
On the Ring Isomorphism & Automorphism Problems

Neeraj Kayal, Nitin Saxena ∗

{kayaln, nitinsa}@cse.iitk.ac.in

National University of Singapore, Singapore

and

IIT Kanpur, India

October 30, 2004

Abstract

We study the complexity of the isomorphism and automorphism problems for finite rings
with unity.

We show that both integer factorization and graph isomorphism reduce to the problem
of counting automorphisms of rings. The problem is shown to be in the complexity class
AM ∩ coAM and hence is not NP-complete unless the polynomial hierarchy collapses.
Integer factorization also reduces to the problem of finding nontrivial automorphism of a
ring and to the problem of finding isomorphism between two rings.

We also show that deciding whether a given ring has a non-trivial automorphism can be
done in deterministic polynomial time.

1 Introduction

A ring consists of a set of elements together with addition and multiplication operations. These
structures are fundamental objects of study in mathematics and particularly so in algebra and
number theory. It has long been recognized that the group of automorphisms of a ring provides
valuable information about the structure of the ring. Galois initiated the study of the group
of automorphisms of a field and it was later applied by Abel to prove the celebrated theorem
that there does not exist any formula for finding the roots of a quintic (degree 5) polynomial.
However, to the best of our knowledge, the computational complexity of the ring isomorphism
and automorphism related problems has not been investigated thus far. In this paper, we initiate
such a study and show interesting connections to some well known problems.

We will restrict our attention to finite, commutative rings with unity.1 We assume that the
rings are given in terms of the basis of their additive group and the multiplication table of basis
elements. Given two rings in this form, the ring isomorphism problem is to test if the rings are
isomorphic. We show that this problem is in NP ∩ coAM and is at least as hard as the graph
isomorphism problem. Thus, ring isomorphism is a natural algebraic problem whose complexity
status is similar to that of graph isomorphism. The search version of the isomorphism problem
is to find an isomorphism between two given rings. We show that integer factoring reduces to
the search version of the problem.

∗This work was done while the authors were visiting Princeton University, Princeton, NJ, USA in 2003-04.

Also partially supported by research funding from Infosys Technologies Limited, Bangalore.
1The complexity results we prove in this paper continue to hold even if we drop the restriction of commutativity.
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Another variant of the problem is to count the number of isomorphisms between two rings.
We show that both integer factorization and graph isomorphism reduce to this problem. We
also show that this problem is equivalent to that of counting the number of automorphisms in
a ring and lies in the class FPAM∩coAM. This implies that the problem is not NP-hard unless
the polynomial hierarchy collapses to ΣP

2
[Sch88].

The ring automorphism problem is to test if a ring has a non-trivial automorphism. We
prove that this problem is in P. This is in contrast to the corresponding problem for graphs
whose status is still open. On the other hand we show that the problem of finding a nontrivial
automorphism of a given ring is equivalent to integer factoring. This implies that the search
version of the problem is likely to be strictly harder than the decision version.

The most general problem here is to compute the automorphism group of a given ring, in
terms of a small set of generators. It is easy to see that all the above problems reduce to it.
Also, the proof of upper bound on counting automorphisms can be adapted to exhibit an AM

protocol for it implying that this problem too is not NP-hard unless PH = ΣP
2
.

2 Representation of finite rings

The complexity of the problems involving finite rings depends on the representation used to
specify the ring. We will use the following natural representation of a ring:

Definition 2.1. Basis representation of rings: A ring R is given by first describing its
additive group in terms of n generators and then specifying multiplication by giving for each
pair of generators, their product as an element of the additive group.

(R,+, .) := 〈(d1, d2, d3, · · · , dn), ((ak
ij))1≤i,j,k≤n〉

where, for all 1 ≤ i, j, k ≤ n, 0 ≤ ak
ij < dk.

This specifies a ring R generated by n elements e1, e2, · · · en with each ei having additive order
di and (R,+) = 〈e1〉⊕〈e2〉 · · ·⊕〈en〉. Thus (R,+) has the structure (R,+) ∼= Zd1⊕Zd1⊕· · ·⊕Zdn

.
Moreover multiplication in R is specified by specifying the product of each pair of generators as
an integer linear combination of the generators: for 1 ≤ i, j ≤ n, ei · ej =

∑n
k=1 a

k
ijek.

Definition 2.2. Representation of maps on rings: Suppose R1 is a ring given in terms of
its additive generators e1, . . . , en and ring R2 given in terms of f1, . . . , fn. In this paper maps
on rings would invariably be homomorphisms on the additive group. Then to specify any map
φ : R1 → R2, it is enough to give the images φ(e1), . . . , φ(en). So we represent φ by an n × n
matrix of integers A, such that for all 1 ≤ i ≤ n:

φ(ei) =

n
∑

j=1

Aijfj

and for all 1 ≤ i, j ≤ n, 0 ≤ Aij < additive order of fj.

Algebraic structures mostly break into simpler objects. In the case of rings we get the
following simpler rings.

Definition 2.3. Indecomposable or Local ring: A ring R is said to be indecomposable or
local if there do not exist rings R1, R2 such that R ∼= R1 ⊗ R2, where ⊗ denotes the natural
composition of two rings with component wise addition and multiplication.

We collect some of the known results about rings. Their proofs can be found in algebra texts
for e.g. [McD74].
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Proposition 2.4. [Structure theorem for abelian groups] If R is a finite ring then its additive
group (R,+) can be uniquely (up to permutations) expressed as:

(R,+) ∼=
⊕

i

Zpi
αi

where pi’s are primes (not necessarily distinct) and αi ∈ Z≥1.

Remark. This theorem can be used to check in polynomial time whether for two rings, given
in basis form, the additive groups are isomorphic or not.

Proposition 2.5. Given a ring R in terms of generators, all having prime-power additive
orders, we can compute the number of automorphisms of the additive group of R, #Aut(R,+),
in polynomial time.

Proof. Refer to appendix.

Proposition 2.6. [Structure theorem for rings] If R is a finite ring with unity then it can be
uniquely (up to permutations) decomposed into indecomposable rings R1, . . . , Rs such that

R = R1 ⊗ . . . ⊗Rs.

Remark. It follows immediately from the proof of above proposition that for a commutative
ring R its decomposition can be found in polynomial time given oracles to integer and polynomial
factorizations.

Let us also define the multiplication operation on ideals which will be useful in the last
section.

Definition 2.7. Let I,J be two ideals of a ring R. We define their product as

I · J := ring generated by the elements {ij | i ∈ I, j ∈ J }

It, for positive integer t, is defined similarly.
It is easy to see that I · J is again an ideal of R.

Finally, we define the ring isomorphism and related problems that we are going to explore.

• The ring isomorphism problem is to check whether two given rings are isomorphic. The
corresponding language we define as

RI := {(R1, R2) | commutative rings R1, R2 are given in the basis representation and
R1

∼= R2}

• #RI is defined as the functional problem of computing the number of isomorphisms be-
tween two rings given in basis form.

• #RA is defined as the functional problem of computing the number of automorphisms of
a given commutative ring. Its decision version can be viewed as the language

cRA := {(R, k) | R is a commutative ring in basis form s.t. #Aut(R) ≥ k} .

• RA is defined as the problem of determining whether a given commutative ring has a
nontrivial ring automorphism. The corresponding language is:

RA := {R | R is a commutative ring in basis form s.t. #Aut(R) > 1}
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3 The Complexity of RI

In this section we prove upper and lower bounds on the complexity of Ring Isomorphism problem.
Specifically, we show that RI is in NP ∩ coAM and the Graph Isomorphism problem reduces
to RI.

Theorem 3.1. RI ∈ NP ∩ coAM.

Proof. We start with the easier part,

Claim 3.1.1. RI ∈ NP.

Proof of Claim 3.1.1. Suppose we are given two rings R and R′ together with a map φ : R→ R′.
Let

(R,+) = Zm1e1 ⊕ . . .⊕ Zmnen

Here we can assume that (m1, . . . ,mn) = (dα11
1 , dα12

1 , . . . , dα21
2 , dα22

2 , . . . , dαt1
t , dαt2

t , . . .) where
d1, . . . , dt are mutually coprime. For otherwise ∃i 6= j s.t. gcd(mi,mj) =: g > 1 and can
be used to break mi or mj into coprime factors a, b ∈ Z>1, hence, breaking (R,+) further by
applying:

(Zabek,+) ∼= Za(bek) ⊕ Zb(aek)

If (R,+) ∼= (R′,+) we can apply this process to get basis representations of both the rings R
and R′ over

Zd
α11
1

⊕ Zd
α12
1

⊕ . . .⊕ Zd
α21
2

⊕ . . .⊕ Zd
αt1
t

⊕ . . . , for some coprime d1, d2, . . . , dt

Let us define for all 1 ≤ i ≤ t, Ri := {r ∈ R | r has a power-of-di additive order} and similarly
R′

is. Now since the di’s are mutually coprime it is easy to see that φ is an isomorphism from
R → R′ iff ∀i φ isomorphically maps Ri to R′

i. Thus, wlog we can assume that the additive
basis of the rings R and R′ is given in the form:

Zdα1 ⊕ . . .⊕ Zdαn where 1 ≤ α1 ≤ . . . ≤ αn

Now in this case φ is an isomorphism from R→ R′ iff it satisfies the following conditions:

• det(A) ∈ Z∗
d, where A is the n× n integer matrix describing the map φ : R→ R′.

• for all 1 ≤ i ≤ n, additive order of ei is the same as that of φ(ei).

• for all 1 ≤ i, j ≤ n, φ(ei) ·φ(ej) =
∑n

k=1 a
k
ijφ(ek), where ((ak

ij))n2×n is the same matrix as
given in the description of R.

All these three conditions can be checked in polynomial time. �

The AM protocol for ring non-isomorphism is similar to that of graph non-isomorphism.

Claim 3.1.2. RI ∈ coAM

Proof of Claim 3.1.2. Arthur has two rings R1, R2 in basis forms and he wants a proof of their
non-isomorphism from Merlin. Arthur checks whether (R1,+) ∼= (R2,+) (see remark of prop.
2.4), if not then Arthur already has a proof of non-isomorphism. Now Merlin can provide the
descriptions of (R1,+), (R2,+) in the form:

(R1,+) =
n

⊕

i=1

Zp
αi
i
ei and

(R2,+) =

n
⊕

i=1

Zp
αi
i
fi, where pi’s are primes and αi ∈ Z≥1.
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Let us also define a set related to the ring R1:

C(R1) :=
{〈

((ak
ij))n2×n, Aφ

〉

| ∃π ∈ Aut(R1,+) s.t. for all 1 ≤ i, j ≤ n,

π(ei) · π(ej) =
∑n

k=1 a
k
ijπ(ek); for all 1 ≤ i, j, k ≤ n, 0 ≤ ak

ij < pαk

k ; Aφ is an integer matrix
describing some φ ∈ Aut(R1) wrt the additive basis {π(ei)}

n
i=1}

C(R2) is defined similarly by replacing the ei’s above by the fi’s. (Note that in the case of
graph isomorphism we consider all permutations on the vertices, here we consider all automor-
phisms of the additive group.)

It is not difficult to see that #C(R) = #Aut(R,+) which can be computed in polynomial
time when (R,+) is given in terms of generators all having prime-power additive orders (see
prop. 2.5). Thus, Arthur can compute s := #Aut(R1,+) = #Aut(R2,+).

Define C(R1, R2) := C(R1) ∪ C(R2). Note that:

R1
∼= R2 ⇒ C(R1) = C(R2) ⇒ #C(R1, R2) = #C(R1) = s

R1 6∼= R2 ⇒ C(R1) ∩C(R2) = ∅ ⇒ #C(R1, R2) = #C(R1) + #C(R2) = 2s

Thus, the size of the set C(R1, R2) has a gap of 2 between the cases of R1
∼= R2 and R1 6∼= R2,

which can be distinguished by a standard AM protocol. �

The two claims show that RI is in NP ∩ coAM.

This shows that the ring isomorphism problem cannot be NP-hard (unless polynomial hi-
erarchy collapses to ΣP

2 [Sch88]). The proofs above were all similar in spirit to those for graph
isomorphism which hints a connection to graph isomorphism. Indeed, we can lower bound the
complexity of RI by graph isomorphism (GI).

Theorem 3.2. GI ≤P
m RI.

Proof. Given a graph G with n vertices, m edges. Choose an odd prime p and let l :=
(

n
2

)

.
Let {ak}k be a set of l variables indexed by k ∈ {(i, j) | 1 ≤ i < j ≤ n}. Define the following
commutative ring:

R(G) := Zp3 [v1, . . . , vn, a1, . . . , al]/I

where, ideal I has the following relations:

1. for all 1 ≤ i ≤ n, v2
i = 0.

2. for all 1 ≤ i < j ≤ n, vjvi = vivj = ae where e = (i, j).

3. for all i, j; ajvi = viaj = 0, aiaj = 0.

4. for all 1 ≤ i < j ≤ n, if e = (i, j) ∈ E(G) then pae = 0 else p2ae = 0.

The vi’s represent the n vertices and have an additive order of p3. The ai’s with additive
order p are for the m edges. Finally, the ai’s with additive order p2 represent the (l − m)
non-edges.

The additive structure of the ring is:

(R(G),+) = Zp3 ⊕
n

⊕

i=1

Zp3vi ⊕
⊕

e∈E(G)

Zpae ⊕
⊕

e6∈E(G)

Zp2ae
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Multiplication satisfies the associative law simply because the product of any three variables (in
any order) is zero.

Observe that if G ∼= G′ then any graph isomorphism φ induces a natural isomorphism
between rings R(G) and R(G′). So we only have to prove the converse:

Claim 3.2.1. For any two undirected graphs (having no self-loops) G and G′, if R(G) ∼= R(G′)
then G ∼= G′.

Proof of Claim 3.2.1. Suppose φ is an isomorphism from R(G) → R(G′). Let

φ(v1) = c10 + c11v
′
1 + . . .+ c1nv

′
n + (linear combination of a′is), where all coefficients are in Zp3

(1)
Since, φ(v1)

2 = 0 we get:

c210 + (2c10c11)v
′
1 + . . . + (2c10c1n)v′n + (linear combination of a′is) = 0

As 1, v′is and a′js form an additive basis of R(G′), we conclude:

c210 = 2c10c11 = . . . = 2c10c1n = 0 (mod p3)

Since p is an odd prime, if c10 6= 0(mod p3) then p|c10, c11, . . . , c1n. But then by equation (1),
p2φ(v1) = 0 which is a contradiction to the fact that φ is an isomorphism. Thus, c10 = 0(mod p3).
Now at least one of the c1i’s has to be a unit (i.e. coprime to p) otherwise again by equation
(1), p2φ(v1) = 0. Say, c1i0 is a unit. From the equation:

0 = φ(v1)
2 =

∑

1≤i<j≤n

(2c1ic1j)v
′
iv

′
j (2)

it follows that if (i0, j) ∈ E(G), for some j 6= i0, then p|c1j else p2|c1j . Thus, we have shown
that exactly one of the c11, . . . , c1n is a unit. So we can define a map π : [n] → [n] with π(1) = i0
and satisfying the following condition for all 1 ≤ i ≤ n:

φ(vi) = ciπ(i)v
′
π(i) + p.

n
∑

j=1
j 6=π(i)

dijv
′
j + (linear combination of a′ks). (3)

where, all coefficients are in Zp3 and ciπ(i) is a unit.

Also note that if π(i) = π(j) then by equation (3) and by the fact that φ(vi)
2 = φ(vj)

2 = 0
(similar to eqn. 2) we deduce: 0 = φ(vi)φ(vj) = φ(vivj) which forces i = j. Hence, π is a
permutation on [n].

We are now almost done, we just have to show that π is indeed an isomorphism from G→ G ′.
Suppose e = (i, j) ∈ E(G). Thus, (using eqn. 3)

φ(ae) = φ(vivj) = (ciπ(i)cjπ(j))v
′
π(i)v

′
π(j) + p · (linear combination of a′ks).

Since, p · φ(ae) = 0 and ciπ(i)cjπ(j) is a unit we get:

p · v′π(i)v
′
π(j) = 0

Whence we conclude that v′
π(i)v

′
π(j) is of additive order p implying, by the definition of R(G′),

that (π(i), π(j)) ∈ E(G′).
By symmetry this shows that π is an isomorphism from G→ G′. �

The theorem follows from the claim.
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Another interesting variant of RI is its search version- FRI -finding an isomorphism given
two rings. FRI is unlikely to be NP hard as it reduces to computing the automorphism group
of a ring which we observe later to be in second level of low hierarchy. It turns out that solving
FRI would mean solving integer factoring (IF).

Theorem 3.3. IF ≤ZPP
T FRI.

Proof. Suppose n is an odd number to be factored. Pick a random a ∈ Z∗
n and suppose we can

find an isomorphism φ : Zn[x]/(x2 − a2) → Zn[x]/(x2 − 1). Let φ(x) = bx + c, b should be in
Z∗

n otherwise there is a b′ 6= 0(mod n) such that bb′ = 0(mod n) implying φ(b′x− b′c) = 0 which
contradicts that φ is an isomorphism. Further,

a2 = φ(x)2 = (bx+ c)2 (mod n, x2 − 1)

⇒ 2bc = 0(mod n) and b2 + c2 − a2 = 0(mod n)

⇒ c = 0(mod n) and b2 = a2(mod n)

If n is composite then with probability at least 1
2 , b 6= ±a(mod n). Thus, we can factor n in

expected polynomial time.

A related problem to RI, however, is hard. Suppose we are given two rings R1, R2 and
we want to find an isomorphism φ : R1 → R2 such that the corresponding matrix A, which
transforms basis of (R1,+) → (R2,+), has elements smaller than given size bounds. It turns
out that this problem is NP-complete.

RIboundedIso := {(R1, R2, ((bij))n×n) | R1, R2 are rings given in basis form, having additive
dimension n and there is an integer matrix A,∀i, j Aij ≤ bij , that defines an isomorphism}

Theorem 3.4. RIboundedIso is NP-complete.

Proof. Clearly, RIboundedIso is in NP by claim 3.1.1.
Suppose we are given R1 := Zn[x]/(x2 − a2), R2 := Zn[x]/(x2 − 1), β ∈ Z and we want to

find out whether there is an isomorphism φ(x) = bx s.t. b ≤ β. Now as in the proof of theorem
3.3, b2 ≡ a2(mod n). Thus, the question at hand is equivalent to asking whether the quadratic
equation (in y): y2 ≡ a2(mod n) has a solution y ≤ β, and this is an NP-complete problem by
[MA76].

4 The Complexity of #RA

This section will explore the complexity of the problem of counting ring automorphisms. We
will show that this problem is unlikely to be NP-hard but both graph isomorphism and integer
factoring reduce to it. There is also a connection between #RI and #RA.

We will show that given a ring R there is an AM protocol in which Merlin sends a number
l and convinces Arthur that #Aut(R) = l. The ideas in the proof are basically from [BS84].

Theorem 4.1. #RA ∈ FPAM∩coAM. 2

Proof. Let R be a ring given in its basis form. We will first show how Merlin can convince
Arthur that #Aut(R) ≥ k.

Claim 4.1.1. cRA ∈ AM.

2FP refers to functional problems that can be solved in polynomial time.
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Proof of Claim 4.1.1. Merlin can give Sylow subgroups Sp1 , . . . , Spm of Aut(R), in terms of
generators, to Arthur such that |Sp1 |. · · · .|Spm | ≥ k and p1, . . . , pm are distinct primes. Arthur
now has to verify whether for a given Sylow subgroup Sp, |Sp| = pt or not. So Merlin can further
provide the composition series of Sp:

Sp = Gt > Gt−1 > . . . > G1 > G0 = {id}.

Suppose, for the sake of induction, that Arthur is convinced about |Gi| = pi. Then to prove
|Gi+1| = pi+1, Merlin will provide xi+1 ∈ Gi+1 to Arthur with the claim that xi+1 6∈ Gi but
xp

i+1 ∈ Gi. Finally, the only nontrivial thing left for Arthur to verify is whether xi+1 6∈ Gi,
which can be verified by a standard AM protocol as there is a gap in the size of the set X :=
(group generated by xi+1 and Gi):

xi+1 6∈ Gi ⇒ #X = pi+1

xi+1 ∈ Gi ⇒ #X = pi

To avoid too many rounds, Merlin first provides x0 = id, x1, . . . , xt ∈ Aut(R) with the proof of:
for all 1 ≤ i ≤ t, xp

i ∈ Gi−1 := (group generated by x0, . . . , xi−1) to Arthur and then provides
the proof of: for all 1 ≤ i ≤ t, xi 6∈ Gi−1 in one go for Arthur to verify. �

Now we give the AM protocol that convinces Arthur of #Aut(R) ≤ k.

Claim 4.1.2. cRA ∈ coAM.

Proof of Claim 4.1.2. Arthur has a ring R and he wants a proof of #Aut(R) ≤ k. As in the
proof of claim 3.1.2, we can assume that R is given in terms of generators having prime-power
additive orders. For concreteness let us assume:

(R,+) =

n
⊕

i=1

Zp
αi
i
ei

Merlin sends Arthur a number l ≤ k as a candidate value for #Aut(R) and also provides
some Sylow subgroups, the product of their sizes being equal to l, with the AM-proofs for their
sizes (as used in claim 4.1.1). Let

X :=
{〈

((ak
ij))n2×n

〉

| ∃π ∈ Aut(R,+) s.t π(ei) · π(ej) =
∑n

k=1 a
k
ijπ(ek);

for all 1 ≤ i, j, k ≤ n, 0 ≤ ak
ij < pαk

k

}

Observe that #X = #Aut(R,+)
#Aut(R) and #Aut(R,+) can be computed in polynomial time when

(R,+) is given in terms of generators having prime-power additive orders (see prop. 2.5). Thus,
Arthur computes s := #Aut(R,+). Arthur is already convinced that l|#Aut(R) and he now
wants a proof for #Aut(R) ≤ l. A proof can be given by utilizing the gap in the size of X in
the two cases:

#Aut(R) ≤ l ⇒ #X ≥
s

l

#Aut(R) > l ⇒ #Aut(R) ≥ 2l ⇒ #X ≤
s

2l

�

The claims above show that #RA ∈ FPcRA ⊆ FPAM∩coAM.
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Remark. It is easy to see that the same protocol as above works for the problem of computing
the automorphism group of a ring (in terms of the generators of Sylow subgroups). Thus, this
problem too cannot be NP-hard.

In the case of graphs it is easy to show that graph isomorphism (or counting graph isomor-
phisms) reduces to counting graph automorphisms. The same result continues to hold for rings
with a slightly more involved proof.

Lemma 4.2. #RI ≡P
T #RA.

Proof. Suppose we are given a ring R. Clearly we can compute #Aut(R) by giving (R,R) as
input to the oracle of #RI.

Conversely, let R1, R2 be the two rings given in basis form. Let us assume the following
about their decomposability into distinct local rings S1, . . . , Sk:

R1
∼= S1 ⊗ . . .⊗ S1 ⊗ . . .⊗ Sk ⊗ . . .⊗ Sk

where, for all 1 ≤ i ≤ k, indecomposable ring Si occurs ai ≥ 0 times and #Aut(Si) = mi.

R2
∼= S1 ⊗ . . .⊗ S1 ⊗ . . .⊗ Sk ⊗ . . .⊗ Sk

where, for all 1 ≤ i ≤ k, indecomposable ring Si occurs bi ≥ 0 times.

The following claim relates the (non)isomorphism of the rings to counting ring automorphisms:

Claim 4.2.1. R1 6∼= R2 ⇒ #Aut(R1 ⊗R1) · #Aut(R2 ⊗R2) > (#Aut(R1 ⊗R2))
2.

Proof of Claim 4.2.1. Due to the uniqueness of decomposition of a ring into indecomposable
rings:

#Aut(R1 ⊗R2) = #Aut(S1 ⊗ . . . a1 + b1 times) · · ·#Aut(Sk ⊗ . . . ak + bk times)

= (a1 + b1)!m
a1+b1
1 · · · (ak + bk)!m

ak+bk

k

Similarly,

#Aut(R1 ⊗R1) = #Aut(S1 ⊗ . . . 2a1 times) · · ·#Aut(Sk ⊗ . . . 2ak times)

= (2a1)!m
2a1
1 · · · (2ak)!m

2ak

k

#Aut(R2 ⊗R2) = #Aut(S1 ⊗ . . . 2b1 times) · · ·#Aut(Sk ⊗ . . . 2bk times)

= (2b1)!m
2b1
1 · · · (2bk)!m2bk

k

Notice that
(2ai+2bi

ai+bi

)

≥
(2ai+2bi

2ai

)

which implies (2ai)! · (2bi)! ≥ (ai + bi)!
2. This clearly shows:

#Aut(R1 ⊗R1) · #Aut(R2 ⊗R2) ≥ (#Aut(R1 ⊗R2))
2

Now since R1 6∼= R2, there exists an i0 ∈ [k] such that ai0 6= bi0 in which case (2ai0)! ·(2bi0 )! 


(ai0 + bi0)!
2. Thus,

#Aut(R1 ⊗R1) · #Aut(R2 ⊗R2) > (#Aut(R1 ⊗R2))
2.

�

As a corollary of this we get:

Theorem 4.3. Graph Isomorphism ≤P
T #RA.
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Proof. Immediate from theorem 3.2 & lemma 4.2.

Another interesting open problem that reduces to #RA is integer factorization- IF.

Theorem 4.4. IF ≤ZPP
T #RA.

Proof. Let n be the odd integer to be factored. Consider the ring

R := Zn[x]/(x2)

We will show that #Aut(R) = φ(n) := |Z∗
n|. The theorem is then immediate as n can be

factored in expected polynomial time if we are given φ(n), see [Mil76].
Suppose ψ ∈ Aut(R) and let ψ(x) = ax+ b, for some a, b ∈ Zn. Since ψ is an automorphism;

a, b should satisfy the following two conditions:

(ax+ b)2 = 0 in R⇒ ab = b2 = 0 (mod n), and

a ∈ Z∗
n.

These two conditions force b = 0 and any a ∈ Z∗
n will work. Thus, #Aut(R) = |Z∗

n| = φ(n).

5 The Complexity of RA

This section studies the problem of checking whether a given ring is rigid (i.e. has no nontrivial
automorphism) and if not then finding a nontrivial automorphism.

We will show that RA can be decided in deterministic polynomial time but finding a non-
trivial automorphism is as hard as integer factoring.

Theorem 5.1. RA ∈ P.

Proof. Let R be a commutative ring given in basis form. We first consider the case of odd
sized R. We intend to give a classification of rigid rings. We will show that indecomposable
components of a rigid commutative odd-sized ring R are isomorphic to Zpm , for some odd prime
p:

Claim 5.1.1. If R is an indecomposable rigid commutative odd-sized ring then ∃ prime p and
m ∈ N such that, R ∼= Zpm.

Proof of Claim 5.1.1. It is known (e.g. see [McD74]) that any indecomposable commutative
ring R contains an associated Galois ring G such that:

G = Zpm[x]/(f(x)) where square-free f(x) is irreducible over Zp and,

R = G[x1, . . . , xk]/(x
n1
1 , . . . , xnk

k , g1, . . . , gl) where gi’s are polynomials in (x1, . . . , xk).

Now if additionally R is rigid then G has to be Zpm otherwise G would have a nontrivial
automorphism3 and hence R would have a nontrivial automorphism.

Let M := (ring generated by p, x1, . . . , xk) be the unique maximal ideal of R and let t > 0
be the least integer such that Mt = 0. If t = 1 then R = Zp, thus, assume that t > 1.
We can assume wlog that x1 does not occur as a linear term with unit coefficient in any of

3If m = 1 then the map sending x 7→ x
p is an automorphism of G, for larger m this automorphism can be

lifted using Hensel lifting.
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the relations g1, . . . , gl (if it does we can eliminate x1 by repeated substitutions). Now choose
α ∈ Mt−1 \ {0,−x1} and it is easy to see that the map

φ :























x1 7→ x1 + α

x2 7→ x2

...

xk 7→ xk

induces a nontrivial automorphism of R. This contradiction implies that there can be no variable
in R and therefore R = Zpm .

Remark. If R was even sized then Mt−1 \ {0,−x1} could be empty as in the case of R :=
Z2[x]/(x

2), where M = {0, x}.

�

As a consequence of the above observations we have that any rigid commutative odd-sized
ring R looks like:

⊗

i

⊗

j

Z
p

αij
i

where, pi’s are distinct odd primes and 1 ≤ αi1 < αi2 < . . . . (4)

Our algorithm for RA will test whether a given ring R is of the form (4) or not.
As in the proof of claim 3.1.1, we can assume wlog that the input ring R is given as

(R,+) = Zdα1 e1 ⊕ . . .⊕ Zdαn en

We can also assume that αi’s are distinct (say, 1 ≤ α1 < α2 < . . . < αn) otherwise R would not
be rigid as it would not be of the form (4).

Now we sketch an algorithm to check whether R is isomorphic to:

Zdα1 ⊗ . . .⊗ Zdαn (5)

1) Compute f(x) := minpoly of e1 over Zdαn . This can be found out by checking whether
ei1 can be written as a linear combination of 1, e1, . . . , e

i−1
1 which amounts to doing linear

algebra (mod dαn).

2) If R ∼= Zdα1 ⊗ . . . ⊗ Zdαn then say e1 = (β1, . . . , βn) where βi ∈ Zdαi . Also, since e1 has
characteristic dα1 and α1 � α2, . . . , αn we can deduce: β1 is coprime to d and d|β2, . . . , βn.

These observations mean that

f(x) = lcmn
i=1 {minpoly of βi over Zdαi} ≡ (x− β1)x

l (mod d), for some l ∈ Z≥0

or else R is not of the form (5). So we have a non-repeating root β1(mod d) of f(x)(mod d)
and we can use Hensel lifting (see [LN86]) to find a root of f(x)(mod dα1), which gives β1.

3) Consider e1 −β1 = (0, β2 −β1, . . . , βn −β1). Note that β2 −β1, . . . , βn −β1 are all coprime
to d. So if we compute R1 := {γ ∈ R | (e1 − β1)γ = 0} then R1

∼= Zdα1 or else R is not of
the form (5).

4) Let ê1 ∈ R be the unity of R1. Compute R⊥
1 := {γ ∈ R | ê1γ = 0}. Check that R =

R1 ⊗R⊥
1 otherwise R is not of the form (5).

5) Recursively check whether R⊥
1
∼= Zdα2 ⊗ . . .⊗ Zdαn or not.
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Let us now take up the case of even sized commutative ring. It is sufficient to consider a
ring R whose size is a power of 2. We will show that R is rigid only if the indecomposable rings
that appear in the decomposition of R are isomorphic to either Z2m or Z2[x]/(x

2).

Claim 5.1.2. If R is an indecomposable rigid commutative power-of-2 sized ring then R is either
Z2m or Z2[x]/(x

2).

Proof of Claim 5.1.2. Let M be the unique maximal ideal of R and t be the least integer such
that Mt = 0. As in the proof of claim 5.1.1, the rigidity of R implies that

R = Z2m [x1, . . . , xk]/(x
n1
1 , . . . , xnk

k , g1, . . . , gl) where gi’s are polynomials in (x1, . . . , xk)

also, either R is Z2m or R is univariate and Mt−1 = {0,−x1}. In the latter case M = {0,−x1}
and M2 = 0, which implies that R = Z2[x1]/(x

2
1). �

It follows from the above claim that a commutative power-of-2 sized ring is rigid iff it is
isomorphic to one of the following:

Z2α1 ⊗ . . .⊗ Z2αn or

Z2[x]/(x
2) ⊗ Z2α1 ⊗ . . .⊗ Z2αn

where, 1 ≤ α1 < α2 < . . . < αn.
Since we can factor polynomials over Z2m we can compute the decomposition of R into

indecomposable rings (see remark of prop. 2.6) and check whether they are of the forms:
Z2m ,Z2[x]/(x

2) or not. Hence, we can check the rigidity of even sized rings too in polyno-
mial time.

On the other hand the search version of this problem i.e. finding a nontrivial ring automor-
phism (FRA) is as hard as integer factoring (IF).

Theorem 5.2. IF ≡ZPP
T FRA.

Proof. Let us first see how we can find a nontrivial ring automorphism if we can do integer
factoring. Suppose R is the given commutative ring. It can be decomposed into local rings,
as remarked in proposition 2.6, in expected polynomial time using randomized methods for
polynomial factorization and oracle of integer factorization. Once we have local rings we can
output nontrivial automorphisms like φ in the proof of claim 5.1.1.

Conversely, suppose we can find nontrivial automorphisms of commutative rings and n is a
given number. Let us assume for simplicity that input n is a product of two distinct primes
p, q. Randomly choose a cubic f(x) ∈ Z[x]. Define R := Zpq[x]/(f(x)) and suppose we can find
a nontrivial automorphism φ of R. It follows from the distribution of irreducible polynomials
over finite fields that with probability ∼ 1

9 : f(mod q) is irreducible and f(mod p) has exactly
two irreducible factors f1, f2, say f1 is linear. Thus,

R ∼= Zp ⊗ Zp[x]/(f2(x)) ⊗ Zq[x]/(f(x)).

Note that we can compute Rφ, the set of elements of R fixed by φ, using linear algebra (if at
any point we cannot invert an element (mod n), we get a factor of n). Let us now see what Rφ

can be given that Rφ 6= R.

1) If φ fixes Zp[x]/(f2(x)):
Then Rφ ∼= Zp ⊗ Zp[x]/(f2(x)) ⊗ Zq. Thus, |Rφ| = p3q.

12



2) If φ fixes Zq[x]/(f(x)):
Then Rφ ∼= Zp ⊗ Zp ⊗ Zq[x]/(f(x)). Thus, |Rφ| = p2q3.

3) If φ moves both Zp[x]/(f2(x)) and Zq[x]/(f(x)):
Then Rφ ∼= Zp ⊗ Zp ⊗ Zq. Thus, |Rφ| = p2q.

Since, the size of Rφ is in no case of the form n, n2 or n3, the process of finding Rφ by doing
linear algebra (mod n) is going to yield a factor of n. In particular, this means that if the matrix
describing φ over the natural additive basis {1, x, x2} is:

A :=





1 0 0
a0 a1 a2

b0 b1 b2





then the determinant of one of the submatrices of (A− I) will have a nontrivial gcd with n.
This idea can be extended to the case of composite n having more prime factors.
Thus, the two problems: finding nontrivial automorphisms of commutative rings and integer

factoring have the same complexity.

6 Open Problems

Let us recap what we know about the various ring isomorphism related problems. The solid
arrows in the following diagram indicate a polynomial time reduction (randomized reduction in-
dicated by RP). A dotted arrow from C to Σ2 means that ΣC

2 = Σ2, thus indicating that probably
C is not NP hard. ComRA denotes the problem of computing the group of automorphisms of
a ring (in terms of generators) together with its size.

Figure 1: Relations among ring isomorphism and automorphism problems.

We would like to ask the following questions:

• We have seen two well-known problems of intermediate complexity reduce to #RA. Can
one reduce some other such problem, e.g., DiscreteLog?
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• The ring problems differ from the graph ones in their (in)ability to efficiently “fix” part
of the automorphisms. This property allows one to prove the equivalence between com-
puting automorphism groups, counting automorphisms, finding isomorphisms, and testing
isomorphisms in the case of graphs. For rings, we cannot prove such equivalence. Does
there exist some way of doing such “fixing” for rings which will allow us to prove similar
equivalences?

• Is #RA ∈ BQP ?

• Consider the ring isomorphism problem over rationals: RIQ. It is not even clear if this
problem is decidable.
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Appendix

Theorem Given a ring R in terms of additive generators, all having prime-power additive
orders, we can compute the #Aut(R,+) in polynomial time.
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Proof. Let (R,+) be given as ∼=
⊕l

i=1

⊕

j Zpi
αij , where pi’s are distinct primes and αij ≥ 1. For

1 ≤ i ≤ l define subrings Ri of R as:

Ri := {r ∈ R | r has power-of-pi additive order}

Observe that

R ∼=

l
⊗

i=1

Ri

this is because if ri ∈ Ri and rj ∈ Rj (i 6= j) then for some ci, cj ∈ Z≥0, pci

i rirj = p
cj

j rirj = 0
which implies that rirj = 0 (since pi, pj are coprime) and by a similar argument r1, . . . , rl are
linearly independent.

This decomposition of R gives us:

#Aut(R,+) =
l

∏

i=1

#Aut(Ri,+)

Thus, it suffices to show how to compute #Aut(R,+) when (R,+) is given as ∼=
⊕n

i=1 Zpαi

where p is a prime and αi ∈ Z≥1.
Suppose we are given R in terms of the following additive basis:

(R,+) = Zpβ1e11 ⊕ . . .⊕ Zpβ1e1n1 ⊕ . . . ⊕ Zpβmem1 ⊕ . . .⊕ Zpβmemnm

where, n1 + . . .+ nm = n and 1 ≤ β1 < . . . βm.
Observe that φ ∈ Aut(R,+) iff the matrix A describing the map φ is invertible (mod p) and

preserves the additive orders of eij’s. Our intention is to count the number of all such matrices
A. To do that let us see how A looks like:

A =











B11 B12 . . . B1m

B21 B22 . . . B2m

... . . .
. . .

...
Bm1 Bm2 . . . Bmm











n×n

where the block matrices Bij’s are integer matrices of size ni×nj. The properties of these block
matrices which make A describe an automorphism of (R,+) are:

• for 1 ≤ j < i ≤ m: entries in Bij are from {0, . . . , pβj − 1}.

• for 1 ≤ i ≤ m: entries in Bii are from {0, . . . , pβi − 1} and Bii is invertible (mod p).

• for 1 ≤ i < j ≤ m: entries in Bij are from {0, . . . , pβj − 1} and Bij ≡ 0 (mod pβj−βi).

It is not difficult to see that the number of matrices satisfying these conditions can be found in
time polynomial in (n1β1 + . . .+ nmβm)(log p), and hence the number of A’s which describe an
automorphism of (R,+).

One can also consider a different, exponentially larger, representation for rings: when the
rings are given in terms of the addition and multiplication tables of all its elements. We do not
know if the ring isomorphism problem under this representation can be solved in time polynomial
in the size of the representation. However, the problem is likely to be in NP ∩ coNP.

Let us give this problem a name:

RITF := {(R1, R2) | R1, R2 are given in terms of tables, R1
∼= R2}

It is easy to see that RITF ∈ NP. The nontrivial part is to show:
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Theorem There exists an NP-machine that decides all but 2log8 n instances of RITF of length
n.

Proof. The proof is basically one given in [AT04] applied to the case of rings.
We showed in claim 3.1.2 that RITF ∈ AM(log5 n), where the parameter bounds the number

of random bits used by Arthur. Notice that the number of binary strings that define a ring of
size at most n, in basis form, is no more than 2log3 n. ∴ by probability amplification: the random
bits used in the AM protocol would work for all input strings of size n if we use log8 n many
random bits. Since we are using only a ”small” number of random bits we can apply techniques
of [GW02] to get an NP-machine that fails for at most 2log8 n inputs of size n.
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