Electronic Colloquium on Computational Complexity, Report No. 112 (2004)

Resolution and Pebbling Games

Nicola Galesi* Neil Thapen |

Abstract

We define a collection of Prover-Delayer games that characterize
certain subsystems of resolution. This allows us to give some natural
criteria which guarantee lower bounds on the resolution width of a
formula, and to extend these results to formulas of unbounded initial
width.

We also use games to give upper bounds on proof size, and in
particular describe a good strategy for the Prover in a certain game
which yields a short refutation of the Linear Ordering principle.

Using previous ideas we devise a new algorithm to automatically
generate resolution refutations. On bounded width formulas, our algo-
rithm is as least as good as the width based algorithm of [9]. Moreover,
it finds short proofs of the Linear Ordering principle when the variables
respect a given order.

Finally we approach the question of proving that a formula F is
hard to refute if and only if is “almost” satisfiable. We prove both di-
rections when “almost satisfiable” means that it is hard to distuinguish
F from a satisfiable formula using limited pebbling games.

1 Introduction

Propositional resolution is one of the most intensively studied logical sys-
tems. Its importance stems both from applied and from theoretical points
of view. On one hand it provides the logical basis for almost all of the more
important and efficiently implemented automatic theorem provers (see [5]).
On the other hand, it has probably been the most studied proof system in
the area of proof complexity ([14, 6, 4, 9, 20] among others).

*Universitat Politecnica de Catalunya. Dept. LSI. Barcelona, Spain. e-mail:
galesi@Ilsi.upc.es. Supported by grant TIC2001-1577-C03-02. Part of this work was
done while the author was visiting Oxford University, partly supported by a grant from
the London Mathematical Society.

St Hilda’s College, University of Oxford, Oxford, UK. email: neil-thapen@st-
hildas.ox.ac.uk

ISSN 1433-8092

Most of the work to understand the strength of resolution has been
concentrated on proving lower bounds for the length of refutations. Recently
Ben-Sasson and Wigderson [9] based on ideas of [6] gave a unified approach
to obtaining lower bounds. They showed that if a bounded width formula has
a short refutation, then it has a narrow refutation. Using this relationship
they give an algorithm to generate resolution refutations based on the width
measure.

Simple pebbling games were initially introduced into the world of resolu-
tion in [18] to study size lower bounds in the subsystem of resolution where
the proofs are treelike. Later the study of the space measure for resolution
(see [12, 1, 7]) suggested the use of a more complex pebbling game.

It was soon clear that games also play an important role also in the study
of the width limit for the full resolution system. Atserias and Dalmau [3]
have given a finite model-theoretic characterization of the bounded width
formulas with narrow refutations, using a pebbling game.

In this paper we carry this idea further. In section 2 we define a new
restriction of the resolution system (narrow resolution) for which we give
a unified way of proving lower bounds similar to those for bounded width
resolution of [9], but without having the restriction that the original formula
has bounded width.

We define a “witnessing” pebble game, played between a Prover and a
Delayer, and show that proofs in this system correspond to strategies for
the Prover. On the other hand, a good strategy for the Delayer corresponds
to the formula being extended dynamically satisfiable (EDS), an extension
of an idea used in [11, 13] to prove lower bounds on space and on treelike
size.

In section 3 we give some sufficient conditions for a formula to be k-EDS.
In particular we show that if there is a satisfiable formula G which looks
similar to F' in that G cannot be distinguished from F with k& + 1 or fewer
pebbles, then F'is k-EDS.

We also adapt a criterion of Riis’ [19] to show that if F is a translation
of a combinatorial principle on some finite structure, and this principle is
satisfiable on a larger structure, then F' is (n)-EDS. This gives us a useful
sufficient condition for proving width lower bounds.

Starting from this witnessing pebble game we explore in two directions.
In Section 4 we study some more general “structured” games, and generalize
the width concept. In the earlier game the restriction on width corresponded
to the Prover only being able to remember the values of a limited number
of variables. In the structured game, the number of pebbles still limits
how much the Prover can remember, so the games have useful properties

in common with bounded width proofs; but each pebble can be labelled
with information about several variables, which means the Prover can refute
things that would be impossible if he was limited by width.

We show how to recover Resolution refutations from Prover strategies
(theorem 19). In particular, since we show that the Prover has a winning
strategy for a certain “ordered” structure game with only three pebbles
over the Linear Ordering Principle LOP (theorem 26), we can recover a
polynomial size refutation of this principle.

The LOP principle was used in [10] to prove the optimality of the width-
size tradeoff for Resolution. It is one of the very few examples of CNF for-
mulas having polynomial size resolution refutations but on which the Ben-
Sasson Wigderson algorithm takes subexponential time to recover a refuta-
tion. Moreover it is also hard for DPLL-based theorem provers. Motivated
by the previous result we then look at the the question of automatically
generating resolution refutations using strategies for the game.

We devise a new algorithm based on reconstructing strategies for the
Prover which allows us to extend the Ben-Sasson and Wigderson algorithm
to an algorithm which, with some extra information about ordering of the
variables, generates short refutations of LOP in polynomial time. Moreover
we show that for bounded width formula our algorithm is at least as good
as the Ben-Sasson and Wigderson algorithm.

Finally in section 5 we explore further the idea used in section 3, that
if a CNF F' is similar (in some finite model theoretic sense) to a satisfiable
formula G, then CNF can be thought of as “almost satisfiable” and is hard
to refute. While this last result can be seen as a soundness theorem, in this
section we also give a kind of “completeness” theorem, and show that if F’
is hard to refute using a certain game, then F' is similar to a satisfiable CNF

G.

2 The Witnessing (Game

Definition 1 Fiz k € N. Call a clause narrow if it has width k or less;
otherwise it is wide. A width k narrow resolution refutation of a CNF F is
a sequence of narrow clauses, beginning with the narrow clauses of F' and
finishing with the empty clause. There are three ways that clauses can be
introduced into the sequence:

1. From B we can derive Bx (weakening);

2. From Bz and CZ we can derive BC' (resolution);

3. If x1... 2y, is a (usually wide) clause in F, then from BZq,...,BZ,
we can derive B (resolution by cases).

Proposition 2 If F is a r-CNF with a width k narrow resolution refutation,
then F' has a width r + k — 2 “normal” resolution refutation.

Proof Replace each resolution-by-cases inference with a sequence of reso-
lution steps . O

We introduce a pebble game to accompany this proof system.

Definition 3 Let F' be a CNF. The witnessing pebble game on F' is played
between a Prover and a Delayer on the set of literals arising from the vari-
ables in F'. A pebble can never appear on both a literal and its negation. In
each turn, one of three things can happen.

1. The Prover lifts a pebble from the board; the Delayer makes no re-
sponse.

2. (Querying a variable.) The Prover gives a pebble to the Delayer and
names an empty variable x (that is, neither x nor T can be pebbled
already). The Delayer must put the pebble on either x or T.

3. (Querying a clause.) The Prover gives a pebble to the Delayer and
names a clause C from F. The Delayer must place the pebble on one
of the literals in C, without contradicting any pebble already on the
board. If this is not possible then the Prover wins.

Normally we will limit the game to some number k of pebbles, and call this
the k-pebble witnessing game.

Notice that the Prover can win exactly when the pebbles on the board
falsify some clause of F' and the Prover has one pebble left over.

Proposition 4 Let F be a CNF and k € N.

1. If there is a winning strategy for the Prover in the k-pebble witnessing
game for F, then there is a narrow resolution refutation of F' of width

k.

2. If there is a narrow resolution refutation of F' of width k then there is
a winning strategy for the Prover in the (k+1)-pebble witnessing game

for F.

3. If F has a (normal) resolution proof of width k, then there is a winning
strategy for the Prover in the (k + 1)-pebble witnessing game for F'.

4. If F has a (normal) resolution proof of clause space k, then there is a
winning strategy for the Prover in the k-pebble witnessing game for F.

Proof

1. Consider the Prover’s strategy as a tree, with each node labelled with
the set of literals falsified under the assignment given by the pebbles
currently in play. Then the root will be the empty clause, and the
leaves will be (some subset of) the narrow clauses of F. If we read
this tree from the leaves down to the root, we get precisely a narrow
resolution refutation of F. Removing a pebble corresponds to weak-
ening, the Prover querying a variable corresponds to a resolution step,
and the Prover querying a clause corresponds to a resolution-by-cases
step.

2. Use the narrow proof as a strategy for the Prover, as above. If
Bxz,Cz + BC is a resolution step in the proof, and BC' has width
k, the corresponding step in the Prover’s strategy will require k + 1
pebbles: the Prover will start with pebbles falsifying BC', and will
need one extra pebble to query z (and depending on the answer will
the use weakenings to get either Bx of CZ).

3. A special case of 2 above.

4. Define a configuration to be a set of k or fewer clauses, and a resolution
proof of clause space k to be sequence Gy . .. G, of configurations such
that Gy = 0, G,,, = {0} and each G4 is derived from G; by axiom
download, erasing a clause, or adding a clause by a resolution inference.

For each i, the Prover can force an assignment of pebbles such that all
of the clauses in G; are satisfied. For each axiom download step, he
queries the clause being downloaded, so that the Delayer must place
a pebble to satisfy that clause. No more than k pebbles are needed
to satisfy k clauses, so the Prover can remove a pebble each time a
clause is erased. And the Prover does not need to do anything for an
inference step.

Hence either the pebbles will eventually satisfy the empty clause, which
is impossible, or at some point the Delayer must be unable to satisfy
a clause which the Prover has queried. So the Prover wins. [l

We can now adapt the Ben-Sasson Wigderson result that “short proofs
are narrow” to talk about games rather than proofs. This allows us to apply
it directly to CNFs of unbounded width.

Definition 5 If F' is a CNF and z is a literal, we obtain F|z from F by
removing all clauses containing r and removing T from any clause in which
1t appears.

So from a resolution refutation of F' we can obtain a refutation of F|x
of equal size or smaller, by substituting in a value of “true” for x and sim-

plifying.

Lemma 6 If the Prover has a winning strategy for the k-pebble witnessing
game on F|x, then in the k-pebble witnessing game on F the Prover can
force the Delayer to either lose the game or place a pebble on .

Proof Let S be the k-pebble winning strategy for F|z. We will make this
into a strategy for the game on F' as follows. Whenever a clause C'is queried
in S such that C' € Flz but C ¢ F, it must be that Cz € F. So replace this
query with a query of Cz. Then either the Delayer must eventually place
a pebble on Z, or the play of pebbles must be exactly the same as given in
strategy S so that the Delayer must eventually lose. O

Theorem 7 ([9]) Fiz d,n € N and let 8 = (1 — =)7L, Say that a clause
1s fat if it has width greater than d. Then for any m < n and any b, if
F is a CNF on m wvariables and has a (normal) resolution refutation II
containing < 3° many fat clauses, then the Prover has a winning strategy
in the witnessing pebble game on F', using d + b+ 1 pebbles.

Proof

The proof is by induction on m. The base case m = 0 is trivial, so
suppose m > 0.

If b = 0, then every clause in II (and also every clause in F') has width
< d, so by an earlier observation there is a strategy for the Prover using
d + 1 pebbles.

Otherwise, let II* be the set of fat clauses appearing in II. Then there
must be some literal x appearing in at least % |IT¥ fat clauses, since otherwise

d
I d < {(y,C) : yis aliteral in C € IT* }| < Qm%]H*].

The first part of the Prover’s strategy is to force the Delayer to put a
pebble on z. Now F'|Z contains only m — 1 variables and has a refutation

with fewer than 3° fat clauses, so by the inductive hypothesis the Prover
has a strategy for the game on F|Z using b+ d + 1 pebbles. Hence by the
lemma the Prover can force the Delayer to satisfy x.

Setting x to true will make all the clauses in II containing x vanish,
so F|z contains only m — 1 variables and has a refutation with fewer than
(1-— %)|H*| < (P71 fat clauses. Hence the Prover has a winning strategy T
for F|z with only b+ d pebbles.

The Prover now leaves one pebble on x and uses the remaining b + d
pebbles to carry out strategy 1" on the remaining variables. As in the lemma,
he must change T slightly to make it into a strategy for the game on F', by
replacing queries to C € Flz \ F with queries to Cz. But the Delayer can
never put a pebble on Z, because there is already a pebble on z. So the
game plays just like the F'|z game with strategy 7', and the Prover wins. [

3 Extended dynamic satisfiability

Along similar lines to those used in [3] for resolution width and in [11] for
resolution space, we characterize the Delayer’s strategy in the witnessing
game, in terms of families of partial assignments for the formula.

We also generalize this result by studying sufficient conditions that imply
good strategies for the Delayer, along the lines of the approaches in [19] and
[16] using first order model theory.

The following definition was introduced in [11].

Definition 8 A CNF F is k-dynamically satisfiable (k-DS) if there is a
class R of partial assignments to the variables of F' with the following prop-
erties:

1. R is closed under subset;

2. Ifa € R, |a] < k and C' is any clause of F, then there is an extension
B € R of a that satisfies C' (in the sense that it makes at least one of
the literals in C true, but does not necessarily assign a value to all the
literals).

To characterize good strategies for the delayer in our witnessing game,
we alter the definition of dynamic satisfiability by adding a case to deal with
queries made to variables:

Definition 9 A CNF F is k extended-dynamically satisfiable (k-EDS) if
there is a class R of partial assignments satisfying the conditions of definition
8, with the extra case:

3. If « € R, |a| < k and x is any variable appearing in F', then there is
an extension B € R of o that assigns some value to the variable x.

Lemma 10 A CNF F is k-extended dynamically satisfiable if and only if
the Delayer has a winning strategy for the k-pebble witnessing game on F'.

Proof Suppose F' is k-EDS. Then the Delayer can guarantee that after
every turn the assignment « given by the k pebbles is in R. Hence by part
3 of the definition of extended dynamic satisfiability, the Delayer is always
able to consistently satisfy any clause of F' that the Prover queries.
Conversely, suppose that the Delayer has a winning strategy. Let R be
the set of all assignments corresponding to the configurations of pebbles
that can appear in a game in which the Delayer uses this strategy. Then R
witnesses that F is k-EDS. (]

Theorem 11 (A corollary to Ben-Sasson Wigderson) For any € > 0, if a
CNF F has n variables and is (\/gn% + 1)-EDS, then it has no resolution

refutation of size 2™ .
Proof Letb=d= \/in% For large n, ﬁ%n =(1- i)_%n > 2. So

2n1+E

M < BN = Gvenite = b

and any proof of size 2*° must have fewer than ° fat clauses. Hence there
is a winning strategy for the Prover with b + d + 1 pebbles, contradicting
dynamic satisfiability. O

The careful reader should have noticed that our extended dynamical sat-
isfiability is a simplification of the characterization of Duplicator strategies
in the extended existential game of Asterias and Dalmau (see defintion 3 of
3)).

Notice that while the definition of EDS naturally comes from the defini-
tion of the witnessing game of the previous section, it is reasonable that it
should also be similar to the criteria in [3], although whereas we are using
EDS to prove width lower bounds in a system (narrow resolution) where
initial width is unimportant, Atserias and Dalmau give criteria to obtain
good width lower bounds for narrow formulas obtained from large initial
width formulas by using the standard method of extension variables.

3.1 A sufficient condition for extended dynamic satisfiability

We will treat CNF's as two sorted structures, with a clause sort and a variable
sort and two binary relations “variable x appears positively in clause C” and
“variable x appears negatively in clause C”. We describe a kind of pebble
game, the (1,k)-embedding game. The game is played between a Spoiler
and a Duplicator on the set of clauses and variables of two CNFs I’ and G.
Each player has k variable pebbles and one clause pebble.

Each turn the Spoiler either plays a clause pebble on one of the clauses
of F, in which case the Duplicator must play his corresponding pebble on
one of the clauses of G; or the Spoiler plays a variable pebble on one of
the variables of either CNF, in which case the Duplicator must place his
corresponding pebble on one of the variables of the other CNF.

The aim of the Duplicator is to make sure that the positions of the
pebbles give rise to a partial isomorphism. If at any point it is not an
isomorphism, then the Spoiler has won.

Theorem 12 Suppose G is satisfiable, and there is a winning strategy for
the Duplicator in this game. Then there is a winning strategy for the Delayer
in the k pebble witnessing game on F. Hence F is k-EDS.

Proof Suppose the Prover queries a variable z in F'. To find out how the
Delayer responds, let the Spoiler pebble z in the (1, k)-embedding game. The
Duplicator matches with this by pebbling some variable y in G. The Delayer
responds to the Prover with the truth value given to y by our satisfying
assignment to G.

If the Prover queries a clause C of F', let the Spoiler pebble that clause
in the embedding game. The Duplicator responds with some clause D in
G. D has at least one literal made true by our assignment. The Spoiler
now pebbles the corresponding variable in G, and the Duplicator matches
it with a variable in F'. The Delayer then responds to the prover with this
variable. O

This theorem is not easy to use, because it is not necessarily easy to
prove that two CNFs F' and G are in this relationship (although a sufficient
condition is for ' and G to be indistinguishable in the normal k£ + 1 pebble
game of finite model theory).

We give an easier-to-use, but weaker, sufficient condition for extended
dynamic satisfiability below, for the case where F' and G are propositional
translations of some first order principle. The argument is a standard one,

see Krajicek [16, 15] or Riis [19] although we do not insist that the structure
in which the principle is satisfied is infinite.

Theorem 13 Let F' be a CNF. Let ¢ be a first order quantifier free formula
i a relational language L with equality. Let ® be the formula

Va1 € [n]... Vay € [ng]3zpp1 € [ngia] ... 3z € [i](2)

where ny,...,n; € N,

Suppose that @ is satisfiable with larger bounds, that is, there is an in-
terpretation in N of the relation symbols from L such that, with this inter-
pretation,

N): Ve € S1...Vop € Si3vga1 € Ska1 ... 321 € Slqb(i‘)

where St,...,S; are (possibly infinite) subsets of N with |S;| > n; for each
j and n; > n; — S; O S; for each i,j.
Let (®) be the formula

A \V (7).

i1€[n1), ik €[Nk] ipg1 €[Mrt1]se 11 €[N]

We treat this is a propositional formula in the usual fashion, thinking of
atomic sentences involving a relation symbol as propositional variables, and
of atomic sentences involving equality between numbers as the appropriate
one of the connectives {T, F'}.

Let n = min{ny,...,n;} and let r be the mazimum arity of any relation
symbol. Then (®) is (3: — 1+ 1)-EDS (1 is the number of variables).

It follows that if F' is a CNF, and we can fix a one-to-one renaming of
the propositional variables of (®) with respect to which every clause of F is
implied by some clause of (®), and every variable in F' appears in (®), then
Fis (% — 14 1)-EDS. (We call this condition “F' is covered by ®”.)

Proof

Let @ be the set of partial injections from N into N such that for each
J, if x € dom(f) and x € [n;] then f(x) € 5.

For each f € @), we define a partial assignment o to the variables in (®)
as follows. Suppose P is a relation symbol in L, of some arity s. Suppose
i1,...,1s C dom(f). Then ay assigns P(i) as true if P(f(i1),...,f(is)) is
true in our interpretation, and as false if it is false.

10

Let R be the closure of {af : f € @} under subset. We claim that R
witnesses that (®) is (% — 14 1)-EDS.
To show the claim, suppose that o € R and |a| < % — 1. Then a C ay
for some f € @ and we may assume |f| < (% —1)r,so |f| <n —L.
We need to show that we can extend « to satisfy any clause C' in (®).
C has the form
\ ¢(3)

ir1€npg1ly11€[N]

for some i1, ..., 1, with each i; € [n;].

Extend f to f' € @ such that i1,...,i C dom(f’). We can do this
because |f| < n —1 so we have at least | numbers available in (; S; that f
does not yet map anything to.

We know that, in our interpretation,

N): Exkﬂ S Sk+1 Lo dxg € Sl¢(fl(i1), Ce ,f/(ik), Thotly--- ,1’[).

Let xpi1,...,7; be witnesses to these existential quantifiers. Extend f’
to f” € @ such that g 1,...,2; C ran(f”|[n]). We can do this because
|f| <n—(l—k)so we have | — k numbers available in [n] that f’ does not
yet map to anything.

Hence for some i1 € [ng41],...,% € [ny] the assignment a v satisfies
#(). So let g be any total function in @ extending f”. Then «, satisfies the
clause C.

Given any propositional variable in (®), we can extend « in a similar
way so that it assigns a value to the variable, again using that |f| <n—1[. O

Corollary 14 LOP, is (5 — 3)-EDS.

Proof LOP, is covered by the formula Vz,y, z € [n|3w € [n], (=P(z,y) V
—P(y,z)) A\ (P(z,y)V P(y,z)) AN (P(z,y) NP(y,z) — P(x,z)) ANP(w,x), and
this is satisfiable if we let the quantifiers range over all of N and interpret P
as any total ordering with no least element. O

4 Pebbling games and subsystems of resolution

We represent (usually partial) assignments by the following notation: [x; —
1,...,z, — 0]. Given an assignment «, we denote by @ the negation of «,
that is, if « is the assignment [z — 1,y — 0,z +— 1], then @ is the clause
(~z VyV —z). Given a set S of assignments, we denote by S the set of
clauses obtained by the negation of all assignments in S.

11

Definition 15 (Structure) Let F' be a CNF formula. For each clause C
of F, let Sc be a set of partial assignments to the variables of C, such that

1. each assignment in S¢ satifies C

2. C implies the disjunction of the assignments (in other words, C' U Sc
is a contradictory set of clauses).

We call S = Joep Sc a structure for F.

The Structured Witnessing Game SWG(F,Sr), over a CNF F' and with
a structure S, is a two player (Prover and Delayer) game defined as follows.
At each round the Prover either

e puts a pebble on some clause C of F. Then the Delayer answers by
choosing one assignment o« € S, and labelling the pebble with it; the
Delayer is not allowed to choose an assignment inconsistent with an
assignment already in play

e or removes a pebble, together with with its label.

The game ends when the Delayer is unable to choose an assignment
consistently. This only happens when the the assignments labelling all the
pebbles in play together falsify some initial clause of F.

We say that a formula F is (k,S)-easy if the Prover has a winning strat-
egy for the game SWG(F,S) using at most k pebbles simultaneously. Oth-
erwise the Delayer has a winning strategy, and we say that F' is (k,S)-hard.

We will look at three structures in this paper.

e In the unary structure Up, for each C € F,

UCZUUHH

leC

In other words, assignments in Uc satisfy exactly one literal in C.
Note that the game for this structure is similar to the witnessing game
described above, except that here the Prover is not allowed to query
the value of individual variables.

e In the ordered structure Op, for each clause C € F we first fix a
total order < on the variables of C' (extended to literals by ignoring
negations), then define

Oc=Jt—1u |J [r—o)

lec reCr<l

12

e In the full structure Fr, for each clause C' we let S¢ be the set of all
possible assignments to all of the variables in C.

In lemma 24 we will prove that the PHP,, is (n/2 — 1, F)-hard. On the
other hand in the next subsection we will prove that LOP, formulas are
(3, F)-easy, and that this gives us an upper bound on the size of refutations
of LOP,,

Clearly the more complex the structure is, the more information the
Prover can get using fewer pebbles, and the easier it will be to force the
Delayer into a contradiction. This is captured by the following lemma.

Definition 16 Let Sgp and Tr be two structures for F'. We write Sp < Tp
if for all C € F, it holds that: (1) for all « € S¢ there is a 3 € To such
that 8 C «; (2) for all B € Te there is a € S such that 3 C a.

Lemma 17 If F' is (k,Sp)-hard and Sp < Tp, then F is (k,Tp)-hard. O

4.1 Feasible Structured Games and Short Refutations

Definition 18 (Feasible Structure) Let F' be a CNF formula. We say
that a structure Sp = |Joep Sc is feasible if there are two polynomials p
and q, such that for all C € F':

o [Scl <p(IF);
e there is a Resolution refutation of C' U S¢ of size bounded by q(|F|).

From a winning strategy for the Prover in a feasible structured game,
we can construct a resolution refutation of F.

Theorem 19 Let F' be CNF over n wvariables and a let Sp be a feasible
structure for F. If F is (k,Sp)-easy, then there is a resolution refutation of
F of size bounded by O(mF|Sp|*)q(|F)).

Proof Assume F has n variables and m clauses. F' is (k,Sp)-easy, so the
Prover has a winning strategy for the structured game on F using at most
k pebbles.

A position in the game is formally a tuple (C1,aq),...,(Cy, o) where
each Cj is a clause from F' on which a pebble is in play and a; € S¢, is
the partial assignment with which the Delayer has labelled that pebble. So
there are 7 (")ISk|* < O(mF|SE[F).

Our first step in constructing the refutation is to write down the Prover’s
strategy as a directed acyclic graph. The nodes in the graph will be positions
in the game. The edges will be defined as follows:

13

e if the position w is reached from position v after the Prover pointed
at a clause C and the Delayer answering with assignment «, then we
put a directed edge from v to w and label it with (C,«) (or just with
C, if the Delayer is unable to play)

e if position w is reached from position v by removing the clause C' and
its label, we put a directed edge from v to w and label it with C.

There are two other special kind of nodes in the graph: a single source
node without any label, and sink nodes, one for each clause in F'.

The game starts with no pebbles in play, this is the empty position at the
single source node of our graph. When the Delayer has labelled the pebbles
in a way that falsifies some clause C' of F', then we have an edge going into
a the sink node corresponding to C'. The Prover’s strategy guarantees that
he will win, so every path from the source must lead to a sink. Hence our
graph is a dag.

Given the strategy of the Prover, first we build the associated dag. Notice
that its size is < O(m*|Sg|*). Recall from the start of this section the
notation & for an assignment .

To make the graph into a resolution refutation, we first reverse the di-
rections of all the arrows. We associate with each node corresponding to a
position (C1,aq),...,(Cy, a;) the clause @7 V...V @;.

The single sink node will be labelled with the empty clause. Notice
that if a node corresponding to a position (C1, 1), ..., (Cy, ;) has an edge
labelled (C') coming to it from a source node corresponding to the clause C,
then @1 V...V @, is derivable by one weakening from C.

This will give us something that is almost a refutation of F'. For the inter-
nal nodes, suppose at position (C1,aq),. .., (Cy, ;) in our original strategy,
the Prover played a pebble on the clause B, and Sp = {1, ..., On} was the
set of possible replies the Delayer could have made. Let ' =a7V...Vas. In
our almost-refutation, this corresponds to a node labelled with the disjunc-
tion I, with edges coming into it from m nodes labelled 'V 1, ..., TV fy,.
By the definition of a feasible structure, there is a resolution refutation of
BABLA...N By of size bounded by ¢(|F|). By adding the disjunction T' to
each clause in this refutation, we get a resolution proof of I' from F' together
with the clauses 'V B1,...,I' V 3,,. We put this proof into our graph in
place of the edges coming into the node I'.

The case when the Prover deletes a pebble follows by weakening and we
leave it to the reader.

This completes the construction, and the size of the refutation at the

end is < O(m*|Sr|*)q(|F|). O

14

Lemma 20 The unary and the ordered structures are feasible.

Proof

Let F' be a CNF. From the definitions of our structures we have that for
all clauses C' in F, |Uc| = |Oc| = |C| < w(F). Let C = (I3 V... V1) be
a clause in F. In the case of the unary structure there is a straightforward
treelike resolution refutation of size k of C AU, since U is /\z‘:l,...,k =l;.

In the case of the ordered structure we have a daglike resolution refuta-
tions of C' A O¢ as follows. Assume w.l.o.g. that the order of the literals in
Cisly < ... <Ig. The proof proceeds in k stages i = 1,...,k. At stage i we
produce a daglike proof of the clause (I;V...VI;) and of the clause —l;. Hence
after the k-th stage ends we immediately get the empty clause. Stage 1 is
immediate since (I V...VI) is in C and —l; is a clause in O¢. Assume stage
i is completed and we have already proofs of (I; V...V) and —ly,... ;.
The clause ({;41 V...V) is obtained by resolving (I; V...V l}) with —l;.
The clause —l;1; is obtained by resolving the clause ({1 V...V 1; V =lj41) of
O¢ in sequence with —ly,...—l;. It is easy to see that this size of this proof
is bounded by O(k?) and hence is polynomial in n. O

4.2 Structured Games as Subsystems of Resolution

In [13] it is proved that k-dynamic satisfiability is a sufficient condition for
a CNF F to require exponential size treelike resolution refutations. In the
next theorem we prove that it completely characterizes Delayer strategies
for the unary structure.

Theorem 21 F is k-dynamic satisfiable iff it is (U, k)-hard.

Proof Suppose F is k-DS. Let R be the family of partial assignments
witnessing this. We use R to give a strategy for the Delayer in the unary
game. The Delayer will maintain the invariant that in every configuration
(C1,[ly — 1]),...,(Cp, [l — 1]) that appears in play (where the I; are
literals), the assignment o = [ly — 1,...,[, — 1] is in R. When the Prover
presents a new clause C' € F, since « € R and |a| < k, there isa 8 € R
extending « such that 3 satisfies C. Take one literal [in C set to 1 by 3

and consider the assignment [l; — 1,...,l, — 1,1 — 1] C . Thisis in R
because R is closed under inclusion. So the Delayer can reply to C' with
[l —1].

Conversely, suppose that F' is (U,k) hard. Then there is a winning
strategy for the Delayer in the unary game. Let R be the set of partial
assignments [l; — 1,...,l, +— 1] such that the configuration (C1,[l; —

15

1]),...,(Cy, [l — 1]) appears in some game played with this strategy. Then
R witnesses that F' is k-DS. O

Extended dynamic satisfiability corresponds to the witnessing game, in
which the Prover is allowed to query variables. That is not allowed in our
structured games, but we do have the following relationship.

Theorem 22 If F is (F, k)-hard (that is, hard for the full game) then F is
k-EDS.

Proof Suppose the Delayer has a winning strategy for the k pebble full
game on F. Let R’ be the family of all partial assignments of the form
Ui_; @; where (C1,1),...,(Cy,) is a configuration appearing in some
game played according this strategy. Let R be the closure of R’ under
inclusion.

Then R witnesses that F' is k-EDS. For suppose a € R, |a| < k. Then
we may assume that « arises from a configuration in which < k& pebbles are
in play. So if C is any clause in F', by playing a pebble on C' we can find 3 in
R extending «v and satisfying C' (and in fact 3 assigns a value to all variables
in (). Also if x is any variable, choose any clause C' in which = appears.
Then we can extend « to an assignment assigning a value all variables in C,
in particular to z. O

Now we will consider strategies for the Prover and Delayer for two stan-
dard families of CNFs, the pigeonhole principle PH P

/\ \/ Pij N /\ (=pij V pirj)
1€[m] j€[n] 1,4’ €[m],j€[n],i£

and the linear ordering principle LOP,, that expresses (the negation of)
that every linear ordering of n elements has a least element:

/\ (m@ij V owjp Vo) A /\ (@i V @)
i.jkeln] Li€lm]

AN G R A T N ANV

i,j€[n] i€[n] j€n],i#j

From definition 16 and lemma 17, it is straighforward to observe that:
Lemma 23 F <O <U.

It is quite easy to prove that the PH P is hard for all these games:

16

Lemma 24 PHP]" is (F,n/2 — 1)-hard.

Proof A critical truth assignment is a partial assignment which for each
hole j € [m] only sets one p; j to 1. The strategy of the Delayer is to answer
the Prover in such a way that her labels are always consistent with some
critical truth assignment. Now by the form of the clauses of PH P, a set of
at most n/2 — 1 clauses mentions at most n — 2 pigeons, and if a critical
truth assignment assigns < n — 2 pigeons we can always extend it to one
that assigns one more pigeon. This shows that PHP)" is (F,n/2)-hard. O

On the other hand, using the fact that LOP, is (§ — 3)-dynamically
satisfiable (see [11] or corollary 14), we have:

Corollary 25 LOP, is (U, 5 — 3)-hard.

The main result of this subsection follows from the next theorem in which
we prove that the linear ordering principle LOP,, is (O, 3)-easy.

Theorem 26 LOP, is (O, 3)-easy.

Proof Consider the following order on all variables that in particular de-
fines an order on each clause: x;; < xp iff either j < k or j = k and
1 < h.

We describe the strategy of the Prover by stages: we prove that at each
stage the Prover, using only three pebbles, either wins or will force the
Delayer to answer to a clause of the form \/ jeln],j#r Tir with an assignment
assigning strictly more literals to 0 than the previous stage. Hence, if he
does not win sooner, after at most n stages he will force a clause of this form
to be falsified.

Assume w.l.o.g. that at the begining of a stage the Prover pebbles the
clause Cy = vje[n],j;él zj1. Let a € O¢, be the assignment chosen by the
Delayer. a will be of the form

[.%'2,1 — O, ceey Lj—1,1 0,.%]"1 — 1]

for some j € [n], j # 1. The Prover then pebbles the clause C;j = V¢ 5otj Tk,
Let 3 be the assignment chosen by the Delayer. [is of the form

(21— 0,..., 251, — 0,2 — 1]

for some k € [n], k # j.

Now if £ < j, then a(xg,) — 0. But then all literals in the clause
(g, V 1 V xg 1) are false, and the Prover can pebble this clause and
win.

17

Assume then that & > j. The Prover then pebbles the clause —xy ; V
—xj . Since B(xy ;) = 1, The Delayer must answer with the assignment -y
setting x; ; to 0 (and obviously z, ; to 1). At this point the Prover removes
the pebbles from €1 and C; and places a pebble on C}. The Delayer must
answer with an assignment ¢ of the form

[T1r—0,..., 21k — 0,211 — 1]
where clearly [> j, to not contradict the assignment ~. (]

Also any formula with a bounded width resolution refutation is easy for
the full game, since by proposition 4, lemma 10 and theorem 22, if F' has
width k refutations in resolution then F'is (F,k + 1)-easy.

4.3 Automatic Generation of Refutations

Lemma 24 shows that the ordered structure, via theorem 19 and lemma 20,
gives rise to a subsystem of daglike resolution (corresponding to a strategy
for the Prover with O(1) pebbles):

e powerful enough to obtain polynomial size refutations of important
families of contradictions like LOP,;

e where PH P (and other classes of formulas we omit in this version) are
hard to refute and the hardness proof is relatively easy.

Since LOP, is an example of formulas known to be hard for many
automatic theorem provers (see [5]), the previous properties suggest that
it’s worth investigating algorithms for generating winning strategies for the
Prover, as this gives a way of generating resolution refutations.

We present such an algorithm below. It is analagous to the Ben-Sasson
Wigderson algorithm based on width. In our case, rather than limiting the
width, we limit the number of pebbles used in the strategy.

We first describe a subroutine. The input is a formula F', and the de-
scription of the structure Sp (this may be given in a simple way, e.g. as
an ordering if we are dealing with the ordered game), and a number k of
pebbles. The output is a winning strategy for the Prover using k pebbles,
if one exists, otherwise “NONE”.

The subroutine first builds up a dag A as follows: The nodes of A are all
of the positions possible in the game, ie. all the possible ways of labelling k or
fewer pebbles plus a source node. There are Zle ilmiSE|" < O(mF|Sk|F),
where m is the number of clauses in F. At the start of the algorithm all

18

the positions that are self contradictory or falsify clauses of F' are marked,
and the graph has no edges. While the source node has not been marked
the algorithm does the following: it checks each not marked node X in A.
If by removing a pebble the Prover can move from X to a node Y already
marked in A, then the algorithm marks X and labels it with the pebble to
be removed and adds an edge from X to Y. If there is a clause C' that is
not pebbled at X, and is such that whatever label the Delayer could choose
to give to C', it would lead to a position corresponding to a node already
marked in A, then the algorithm marks X, labels it with C, and adds edges
going to all the nodes corresponding to the Delayer’s possible answers.

The subroutine stops when the source node has been marked, or when
there are no more edges to be added to the graph. If the source node has
been marked, the subroutine outputs only the marked subgraph of A, which
is a winning strategy for the Prover. Otherwise it outputs NONE.

The proof search algorithm works by calling this subroutine for increas-
ing values of k, until the subroutine outputs a strategy (which it will do
eventually, when the Prover is able to query all clauses at once).

The running time of the algorithm is O(m"*!|Sp|"™!) where r is the
minimal number of pebbles used by the Prover to win SWG(Sx, F).

For feasible structures, using theorem 19, this algorithm allows us to
generate daglike resolution refutations of size polynomial in the size of the
formula.

For the case of ordered structures we could add a preprocessing phase
to try all possible orders. Although in the worst case this can increase the
running time to exponential we notice that for the case of LOP,,, any order
of [n] naturally gives rise to an ordering with respect to which the formula
is easy.

Moroever we observe also that although the full structure is not feasible
in general, it become so in the case of formulas with O(1) initial width. Now
by proposition 4, lemma 10 and theorem 22, if F' has width k refutations in
resolution then F'is (F,k + 1)-easy, so if there is a constant width formula
with a narrow refutation then our algorithm (looking for strategies for the
full game) works at least as well on it as the Ben-Sasson and Wigderson
algorithm.

5 Satisfiability vs Hardness

In Section 3 we showed how the existence of a satisfiable formula G similar
to F' gives a good strategy for the Delayer in a certain game, which shows

19

that F' has no narrow resolution refutation.

This suggests an attractive idea, that we should look for a sort of sound-
ness and completeness theorem for polynomial size resolution. It would have
the following form: a CNF F' has no small resolution refutation if and only
if F'is “almost” satisfiable, in that it is hard to distinguish from a satisfiable
formula G.

In this section we give two results in this direction. We first show that
if F'is hard to distinguish from G in the sense that it is hard to prove in
resolution that F' and G are different, then F' is hard to refute. We then
show a converse, although this talks about games rather than proofs: if there
is a good strategy for the Delayer in the full (structured) pebble game on F,
then there exists a satisfiable CNF G that looks similar to F', in a certain
sense.

Definition 27 Let F' and G be CNFs, considered as two-sorted structures.
We define a new CNF, ISO(F,QG), that expresses the statement “F is iso-
morphic to G”. This is intended to be used when F' is not isomorphic to G,
as a generalization of the pigeonhole principle. Let Var(F) and CI(F') be
the sets of variables and clauses in a CNF.

We take the conjunction of

1. \ pecue) ocp for each C € CUF); \ gecyry ocp for each D € CUG);

2. mocp NV —ocp and —~ocp N —ocip for allC #C" € CI(F), D # D' €
CIG);

3. \/erar(G) Oy for each x € Var(F); vaCEVar(F) Oy for eachy € Var(G);

4. "0y V 04y and —0gy V —mox'y for all x # o' € Var(F), y # y' €
Var(G);

5. If x appears positively in C in F', but y does not appear positively in D
in G, then we include the clause =0,V —~ocp; similarly for appearing
negatively or not appearing at all.

So 1 and 2 say that o is a bijection on clauses, 3 and 4 say it is a bijection on
variables, and 5 says it preserves the structure. The total number of clauses
in ISO(F,G) is O(|F|?|G|?) (where |F| is the number of clauses plus the
number of variables).

Theorem 28 Suppose that G is satisfiable and F has a small resolution
refutation. Then ISO(F,G) has a small resolution refutation.

20

Proof Let a be a satisfying assignment to G. « partitions Var(G) into a
set A of true variables and a set B of false variables. For z € Var(F), let
X be the clause vyeA o4y and let X be the clause V.cp 0zz- Let F* be F
with every variable x replaced by X and every negated variable —x replaced
by X.

We will show how to derive F™* from ISO(F,G). Then we can use the
refutation of F' to give a refutation of F'*: from two clauses C' U X and
D U X we can derive C' U D by many resolutions with clauses of the form
0y V 104y from ISO(F,G). In particular, for each z € B we can derive
C' U =0, then resolve all these with D U X.

So let C' be any clause of F. For each clause of D, there are two cases:
either some y € A appears positively in D, or some z € B appears negatively
in D.

In the first case, in ISO(F,G) we have the clause \/meVar(F) Ozy and
since y appears positively in D, for each x that does not appear positively
in C' we have the clause —o,, V mocp. Resolving these together, we get
ocp — V{ozy : ¢ appears positively in C'}. Then by several weakenings we
get ocp — {0z : © appears positively in C' and u € A}.

The second case is similar, and gives us

ocp — \/{Jm : x appears negatively in C and v € B}.

If we obtain one of the above clauses for every clause D of G, we can
resolve with \/ ey oop to get

\/{un : x appears positively in C' and u € A}
\% \/{am : x appears negatively in C' and v € B}

which is exactly the required translation of C. O

To use this to get lower bounds for F', we need lower bounds for ISO(F, G).
This is a generalization of the pigeonhole principle, so the many existing tools
for showing lower bounds for PHP may be useful here. The most tractable
case should be when F' and G both arise as translations of some first order
combinatorial principle, but on structures of slightly different sizes, so we
can use the hardness of PHP directly. Krajicek gives an argument like this
is in [16], relating the proof complexity of the weak pigeonhole principle
and the Ramsey theorem. Potentially this will give a sufficient criterion for
a formula to have no small daglike refutation, similar to Riis’ criterion for
treelike refutations [19].

21

So far we have given “soundness” theorems, that if F' is almost a satisfi-
able CNF then F' is hard to refute (or that it is hard for the Prover to win
some game). Now we give a “completeness” theorem.

We think of CNFs as two sorted structures with a clause sort and a
variable sort. There are two binary relations, “x appears positively in C”
and “r appears negatively in C.”

We define the sense in which our constructed CNF G will be similar
to F. Informally, we have “local” embeddings of the clauses of F' into the
clauses of G. (If we had a global embedding, then the satisfying assignment
for G would immediately give a satisfying assignment for F'.)

Definition 29 Let F' and G be CNFs. We say that F' is strongly k-clause
embeddable in G if there is a family H of partial isomorphisms from F to G
with the following properties:

1. Suppose f € H maps clauses Cy,...,Cy and no other clauses. Then
the variables mapped by f are precisely the wvariables appearing in
Ci,...,Cr. In other words, f is first of all a partial isomorphism
on clauses, but brings with it a partial isomorphism on the variables
appearing in those clauses.

2. If f € H maps fewer than k clauses, and C is any other clause in F,
then there is g € H that extends f and maps C' somewhere.

Proposition 30 If F is strongly k-clause embeddable in G and G is satis-
fiable, then the Delayer wins the k-pebble full game on F.

Proof The family of embeddings from F' into G gives rise to a family of
partial assignments to F' which can be used as a strategy for the Delayer in
the full game (compare lemma 10). O

Theorem 31 Suppose the Delayer wins the k-pebble full game on F. Then
there is a satisfiable finite CNF G such that F' is strongly k-clause embeddable
in G.

Proof We will build G out of the Delayer’s strategy for the game. Think
of this strategy as a dag consisting of positions in the game. Each position
Pis atuple (Cy,1),...,(Cr,) of at most k clauses from F' together with
assignments to all the variables appearing in each clause, that are consis-
tent and satisfy each clause. Notice that only a finite number of different
positions appear in the strategy.

22

Let G' be the CNF whose clauses are all the pairs (C,«) that ap-
pear in the Delayer’s strategy. We give variables to the clauses as fol-
lows: if C' € F contains variables x1, ..., Zy,, then (C,a) contains variables
(x1,Cya),...,(xm,C,a) and (z;,C,«) appears positively or negatively in
(C,) just as z; appears positively or negatively in C. That is, G’ consists
of clauses named by pairs (C,«) and variables named by triples (z,C, «);
each clause is isomorphic to some clause from F', and no two clauses share
any variables.

Now define an equivalence relation ~ on the variables of G’ as the tran-
sitive closure of the relation: (x,C, «) is related to (y, D, 3) if and only if x
and y are the same variable (in F') and (C,«) and (D, 3) appear together
in some position in the Delayer’s strategy.

Let G be the CNF obtained from G’ by renaming every variable (z, C, «)
with its ~-equivalence class [(z, C, a)].

Claim 1 G is satisfiable.

Consider the assignment A : [(z,C,a)] — «(z). This is well-defined,
because if x appears in clauses C' and D in F, and if (C,«) and (D,)
appear together in some position, then « and § must assign the same value
to « (or the Prover would win at that point).

Furthermore this assignment satisfies every clause in G, because (C, «)
only appears in the Delayer’s strategy if « satisfies C' (or again the Prover
would win).

Note also that the existence of this assignment means that G contains no
repeated clauses. A repeated clause would appear if G’ contained distinct
clauses (C,«) and (C, () such that for every variable z € C, (z,C,«a) ~
(z,C, 3), so that after the renaming these two clauses would have the same
literals. This cannot happen, because if o # (8 then there will be some x
such that a(x) # f(x) and the assignment A will not be well-defined.

Claim 2 F' is strongly k-clause embeddable in G.

Let P = ((C1,1),...,(Cy,a,)) be any position in the Delayer’s strategy,
and define a partial mapping fp from F to G as
fp: C —(C;, ;) if C appears as some C;
unmapped otherwise
x —[(z,C;, o;)] if = appears in some C;

unmapped otherwise

23

This mapping is injective on variables because two variables in G’ are
only ~-equivalent if they arise from the same variable in F'; and if x occurs
more than once in a position then by the definition of ~ those occurrences
are equivalent. It is injective on clauses because each clause only appears
once in any position.

Suppose x appears positively in C; in F. Then (z,C;, ;) appears posi-
tively in (C;, ;) in G', so [(z, C;, ;)] appears positively in (C;, ;) in G.

Suppose conversely that x does not appear positively in C;. Then in G’,
no variable arising from x appears positively in any clause arising from C;.
[(z, C;, ;)] only consists of variables in G arising from x, hence [(z, C;, ;)]
does not appear positively in (C;, ;) in G.

The same is true for appearing negatively. Hence fp is a partial isomor-
phism, and the family H := {fp : P is a position in the Delayer’s strategy }
witnesses that F' is strongly k-clause embeddable in G. U

References

[1] M. Alekhnovich, E. Ben-Sasson, A. Razborov, A. Wigderson. Space
complexity in propositional calculus. STAM J. Comput. 31(4) pp. 1184—
1211, 2002.

[2] M. Alekhnovich, A.A. Razborov. Resolution is not automatizable un-
less W[P] is not tractable. 42nd IEEE Symposium on Foundations of
Computer Science, FOCS 2001, pp. 210-219.

[3] A. Atserias, v. Dalmau. A combinatorial characterization of Resolution
Width 18th IEEE Conference on Computational Complezity (CCC),
pp- 239-247, 2003.

[4] P. Beame, R.M. Karp, T. Pitassi, M.E. Saks. On the Complexity of
Unsatisfiability Proofs for Random k-CNF Formulas. STAM J. Comput.
31(4) pp. 1048-1075, 2002.

[5] P. Beame, H. Kautz. A Sabharwal Understanding the power of clause
learning Proceedings IJCAI pp. 1194-1201, 2003

[6] P. Beame, T. Pitassi. Simplified and Improved Resolution Lower
Bounds. 37th IEEE Symposium on Foundations of Computer Science,
FOCS 1996, pp. 274-282.

24

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Ben-Sasson, N. Galesi. Space Complexity of Random Formulae in
Resolution. 16th IEEE Annual Conference on Computational Complex-
ity, CCC 2001, pp. 42-51.

E. Ben-Sasson, R. Impagliazzo, A. Wigderson. Near optimal separation
of treelike and general Resolution. FElectronic Colloguium on Compu-
tational Complexity (ECCC) TR00-005, 2000. To appear in Combina-
torica.

E. Ben-Sasson, A. Wigderson. Short Proofs Are Narrow—Resolution
Made Simple. J. ACM 48(2) pp. 149-168, 2001.

M.L. Bonet, N. Galesi. Optimality of Size-Width Tradeoffs for Resolu-
tion. Computational Complexity, Vol 10(4) 2001. pp. 261-276.

J.L. Esteban, N. Galesi, J. Messner. On the Complexity of Resolution
with Bounded Conjunctions. Theoretical Computer Science 321(2-3)
pp. 347-370, 2004.

J.L. Esteban, J. Toran. Space bounds for Resolution. Inform. and
Comput. 171 (1) pp. 84-97, 2001.

N. Galesi, N. Thapen. The Complexity of treelike Systems over A local
formuale Proceedings of IEEE COnference on Computational Complex-
ity 2004.

A. Haken. The Intractability of Resolution. Theoret. Comp. Sci. 39,
pp. 297-308, 1985.

J. Krajicek. Bounded arithmetic, propositional logic, and complexity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press,(1995),

J. Krajicek. On the weak pigeonhole principle. Fund. Math. 170(1-3)
pp. 123-140, 2001.
J. Symbolic Logic 59(1) pp. 73-86, 1994.

P. Pudlak. Proofs as Games. American Math. Monthly, Vol. 2000-2001,
pp.541-550

P. Pudlak, R. Impagliazzo. A lower bound for DLL algorithms for k-
SAT”. Conference Proceeding of Symposium on Distributed Algorithms
(2000), pp. 128-136.

25

[19] S. Riis. A complexity gap for tree-resolution. Computational Complezity
10(3), pp. 179-209, 2001.

[20] A. Urquhart. Hard examples for Resolution. J. ACM 34(1) pp. 209-219,
1987.

26

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

