc are connected to edge segments that attach to some white vertices u and v on the border of the face (and note that $u = v$ in the degenerate case mentioned above). We can now embed a new edge in the white region, attaching u to v and creating a new face, which we now color with color c_{i_1}, thereby decreasing by one the number of white regions adjacent to the handle connection.
Theorem 6 Let \(G \) be a language. \(A \) is in \(\text{ACC}^0 \) if and only if \(A \) is accepted by a family of constant-width circuits of polynomial size and polylogarithmic genus.

Proof: One direction follows immediately from Hansen’s characterization [6] where the genus is even required to be zero. For the other direction, we follow Hansen’s basic strategy and prove the theorem by induction on the width \(w \) of the circuit family accepting \(A \). More precisely, we will prove the following claim:

\[
\forall w \forall k \forall l \exists c \exists d \text{ Circuits of width } w \text{ and genus } \log^l n \text{ and size } n^k \text{ can be simulated by } \text{ACC}^0 \text{ circuits of depth } d \text{ and size } n^c.
\]

The basis, when \(w = 1 \) is trivially true.

For the inductive step, consider a circuit family \(\{C_n\} \) of width \(w + 1 \), size \(n^k \) and genus \(\log^l n \). Let \(G' = (V' \cup V, E_P \cup E'_P \cup E_H) \) be the graph guaranteed by Theorem 3, such that \(G = (V, E_P \cup E_H) \) is the graph of the constant-width circuit \(C_n \), where \(G \) is embedded into a plane with \(\log^l n \) handles and no face of the planar graph \((V \cup V', E_P \cup E'_P) \) contains more than one handle connection.

Without loss of generality, there is a vertex \(s \) in layer 1 of \(G \) that is connected by a path to some vertex \(t \) in the rightmost layer of \(G \). Let \(G_{\text{cyl}} \) be the subgraph of \(G \) consisting of all edges of \(G \) that lie on some path from \(s \) to \(t \).
in G, and let G_{rest} be the remainder of G; the vertices of G_{cyl} and G_{rest} partition the vertices of G. Note that G_{rest} has width at most w because G_{cyl} contains at least one vertex from every level. Also note that by Theorem 4, G_{cyl} can be embedded on a cylinder with $\log^l n$ handles, because the planar part of G_{cyl} has a unique source and sink. If we consider G_{rest} as a circuit note that there are some gates whose inputs lie in G_{cyl}; for each such gate h that is connected to a gate g of G_{cyl}, create an input node and label it with variable y_g. Similarly, for each gate g of G_{cyl} that receives input from a gate h of G_{rest}, create an output node and label it with variable z_h.

For each input variable z_h of G_{cyl} the subcircuit of G_{rest} on which gate h depends computes a function entirely of the original input variables (because if it relied on a variable y_g this would constitute a path from s to g to t and thus h would be part of G_{cyl}). By induction hypothesis, the value of each such gate h can be computed by ACC0 circuits of some fixed depth and size.

We show in Lemma 7 below that the value of each gate of G_{cyl} can be computed in ACC0 by circuits that take the values z_h as input, along with the original input values. Combining these circuits with the ACC0 circuits computing the values of the corresponding gates h of G_{rest} yields ACC0 circuits that compute the values that each gate g of G_{cyl} takes on in the original circuit C_n.

Thus we can compute the correct values y_g that we can provide as input to the remaining parts of G_{rest}, in order to compute the values of the output gates of C_n. The proof is now complete, once we have established Lemma 7.

Lemma 7 $\forall w\forall k\forall \exists d \exists d$ such that circuits of width w and size n^k that are embedded on a cylinder with $\log^l n$ handles can be simulated by ACC0 circuits of depth d and size n^c.

Proof: Let $G = (V, E_P \cup E_H)$ be the graph of a circuit of width w and size n^k embedded on a cylinder with $\log^l n$ handles. Let $G' = (V' \cup V, E_P' \cup E_H')$ be the graph embedded on the same surface, such that no face of the cylindrical part of G' contains more than one handle connection, as guaranteed by Theorem 5. Let the levels of the layered graph G' be numbered $1, \ldots, p(n)$. Let the handle attachments of G' be h_1, \ldots, h_s (for $s \leq 2 \log^l n$).

Our first step will be to chop the cylinder into a polylogarithmic number of segments, corresponding to levels where handles start and stop. For a handle attachment h_i, define $\text{start}(h_i)$ to be the least element of the set $\{j : \text{there is an edge } (u, v) \text{ that traverses the handle attached at } h_i \text{ such that } u \text{ is on level } j\}$. Similarly, define $\text{end}(h_i)$ to be the largest element of the set $\{j : \text{there is an edge } (u, v) \in E_H \text{ that traverses the handle attached at } h_i \text{ such that } v \text{ is on level } j\}$. Let $a_1 < a_2 < \ldots < a_r$ be numbers such that $\{a_j : 1 \leq j \leq r\} = \{\text{start}(h_i), \text{start}(h_i) + 1, \ldots, \text{end}(h_i), \text{end}(h_i) - 1 : 1 \leq i \leq s\}$. Note that r is polylogarithmic in n.

Slice the cylinder into $r + 1$ segments, where segment 1 consists of layers $1 \ldots a_1$, segment 2 consists of layers $a_1 \ldots a_2$, and segment $r + 1$ consists of layers $a_r \ldots a_p(n)$.

We argue below that there is a function f computable in ACC0 where f takes as input a triple (x, v, i) and outputs a string z such that x and z are bit strings of length w, having the property that if the w gates at the start of segment i have the values given by the vector v and the string x is used to provide values to the input gates appearing in segment i, then the gates at the output level of segment i will take on the values given by the vector z.

Assume for the moment that we have such a function f computable in ACC0. Then we can build a graph with width 2^w and polylogarithmically many levels, such that there is an edge from node v to node z in level j if and only if $f(x, v, j) = z$. Finding paths in such graphs can be done in ACC0. (For instance, we can build a DNF of polynomial size that computes paths of length $\log n$, and in depth 4 we can compute paths of length $\log^2 n$, etc.) Thus the proof will be complete if we can show that f is computable in ACC0.

Consider a segment that starts in layer a_j and ends in layer a_{j+1}. If $a_j + 1 = a_{j+1}$ then the circuitry in this segment is computable in NC0 and thus certainly the desired function f can be computed in ACC0.

Otherwise, $a_j + 1 < a_{j+1}$, so that the jth segment has length more than one. Let us say that handle connection h_i is active if $\text{start}(h_i) \leq a_j$ and $\text{end}(h_i) \geq a_{j+1}$. Because of the way the sequence of slice points a_1, \ldots, a_r
was defined and because we are dealing with the case where \(a_j + 1 < a_{j+1} \), it follows that \(\text{start}(h_i) < a_j \) and \(\text{end}(h_i) > a_{j+1} \); that is, no handle connection is actually starting or ending at the start or end of this segment. It is important to note that, although \(G \) has width bounded by the constant \(w \), there might be polylogarithmically many handles that are active in this segment, and the cylindrical part \((V \cup V', E_P \cup E'_P) \) of the graph \(G' \) (which has the property that at most one handle attachment is in any face) might also have polylogarithmic width. Let \(h_1, h_2, \ldots, h_d \) be the handles that are active in segment \(j \).

Consider any handle attachment \(h_i \) that is active in segment \(j \). Consider the face of the cylindrical part of \(G' \) to which \(h_i \) is attached. As illustrated in Figure 1, there are edges from levels before \(a_j \) and after \(a_{j+1} \) that enter or exit \(h_i \). Although we draw our constant-width circuits with the outputs on the right end (so that computation proceeds from left to right), it will be convenient to use the compass points to refer to directions on the cylinder using the convention that the output level is North, so that the computation proceeds from South to North. Thus as depicted in the figure, East is to the bottom of the figure, and West is at the top. Using this convention, we can speak of the face around \(h_i \) has having an East side and a West side. The faces that surround \(h_1, \ldots, h_d \) all start before the start of segment \(j \) and end after segment \(j \). Thus we can view them as being stripes arranged along the sides of the cylinder. In this way, each handle connection \(h_i \) has an East neighbor and a West neighbor (where the East neighbor of \(h_i \) is the handle connection whose face is encountered first when moving East from the face of \(h_i \) around the cylinder). The handle that is connected to \(h_i \) on one end is connected to some other handle connection \(h_{i'} \) on the other end. (This handle connection \(h_{i'} \) need not be an East or West neighbor of \(h_i \).) Because of the edges that connect \(h_i \) and \(h_{i'} \) to levels outside segment \(j \), it is clear that edges in \(E_H \) that traverse the handle between \(h_i \) and \(h_{i'} \) must connect the East side of one face with the West side of the other face; any attempt to embed an edge between the West sides of the two faces would necessarily cross the edges that extend beyond segment \(j \).

We claim that all of the edges in segment \(j \) are embedded onto at most \(d \) disjoint cylinders. This is illustrated in Figure 2 (with \(d = 2 \)), which presents a cross-section of a cylinder (with East to the right and West to the left). The \(d \) handle connections \(h_1, \ldots, h_d \) are arranged around the cylinder, each attached to a face of the cylindrical part of \(G' \). We can diagram this cross-section by building a graph with vertices for the East and West sides of the faces around each handle connection \(h_i \). The East side of each face is connected to its West neighbor; edges from the circuit can be embedded along this surface. The East side of each face is also connected to the West side of the face to which its handle jumps. Note that there are no edges from the East side of a face to the West side of
the same face; no circuit edges are embedded in this region. The graph that is constructed in this way is 2-regular, and thus it is the union of disjoint cycles. If we create a 2-dimensional surface connecting these cycles at each end of segment j, we create a cylinder (in Figure 3, this process leads to exactly one cylinder). Every circuit edge appearing in segment j lies on one of these cylinders. For each cylinder, the circuit that is embedded on it is planar and has width at most w. Thus by [6] the function it computes lies in ACC^0.

4 A new characterization of NC^1

Genus is just one of several possible generalizations of planarity. In this section we consider thickness, and we show that all problems in NC^1 can be solved by constant-width polynomial-size circuits of thickness two. We actually prove a stronger result showing that a very limited type of circuit with thickness two suffices for this task. (For a definition of thickness, see any standard text on graph theory, such as [5]).

Consider Figure 4, showing three half-planes joined at a common intersecting line called the spine. This is the type of surface on which we will embed our constant-width circuits, with the restriction that the subgraph on any one half-plane is upward planar. It is clear that any graph that can be embedded on three pages in this way has thickness two. It is also clear that if only two pages are used, then the entire graph is upward planar, and by [3] such circuits can compute only languages in AC^0.

Now the question arises as to what happens when we allow more pages in our circuit. Defining $k\text{Pages}$ to be the class of languages captured by computation on k pages, each of $O(1)$ width, we prove that

Theorem 8 $\text{NC}^1 = 3\text{Pages}$.

In order to present our characterization of NC^1 in terms of constant-width circuits on three pages, it is useful to define a simple nonuniform model of computation:

Definition 3 Define $\text{stacks}(a, b, c)$ to be the class of languages accepted by machines with three pushdown stores (with heights bounded by a, b, and c, respectively) and a computation register. Only binary values can be stored
Figure 3. Cross-section of a cylinder with multiple handles in a segment

Figure 4. A circuit on three pages
Figure 5. stacks(3,3,2) with canonical placement of bits

The program for the machine consists of a sequence of instructions (one instruction for each time step), telling the machine which bit of the input to consult, and (depending on the value of the input bit that was read), doing one of the following: (a) pushing the register value into one or more stacks; (b) popping a value from a stack into the register; (c) discarding the topmost value of a stack or (d) computing the \lor or \land of the the topmost entries of two stacks and storing it in the register. The output of the machine is the final value that is stored in the register, and we restrict the running time to be polynomial in the length of the input.

See Figure 5 which illustrates stacks(3,3,2).

It is easy to see that computation with 3 stacks can be simulated by computation with 3 pages. The height of the stacks corresponds to the width of the pages with the spine serving as the register. Notice that popping a bit corresponds to copying all the bits on the corresponding page towards the spine while pushing is the reverse. An operation like the \lor of the topmost bits of two stacks can be simulated by bringing the corresponding bits towards the spine where the \lor operation is performed. Therefore we have the following proposition:

Proposition 9 stacks$(O(1),O(1),O(1)) \subseteq \text{3Pages}$.

Since 3Pages consists of problems computable by polynomial length constant width circuits, we have:

Fact 10 3Pages $\subseteq \text{NC}^1$

Thus the following lemma will show that NC1, 3Pages and stacks(3,3,2) all coincide.

Lemma 11 NC$^1 \subseteq \text{stacks}(3,3,2)$

Proof: Consider Barrington’s proof that languages in NC1 can be computed by permutation branching programs over S_5 [1]. This yields a uniform way of converting a word in the language to a sequence of permutations over S_5 whose product is the identity if the word is in the language and is a fixed 5-cycle otherwise. Thus we just need to find out whether the product of the permutations maps any of the elements (say 1) of the set over which the group S_5 is based, to itself.

We can also write each permutation in S_5 as a product of transpositions in a uniform way. Thus, the problem reduces to finding whether the product of a sequence of transpositions maps 1 to 1. Notice that the position of 1 can be represented as a sequence of 5 bits, of which exactly one is 1.

The idea of the proof is that we put the 5 bits in the 3 stacks using heights 2, 2, 1 respectively in a canonical way. Now each transposition acts upon the 3 stacks by exchanging two specific bits. We show how to exchange any two bits within the specified bounds:

Lemma 12

1. Two bits which are the topmost bits of two different stacks can be exchanged by using exactly one extra place in the third stack.

2. Two bits which are the two top bits of one stack can be exchanged by using exactly one more space in each of the other two remaining stacks.
Figure 6. Two simple transpositions

Proof: See Figure 6.

The proof now follows from observing that any transposition of two bits can be performed as a sequence of transpositions of the form above using extra space at most 1, 1, 0 which can be accommodated in total heights 3, 3, 2 because an operation of type 2 above on the first column requires heights 2, 3, 2, while that on the second column requires 3, 2, 2 for a maximum of 3, 3, 2. Any other operation requires less overhead.

We also note, in passing, the following corresponding theorems for Logspace:

Theorem 13 \(L = O(\log n) \) Pages, where each pagewidth is 2.

Theorem 14 \(L = 4 \) Pages, where each pagewidth is \(O(\log n) \).

Acknowledgments

We thank Robin Thomas, Dan Archdeacon, Bojan Mohar, Meena Mahajan, Kasturi Varadarajan, and Carsten Thomassen for their generous help in answering our questions about graph genus.

References

