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An O(log nlog? n) Space Algorithm for Undirected
s, t-Connectivity*

Vladimir Trifonov'

Abstract

We present a deterministic O(logn log(z) n) space algorithm for undirected s, t-connectivity.
It is based on the deterministic EREW algorithm of Chong and Lam [CL93] and uses the
universal exploration sequences for trees constructed by Koucky [K01]. Our result improves

the O(log*®n) bound of Armoni et al. [ATSWZ97] and is a big step towards the optimal
O(logn). Independently of our result and using a different set of techniques, the optimal bound
was achieved recently by Reingold [R04].

1 Introduction

The problem we are concerned with is s, t-connectivity in an undirected graph G with n vertices, i.e.
given two vertices s and ¢ of G we want to answer the question, whether there is a path between s
and ¢. This is one of the most basic graph problems with applications ranging from image processing
and VLSI design to solving more complex graph problems. Furthermore s, t-connectivity plays an
important role in complexity theory because directed s, ¢-connectivity is NL-complete [S70] and
undirected s, t-connectivity is SL-complete [LP82].

Linear time and space sequential algorithm for solving even the harder directed s, t-connectivity
problem have been known for a long time [T72]. The problem of developing more efficient space
and parallel algorithms was poised.

If we allow one-sided randomness, the result of [AKL™'79] shows that undirected s, t-connectivity
can be solved in O(logn) space. The starting point of deterministic space efficient sequential
algorithms is the O(log? n) space algorithm for directed s, t-connectivity of Savitch [S70]. For a long
time this was the best result even for undirected s, t-connectivity. The space bound for undirected
graphs was first improved by Nisan et al. [NSW92] to O(log®?n) and then to O(log??n) by
Armoni et al. [ATSWZ97]. Both of these results depend on the efficient construction of universal
traversal sequences by Nisan [N90]. Finally, simultaneous to our result, the space complexity of
undirected s,¢-connectivity was shown by Reingold [R04] to be O(logn) using a different set of
techniques.

Developing efficient parallel algorithms for undirected s, t-connectivity has a very rich history.
The situation here is complicated further by the existence of multiple models of parallel compu-
tation. The models from the PRAM family are generally considered to be of great theoretical
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value. The results of [HCS79, SJ81, CLC82, JM91, KNP92] are concerned with the CREW PRAM
model, [SV82, AS83, CV86, G86] with the CRCW PRAM model, and [HZ96, CL93, CHL99, PR99]
with the EREW PRAM. The state of the art in parallel algorithms for undirected s, t-connectivity
are the results of [CHL99], which shows that the problem can be solved on the EREW PRAM in
O(logn) time with O(m + n) processors, and [PR99], which demonstrates a randomized EREW
PRAM algorithm running in time O(logn) with optimal number of processors.

The starting point of our algorithm is the O(lognlog!® n) time deterministic EREW PRAM
algorithm with O(m+n) processors of [CL93], which we call the CL algorithm. Using it we define a
sequential algorithm with the same space requirements as the CL algorithm. We use the sequential
algorithm to define configuration as a mathematical structure, which captures the state of the
algorithm. We define also a sequence of configurations, such that every element of this sequence
corresponds to the state of the sequential algorithm at certain points of its execution. We use
the sequence of configurations to trivially define a O(log?n) algorithm, which instead of storing
all of its current state, recomputes parts of it when it needs them. This technique is standard for
designing space efficient algorithms. Finally we modify the O(log?n) algorithm into an algorithm
which uses O(log nlog® n) space.

The possibility of using parallel algorithms to define space efficient sequential algorithms was
suggested by Prof. Vijaya Ramachandran in 2000. She conjectured an O(lognlog(z) n) algorithm
derived from [CL93] and an alternate simple O(log®/2 n) space algorithm derived from the algorithm
of [JM91], by using the max-degree hooking scheme of [CL93]. She observed that the step needing
derandomization in [NSW92] is not necessary in a tree-based hook and contract approach, because
the trees automatically give rise to disjoint clusters of vertices. The max-degree hooking scheme
employed by [CL93] gives the additional benefit that trees with small neighborhoods are small. The
main challenge was to implement the levels of recursion, so that they process small trees in o(log n)
space. Solving this problem is the main contribution of this paper.

In the algorithm presented here the space of a level of recursion is between Q(log(2) n) and
©(log n), depending on the level. A key tool for our method are the exploration walks on trees
defined in [K01]. Exploration walks on trees are similar to the Euler tour technique used by [TV85]
in the parallel context. These walks play the role of the edge-list plugging technique and pointer
jumping employed by the CL algorithm, because they allow us to traverse trees very efficiently.

Section 2 describes briefly the CL algorithm and the sequential algorithm derived from it.
Section 3 gives the formal definition of a labeled multi-graph and operations on graphs, as well
as the definition of configuration and sequence of configurations. Section 4 gives an overview of
the space efficient algorithm for solving undirected s,¢-connectivity. The appendix contains the
complete pseudo-code of the algorithm and a discussion about its execution and translation to a
Turing Machine.

2 The Chong-Lam algorithm

The CL algorithm uses a hook and contract approach. There are several stages of hooking and
contraction. Before every stage every vertex of the original graph is in exactly one of three states
— active, inactive, and done; all active and inactive vertices have non-zero degree and there are no
multi-edges between active vertices; the inactive vertices are organized in a set of hooking trees.
In a hooking phase the active vertices in parallel choose to hook to one of their current neigh-
bors and thus either become part of existing hooking trees or form new ones. The fact that the



components formed by the hooking of vertices are trees is ensured by the special hooking scheme
of the CL algorithm.

In the contraction phase some of the current hooking trees are contracted to a representative
vertex. Which trees are contracted is determined by a parameter, which depends on the stage and
sets an upper bound on the total degree, i.e. the sum of the degrees of the vertices, of the trees
which are contracted. For every contracted tree, its representative becomes a new active vertices
and the rest of its vertices become done and are removed from further consideration. Also all
multi-edges between new active vertices are cleaned-up. Finally the vertices of every uncontracted
tree become inactive.

The processing required by the hooking is performed in parallel time O(logd), where d is the
degree of the active vertex, using pointer jumping. The important part of the contraction procedure
is checking the degree of a hooking tree. In parallel this could be done in O(logc), where c is the
value of the contraction parameter, by using a pointer jumping and constant time edge-list plugging
technique.

Finally the CL algorithm is given by the following recursive procedure. Here MaxHook and
Contract(c) denote correspondingly a hooking and a contracting phase with parameter c.

procedure Connect (k)
MaxHook;
if k > 0 then
Contract (22°) ;
Connect(k — 1);
Connect(k — 1);
Contract (22);

The correctness of the CL algorithm ensures that a call to Connect([log!?) n]) contracts every
connected component of the graph to a single vertex and all the other vertices are organized in a
set of rooted parent trees such that the root of the tree of a vertex w is the vertex to which the
connected component of u contracted.

From the CL algorithm we extract trivially a sequential algorithm with the same linear space
requirement as the CL algorithm. We fix an ordering on the edges incident on a vertex and instead
of performing the hooking in parallel for all active vertices, we do it sequentially for each of them.
This is possible, because by changing the hooking scheme of CL slightly we can ensure that the
hooking of an active vertex does not depend on the hooking of the other active vertices. The details
of the sequential algorithm are given in the following section.

3 Definitions

3.1 Graphs, trees, and exploration walks

An undirected multi-graph is a graph with possibly multiple edges between any two vertices and
such that every edge has a label on each side, where the labels of the edges incident to a vertex v
have distinct labels on the side of v. We also have a single self-loop with label 0 at every vertex.
Formally we have



Definition 1. An undirected multi-graph G is a triple (V, 4, u), where V is a set, § : V — N, and
p : E — E is a bijection such that u(u(e)) = e and u(v,0) = (v,0), where E = {(v,7) : v €
Vand 0 <i<d(v)}

V is the set of vertices of G, E is the set of edges of G, d(v) is the degree of v, and u(e) is the
reverse edge of e. For an edge e, call the set {e, u(e)} an undirected edge.

Let n: E — V and 8 : E — N be the first and the second component of x. Then 7n(v,7) is the
i-th neighbor of v, i is the label of the edge (v,7), and [(v,1) is its back-label.

Define the size of G, size(G), to be |V]|.

In the following a graph means undirected multi-graph.

Definition 2. A graph G' = (V',§', ') is a subgraph of G, if V! C V and for every u,v € V/,
{i:n'(u, i) = v} <[{i:n(u,i) = v}

Define (simple) path, connected vertices, forest and tree in the usual way.

Definition 3. Let G be a graph. Let A : E X Z — E be such that A((v,7),j) changes by j the
label of the edge (v,i). More precisely for i # 0, A((v,7),j) = (v,1+ (i — 1 + j mod §(v))).

Define T, gy © E x Z¥ — E inductively on k > 0. First Tgo(e) = Tigg(e) = e
Now let U kr1(e, (j1,- - -5 dk+1)) = A(u(Ta k(e (G1s- -, k), Je+1) and Ty (e, (1, - - - 5 Jet1)) =
B(ATY (e (s ), k1),

Tar(e, (41,---,7k)) is called an ezploration walk starting from the edge e and using ezplo-
ration sequence (ji,...,jk). Dgy is called the reverse exploration walk. Let ¢ = (v, %) =
Taule, (J1,---,41)), for 0 < I < k. v, and e are correspondingly the I-th vertex and the I-th
edge visited by the exploration walk.

Exploration sequences were introduced in [K01]. The fact that they are reversible, more precisely
that I"G’k(I‘G,k(e, (J15---57%)), (—Jk,---,—Jj1)) = e, was noticed by Koucky and is what makes
them so important to us. The only fact about exploration sequences that we use is the following
proposition for exploration walks on trees.

Proposition 1 ([KO01]). Let 1 be the all-ones sequence of length k. Let e = (v,i) € E, i # 0, and
er = (vk, k) =Lgr(e, 1x). If G is a tree with at most one undirected edge between any two vertices
and k = 2(size(G)—1), then ey = e and every edge of G which is not a self-loop appears ezactly once
in eg,...,ex—1. Furthermore 2(size(G) — 1) is the smallest k such that v appears ezactly §(v) + 1
times in vy, ..., Vg.

In what follows we reserve exploration walk to mean exploration walk with the all-ones sequence
and a reverse exploration walk to mean a reverse exploration walk with the all-minus-ones sequence.
We also reserve I' and I' only for such walks, i.e. Tgr(v,i) = Tgr((v,4),1x) and I'y; ,(v,4) =

I x((v,49), — 1)
3.2 Operations on graphs
3.2.1 Configuration

A configuration is the state of the sequential algorithm described in section 2. Formally



Definition 4. A configuration is a tuple C = (G, A,I,D, H, R), where G is a graph with V' = [n],
for some n € N, and §(v) = 0, for v € D. A, I, and D form a partition of V. H : V — N
and R : V — V are such that H(v) < 6(v) and if R(v) # v, then v € D. Furthermore H and
R do not have non-trivial cycles in the following sense. Let vi,...,vx € V, k > 2. Then 1) if
vit1 = n(vi, H(v;)) and v1 = n(vg, H(vg)), then H(v;) =0, and 2) if v;4; = R(v;) and v; = R(vg),
then R(v1) = v1.

The elements of A, I, and D are called correspondingly the active, the inactive, and the done
vertices of G, for u € V, (u, H(u)) is the hooking edge of u, and R(u) is the representative of u.

A configuration C is correct, if there is at most one undirected edge between any two active
vertices, i.e. if u,v € A, then |{i : n(v,7) = u}| < 1.

Define repg(v) to be v, if R(v) = v, and repr(v) = repr(R(v)). By 2) of Definition 4, this
definition is correct.

Definition 5. Let C = (G, A, I, D, H, R) be a configuration. H defines a subforest F = (V,dp, ur)
of G, called the hooking forest of C, with at most one undirected edge between any two vertices in
the following way.

Fix v € V. Let 0 < 44 < --- < i be such that {i1,...,i} = {i : (v,i) =
p(u, H(u)), for some u € V'}. Let € be 1, if H(v) # 0, and 0, otherwise. First define dp(v) = k+e¢.
Now define ng(v, j) = n(v,i;), for 1 < j <k, and, ife =1, nr(v,k+¢) = n(v, H(v)). Finally define
Br(v,j) = i, where np(v,j) = v and nr(u,i) = v.

Let T be a maximal connected subtree of the forest F. We call T a hooking tree in C. The
root of T, root(T'), is the only vertex v in T such that H(v) = 0. The degree of T, deg(T), is
Zvev(T) d(v). For a vertex v € V' we denote with T, the subtree of F' which contains v.

The correctness of this definition and the fact that F' is a forest with at most one undirected
edge between any two vertices follow from 1) of Definition 4.

3.2.2 Hooking

We will define Hook(C) so that, if C describes the state of the sequential algorithm, then Hook(C)
is its state after one hooking step.

Being elements of N, the elements of V' are ordered. Define the linear ordering <4 on V so that
u <g v iff 6(u) < d(v) or 6(u) = §(v) and u < v.

The result of the hooking operation Hook(C) is the configuration C' = (G, A, I, D, H', R) defined
in the following way. If v is inactive, then H'(v) = H(v). If v is active, let v1,...,v5(,) be the
neighbors of v, i.e. v; = n(v,¢). For the rest of the definition when we have to choose an index
i, we always pick the smallest one with the corresponding property. If v has an inactive neighbor
v;, let H'(v) = i. If all neighbors of v are active, let v; be the largest according to <4 amongst
the neighbors of v. If v <4 v;, let H'(v) = 4. If all neighbors of v are active and smaller than v
according to <4, then if v has a neighbor v; which has an inactive neighbor, let H'(v) = i. If all
neighbors of v and their neighbors are active, then if v has a neighbor v; which has a neighbor
larger than v according to <4, let H'(v) = 4. Finally, if all neighbors of v and their neighbors are
active and smaller than v according to <4, define H'(v) = 0.

The fact that Hook(C) is a configuration is proven as in [CL93]. Furthermore, by [CL93], if T'
is a hooking tree in Hook(C) composed entirely of active vertices, then size(T) < deg?(T).



3.2.3 Contraction

We will define Contract(C,d) so that, if C describes the state of the sequential algorithm, then
Contract(C, d) is its state after one contraction step.

Let d € N. A hooking tree T in C is called d-contractable, if deg(T") < d.

The result of Contract(C,d) is the configuration C' = (G', A, I', D', H', R') defined in the fol-
lowing way.

First define A” = {v : v ¢ D and deg(T},) < d and root(T,) = v} and D" = {v : v €
D or deg(T,) < d and root(T,) # v}.

Now define I' = {v : v € D and deg(T,) > d}; H'(v) is H(v), if v € I, and 0, otherwise; R'(v)
is R(v), if v € D, root(Ty,), if v € D" — D, and v, otherwise.

Let T be a hooking tree in C and s = size(T'). Let v1,...,vs be the enumeration of the vertices
of T visited by the exploration walk starting from (root(7),1), where we enumerate a vertex only
the first time it is visited by the exploration walk. Let ey,...,e; be the enumeration of the edges

of G incident to the vertices of T' defined in the following way — enumerate all edges incident to w1,
then all edges incident to v, and so on. Obviously k = deg(T).

Let us define now G'. For u € A", define [, € N and the following enumeration of edges e ;,
1 < j <1,. First consider the enumeration ey, . . ., e; of the edges of T, from the previous paragraph.
Remove from this enumeration all the edges which are internal to Ty, i.e. such that n(e;) € V(Ty).
From every subsequence of edges whose other end belongs to the same d-contractable hooking tree
leave only the first edge, i.e. for every d-contractable hooking tree T # Ty, of C, if e;,, ..., €;, are all
the edges in the sequence ey, ..., e such that n(e;;) € V(T'), leave only e;,. Let I, be the number
of remaining edges in the enumeration and e, j, 1 < j < I, be their enumeration. Naturally we
call the edges e, j, the remaining edges of T,.

Define A' = A" —{ve A" :1,=0}, D'=D"U{ve A" : 1, =0}; §'(v) is L, if v € A, §(v), if
vel,and 0, ifv e D'.

We are left now to define p'(v,7). First assume v € A'. Let (u,j) = p(eyi). If T, is not
d-contractable, then define u/(v,7) = (u,j). If Ty, is d-contractable, then define p'(v,i) = (w, k),
where w = root(T,) and k is the only index such that n(ey ) € V(Ty). Now assume v € I'. Let
(u,j) = p(v,7). If T, is not d-contractable, then define u'(v,7) = (u,j). If T}, is d-contractable, let
p' (v,4) = (w, k), where w = root(T,,) and k is the only index such that e, ; = (u, j).

From the definition of C' = Contract(C, d) follows that C' is a correct configuration such that
§'(v) < d, for v € A', and deg(T},) > d, for v € I'. Furthermore in the hooking forest F' every
v € A'U D’ is in a hooking tree which contains only v.

3.3 Sequence of configurations

For some r € N, we will define a sequence of configurations C,;, 0 <1 < r. In the following we omit
r from the subscripts of elements of the sequence.

First define recursively a rooted tree C} (here a tree is used in the usual sense) of depth k
whose leaves are labeled. The root and only leaf of Cy is labeled with (1,0). The root of Cy, k > 1,
has four descendants. From left to right they are: first a leaf labeled with (0, k), second Cj 1,
third Cg_1, and finally a leaf labeled with (1,%k). By induction it can be proven easily that Cj
has 7(k) = 3 - 2% — 2 leaves. Number starting from 1 the leaves of C} as they appear in its left to
right traversal. For 0 <[ < r(k), let o(k,l) be (0,0), if I = 0, and the label of the I-th leaf of Cy,



otherwise. Let o1 (l) and o9 1(I) be correspondingly the first and the second component of o(k,1).
In the following we omit k from the subscript of oy ; and o9 .

Let Cy be some configuration. Assume that we have already defined Cy, ...,C;_1 for 1 <1 < r(k).
Let C; be Hook(C;—1), if o1(l)o2(l) = 0, and C;_;, otherwise. Let C; = Contract(C;, 2262””01([)).

Let C}, be the labeled tree, which is obtained from C} by substituting the label of the I-th
leaf with (Hook; Contract(222“"*“)) "if 51(1)o2(l) = 0, and Contract(22>’*") otherwise. The
structure of Cj, follows the structure of the recursive calls of Connect(k) — the levels of C}, are the
levels of recursion of Connect(k). Thus the configurations in the sequence defined in the previous
paragraph are exactly the states of the sequential algorithm after consecutive operations, where C
is its state initialized according to the input graph.

Define a configuration C; to be nice, if it is correct and 1) size(Ty,) > 22"*" and deg(T,) > 22"
for v € Ij, and 2) §;(v) < 22h+2, for v € A;, where h is k, if | = 0, and o2(l) — 1 + 01({), otherwise.
By definition C; is nice iff the state described by it fulfills the preconditions given in [CL93] for
executing Connect(h).

Considering the correspondence between the sequence C,...,Cy) and the Connect(k) proce-
dure of the sequential algorithm, the following theorem is a consequence of the results in [CL93].

Theorem 1. If Cy is a mice configuration, then C; is nice, for every 1 < I < r(k), |4,m)| <
max{|Ao|/22*,1}, and size(T,) > 22", for v € I (k-

Finally, again by [CL93], we have the following corollary, which says that, if we initialize Cp
according to some undirected graph G, then in C, all components of G are contracted.

Corollary 1. Let G be a graph with at most one undirected edge between any two vertices and
V =1In]. Letr =3- 2Mog®nl _ 9 gnd ¢y = (G,A,1,D,H,R), where A = {v:6§(v) #0}, I =0,
H(v) =0 and R(v) = v, forve V. Then u and v are connected in G iff repp (u) = repg_(v).

4 Space efficient algorithm

4.1 An O(log?n) algorithm

Let G be a graph with V' = [n] and with at most one undirected edge between any two vertices. Let
r = 3.2M106® 1l _o Consider the sequence of configurations Cy, . . . ,C, from Corollary 1. The starting
point for a space efficient algorithm comes directly from the definition of this sequence. More
precisely we define functions Active(l,v), Inactive(l,v), Done(l,v), Degree(l,v), Neighbor(l, v, i),
BackLabel(l, v, ), Hook(l,v), and Rep(l,v), where 0 <! < r, v is a vertex, and 7 is the label of an
edge incident to v, which return the corresponding component of C;.

Call the value of the parameter [, the level of recursion. Thus the levels of recursion of our
algorithm correspond to the elements of the sequence Cy,...,C.. For [ = 0 all of these functions
just use the input graph G (this is the bottom of the recursion), and their output for level [ + 1 is
determined from outputs for level [ according to the definitions in section 3.3. Using these functions,
to solve undirected s, t-connectivity we apply Corollary 1.

Consider the sequence Ci,...,C._; corresponding to Co,...,C, as defined in section 3.3. To
obtain C; from C;_; we define NewHook(,v), which returns Hj(v) as defined in section 3.2.2. C; is
obtained from C; by contracting some of the hooking trees in C; as defined in section 3.2.3. For a
hooking tree T' in C}, by the definition of contraction from section 3.2.3, we must determine deg(T')



and be able to enumerate the vertices of 7" as they are visited by the exploration walk on 7" starting
from (v, 1), for v € V(T'). For these purposes we define TreeSize(l,v) and TreeWalk(l,v,:). Let T
be the hooking tree in C; containing v. If s is the size of T', TreeSize(l,v) returns 2(s — 1). Notice
that 2(s — 1) is the length of the exploration walk on T' given in Proposition 1. TreeWalk(l,v,1)
returns I'r (v, 1).

The definition of C; from C; ; given in section 3.3 depends on two parameters — whether
we perform hooking and a contraction parameter. Those two parameters are determined by
(e,k) = o([log® n],l) as given in section 3.3. We define functions Sigma(l), ContractOnly()
and ContractDegree(l) which return correspondingly 2k + ¢, whether we perform hooking, and
what is the contraction parameter.

The following claim can be proven by going over the details of the definitions of each of the
functions mentioned above. It is not hard to see that each level of recursion takes O(logn) space.

Claim 1. The functions Active(l,v), Inactive(l,v), Done(l,v), Degree(l,v), Neighbor(l,v,1),
BackLabel(l,v,i), Hook(l,v), and Rep(l,v), correctly return the corresponding components of C;.
The total space taken by the execution of each of these functions is O(llogn).

4.2 The O(lognlog® n) algorithm

The precise definition of all functions mentioned in this section and the next are given in the
appendix.

The O(logn) space per level in Claim 1 comes mainly from having to store vertices in the local
variables of the functions, since each vertex takes ©(logn) space. To take care of this bottleneck
we define the functions so that they never have to keep a vertex in their local variables.

The first step towards such definitions is to remove the vertex v from the argument list of the
functions. Instead of this argument, we maintain one current vertex in a global variable currvertex
and all functions return information about this vertex. A function which otherwise must return a
vertex is defined, so that after its execution the current vertex is its result (in this case we say that
the function moves the current vertex). It is a responsibility of the calling function to keep enough
information locally to restore the original current vertex, if it needs to. Denote the current vertex
with cv.

To implement this, first we change some of our functions. Instead of Neighbor(l,v,), we have
Neighbor(l, ), which moves the current vertex to its i-th neighbor in C;. Let T be the hooking tree
of cv in C;. Instead of TreeWalk(l,v,i) we have TreeForward(/,¢), which returns j and moves the
current vertex to u, where (u,j) = I'r;(cv,1). Similarly we have TreeBack(l,, ) which moves the
current vertex to the end vertex of I"Tﬂ-(cv, j)- Finally instead of Rep we have Root as described in
Lemma 1 below.

The most important part of our idea to avoid storing vertices is to be able to move the current
vertex temporarily, perform something at the new current vertex, and then return to the original
current vertex. For this define Move(l,i) to return §; 1(cv,?) and move the current vertex to
Mi—1(cv,7). Let Current be the empty function (we just use it as the path description, defined later,
of the current vertex). Call Move(l, ), TreeForward(l,7) and Current forward moves. For a forward
move M, let Reverse(M, j) be its reverse, i.e. it is correspondingly Move(l, j), TreeBack(l,, ), and
Current, where j is the result of M. It is here that the reversibility of exploration walks comes
into play, because it allows us to use TreeBack as the reverse of TreeForward.



We use forward moves to change the current vertex and their reverses to restore it. Call a
sequence of forward moves path description relative to the current vertex. If P is a path description
relative to the current vertex and B is some instruction(s), then define after P do B to change the
current vertex according to P, perform B, and then use the reverse of the moves in P to restore the
current vertex.

A simple example of the use of after is the operator =, which compares two vertices given their
path descriptions relative to the current vertex and returns true iff they are the same. Using after
we can move to the first vertex and store it in a local variable, then go to the second vertex and
compare the two. This takes O(logn) space. Instead of this, going back and forth between the
three vertices, using the reversibility of the moves along the edges and the exploration walks on the
trees, we perform the comparison bit by bit. Aside from the information stored for the ways back,
this takes only the @(log(2) n) space necessary to store the index of a bit. This way the bottleneck
of ©(logn) space is reduced to Q(logt? n).

For example, we use the = operator in the definition of TreeSize in the following way. Using
Proposition 1, we can make steps from the exploration walk on a hooking tree T' until we go back to
the starting vertex v sufficiently many times. For this we have to store v, so that we can compare
it with each new vertex of the walk. This takes ©(logn) space, independent of the degree of T'.
Instead, we incrementally find 7 with properties as in Proposition 1, where to check if the i-th
vertex of the walk is equal to v, we keep the current vertex at v and use the = operator, as defined
above, to compare it to the vertex with path description TreeForward(i). Thus, if T has degree d,
we can find its size in space O(max{logd,log® n}).

The second part of our idea to reduce the space of the algorithm is to have an upper bound v(l)
on the values which variables can take at level [, i.e. during the execution of all functions at level [
the values of their local variables are at most v(I). We set v(I) = 2-22""*, where k = o3([log® n],1).
Call a number x valid for level [, if it is at most v(l). A vertex v is wvalid for level [, if its degree
d;-1(v) is valid for level .

Using the concept of a current vertex, we can eliminate the need to store a vertex in a local
variable and thus our local variables contain only degrees of vertices, indices of neighbors, back-
labels of edges, and lengths of exploration walks on hooking trees. For example, the information
stored for reversing a sequence of forward moves are back-labels (for Move) and tree-edge labels
(for TreeForward). We still have to make sure that every time we store a value in a local variable
it is valid. For this the following observation is helpful.

Observation 1. 1) The labels of the edges incident to vertex v valid for level | are valid for level I.
This is not necessarily true for their back-labels. 2) All vertices which are active in C;_1 are valid
for level 1. 3) If a hooking tree T in C, is contractable, then all of its vertices are valid for level I.

The first item of the observation is trivial, the second follows from Theorem 1, because all C;
are nice, and the third follows because Valid(l) > ContractDegree(l).

One consequence of having an upper bound on the numerical values for a level is that we might
not be able to process the result of a function, if it is invalid for the level requesting it. Actually, as
can be seen from Lemma 1, some functions are specified to return null (a special constant different
from all numerical values), if their result is invalid for the level requesting it. The only information
we can derive from an invalid or null result is that either the current vertex or a neighbor of
the current vertex is invalid, or that the current vertex is part of an uncontractable tree. This
information is enough to define the functions as in Lemma 1. First, we never move to a vertex from



which we cannot return (i.e. along an edge with an invalid back-label), so we never have to store an
invalid back-label locally. Second, vertices which are either invalid or part of an uncontractable tree
are inactive and thus, by definition, inherit their properties from the previous level. In a hooking
operation (section 3.2.2), we do not need to lookup the degree of an invalid (and even inactive)
vertex. In a contraction operation (section 3.3.3), we can stop the exploration walk on a tree as
soon as the walk runs into an invalid vertex, because then the tree is clearly uncontractable.

Our goal has become to prove the following lemma. Let T be the hooking tree of cv in C]. Let
(cv,%) be an edge of T' and v = nr(cv,i). We call a move along (cv,i) possible for level I, if v is
valid for level I. T is contractable for level I, if deg(T') < d, where d is the contraction parameter
for level I.

Lemma 1. 1. Active(l), Inactive(l), Done(l), Hook(l), and Degree(l), correctly return the
value of the corresponding component of C; for cv. NewHook(l) returns Hj(cv), for 1 > 1.

2. If T is uncontractable or cv € D;_1, then Root(l) returns 0, otherwise it returns the index of
the first occurrence of root(T') in the exploration walk on T starting from (cv,1).

TreeSize(l) returns 2(size(T) — 1), if T is contractable for level I, and null otherwise.

Assume that cv is valid for level . If all moves of I'r i(cv, 1) are possible for level l and it ends
in (v,7), then TreeForward(l,i) moves the current vertex to v and returns j. If all moves of
I"T,i(cv,j) are possible for level | and it ends in v, then TreeBack(l,i,j) moves the current
vertex to v.

3. Let (v,j) = wi(cv,i). Neighbor(l,i) moves the current vertex to v; BackLabel(l,7) returns j,
if j is valid for the level at which BackLabel(l,i) was called, and null otherwise.
All local variables are valid.

The proof of the lemma is done by induction on the level of recursion. The base case could
be easily verified from the definitions of the functions and the burden of the proof lies in making
the inductive steps. For this we need the correctness of the functions which a given function calls.
Sometimes we have to use correctness for the same level of recursion, but this does not result in
a circular reasoning because for any two functions F and G, there are no chains of function calls
within the same level of recursion both from F to G and from G to F. This fact can be seen from
the definitions of the functions.

4.3 Solving undirected s, t-connectivity

Using Lemma 1 we can prove the main theorem of this paper.

Theorem 2. Undirected s,t-connectivity on a graph with n wvertices can be solved in space
O(log nlog® n).

By Corollary 1, s and t are connected iff repgp_(s) = repg, (t). Thus to solve undirected s, -
connectivity it is enough to define a function which returns repg, (cv).

Let m = [log(2) n|. The space complexity of the algorithm is dominated by the space taken by
the stack used in the execution of the pseudo-code. From Lemma 1 follows that each local variable
at level [ is at most v(l). Since there are constant number of local variables per function and the
length of every chain of function calls within the same level of recursion is bounded by a constant,
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the space taken by level [ is O(max{logwv(l), m}) (the additional O(m) space appears because of
comparison of vertices). Since logv(l) = O(2k"), 1 < I < r, where k(I) = o9(m,I), we have to
prove that 3°7_, max{2*(®) m} = O(lognlog® n).

Consider the recurrence given by S(0) = m and S(k + 1) = 2(S(k) + max{2¥,m}). From
the recursive definition of C, given in section 3.3 follows that the left hand side of the equation
which we want to prove is exactly S(m). Finally it is not hard to prove by induction that S(m) =
O(lognlog® n).

5 Conclusion

We demonstrated a O(logn log(z) n) space algorithm for undirected s, t-connectivity. An interesting
question is can we use similar techniques to extract an even more space efficient algorithm from
[CHL99]. Unfortunately we were not able to do so, the main obstacle being that in the PRAM
models comparison of O(logn) bit numbers takes constant time and we need O(log® n) space to
do the same.

Acknowledgments The author is grateful to Prof. Anna G4l for help in the preparation of this
paper and Prof. Vijaya Ramachandran for pointing out the problem and many helpful discussions.
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6 Appendix: Pseudo-code and Turing Machine

Since giving directly the Turing Machine which solves the problem is rather cumbersome, we define
our algorithm using a pseudo-code and then translated it to a Turing Machine. The language of
the pseudo-code is similar to Pascal, except that the blocks are marked by indentation rather than
begin and end. We use fixed width font to denote the names of functions and variables from the
pseudo-code, e.g. FooBar and i, and a roman font for mathematical functions and variables, e.g.
FooBar and ¢. In this section we give the pseudo-code, discuss its execution and how to translate
it to a Turing Machine.

6.1 Execution of the pseudo-code

The variable usage and execution of the pseudo-code are similar to a program written in Pascal.
During its execution a function can use only its own local variables and the global variables. For
the execution of the functions we use a stack which contains the local variables of the functions
executed at the moment. The part of the stack devoted to the execution of a function is called the
stack frame of the function. The top of this stack contains the stack frame of the function being
executed at the moment. When the current function calls another function, first a new stack frame
is allocated on the top of the stack and then the new function is executed. Part of the stack frame
of a function contains information about the address (the place in the program) from which the
function was called. Once the current function is finished its stack frame is removed from the top of
the stack and the execution resumes from the address from which the current function was called.

In addition to functions which are executed using the stack we have global functions, which do
not use the stack for their execution. Such functions use only global variables for their execution
— i.e. their “local” variables are in fact global variables which are visible only from the particular
global function. Since in what follows we are only concerned with the contents of the stack, we will
concentrate on functions which use the stack.

The execution of the pseudo-code proceeds in the following way. Every function is executed at
some level of recursion. During its execution, a function can call other functions either on the same
level of recursion or on a lower level of recursion. There is a constant ¢, such that the length of a
chain of function calls within the same level of recursion is at most ¢. The stack frames of functions
executed in the same level of recursion are consecutive on the stack. We call such a sequence of
stack frames, the stack frame for the level. From the fact that any stack frame for a level contains
at most ¢ stack frames for functions and that each function uses a constant number of variables
follows that there is a constant d such that the stack frame of every level contains a total of at
most d variables.

The local and global variables contain only numerical and boolean values, and a special value
null, different from any other value. For every level of recursion [ we have an upper bound
v(l), computed by a global function, on the numerical values which are valid for this level, i.e. all
numerical values at level [ are at most v(l). Boolean values and null are always valid.

6.2 Passing arguments and returning values

We have two methods of passing arguments to a function and returning a value. The first is through
global variables and the second is through global arrays which contain an entry for every level of
recursion.

14



The method which uses global variables is straightforward. We have global variables which
are set to the arguments of the function before it is called. We denote the global variables for
the arguments of a function F with arglF, arg2F, and so on. During its execution a function can
lookup its arguments from these global variables. It might decide to store them as local variables,
but this might not always be possible, because the arguments might be invalid for the current level
of recursion.

To return a value a function sets a global variable. After a return from a call of a function,
the calling function decides whether it wants to store the returned value locally. We have a special
assignment operator, ::=, which assigns the return value r of a function returning through a global
variable to a local variable in the following way: if r is valid for the current level of recursion, the
result of the assignment is r, otherwise it is null.

The method which uses arrays is more subtle. Let F be a function which uses this method of
passing arguments and returning values. We have two arrays — one, argF, for passing arguments
to F and one, retF, for returning a value from it. Those arrays contain exactly one entry for every
possible level of recursion and each entry could be marked. Also each entry holds values which are
valid for the corresponding level of recursion.

Let H calls F. If H uses the value returned by F, then before the call to F the entry of retF for
the current level of recursion is marked, otherwise it is left unmarked. When F produces a result,
it finds in retF the first marked entry after the entry for the current level of recursion and tries to
store its result there. If the value produced is too large for the corresponding entry, F writes null.
After the call to F returns, H unmarks the entry of retF for the current level of recursion.

Similarly, if H provides arguments to F, then before the call to F, H marks the entry of argF for
the current level of recursion and provides values for it. When F wants to access its arguments it
looks up, starting from the current level, and finds the first entry of argF which is marked and uses
the values stored in the entry as its arguments. After the call to F returns, H unmarks the entry of
argF for the current level of recursion. In the code we denote with argF the argument to F, with
the agreement that this is a call to a global function returning the argument rather than access to
a global variable.

This method can be used, if F is always called on the previous level of recursion, i.e. all calls to
F are F(I — 1,...), because then there is no danger of overwriting its arguments or returned value.

The restriction we have on the space of a level is the reason why we chose those methods of
passing arguments and returning value. The method using arrays is more unusual, and it is used
only in two functions, BackLabel and BackLabelAux. The reason why we introduced it is explained
in the notes for those functions.

In the code, we use F(z1,...,z) to call a function F with arguments 1, ...,z . If a function
F takes arguments, but is called without ones, it uses the values currently located in the global
variables (or the arrays) for F.

6.3 Translation of the pseudo-code to a Turing Machine

Let us address now the issue of translating the pseudo-code to a Turing Machine with a binary
alphabet. Most of the details, like doing arithmetic and performing conditionals are rather straight-
forward, so we skip them and concentrate only on variable usage. Numerical values are represented
in binary. To represent the null value, we use one additional bit to designate whether the value is
null or not. We have a separate tape for each global variable (there are only constant number of
them). The space taken by each global variable is O(logn).
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There is a tape assigned for the stack and the head of this tape is positioned at the stack frame
of the current function, i.e. at the top of the stack. The stack frame of a function contains the state
to which the TM machine must return after the execution of the function (this takes a constant
number of bits depending only on the TM) and the values of the local variables of the function.

The space taken by each local variable depends on the level of recursion at which the stack frame
occurs. Since at a level [ the value of every valid local variable is at most v(l), the space s(I) taken
by such variable at level [ is O(logv(l)). This space is known to the current function, because it
can be computed (by a global function) from the current level of recursion. So to use the i-th local
variable the current function must move the head of the stack tape to the place where the variable
is located. This place can be computed by the current function from ¢ and s(I). As discussed
earlier there is a constant d such that the stack frame of the [-th level of recursion contains at most
d variables. Thus the space taken by the stack frame of level [ is O(max{logv(l),log® n}). The
O(log(2) n) appears because of comparison of vertices, as explained in section 4.2 and the definitions
of the comparison operators in section 6.4.2.

After the execution of the current function the state of the TM is restored to the value stored
on the stack and the head of the stack tape is moved to the stack frame of the caller.

6.4 Pseudo-code
6.4.1 Preliminaries

To simplify the exposition of the algorithm, we remove the level of recursion from the argument
lists of the functions. Instead we have one global variable, 1evel, which contains the current level
of recursion. level is set to 3 - 2M0s@nl _ 1 initially. Let F be a function which calls a function
G on the previous level of recursion. This task is performed by Prev, namely Prev(G(...)) passes
arguments to G, decreases the current level of recursion, calls G, and upon return from G increases
the current level of recursion. This is the only way that the current level of recursion is changed —
all functions can lookup the value of 1level, but none of them can change it. We denote the current
level of recursion with cl.

In the following, T' denotes the hooking tree of the current vertex in C.;. A hooking tree in C.,
is called contractable, if it is d-contractable, where d is the contraction parameter for level cl. A
value is valid, if it is valid for level cl.

We use the following observation. It follows from Observation 1 and the correctness of the
functions mentioned in it.

Observation 2. 1) If TreeSize # null, then all moves of TreeForward(i) are possible, for i > 0.
2) If MoveValid(i) is true, then the result of Move(i) is not null and wvalid, otherwise ne 1(cv,1)
1s tnvalid and in I,_1.

By this observation TreeSize and MoveValid serve as “safeguard” checks for forward moves.
Thus before using a sequence of forward moves to change the current vertex, if we want to be able
to return, e.g. in an after statement, we always first make sure that all the forward moves of the
sequence return valid results.

A1l functions, except BackLabel and BackLabelAux, take arguments and return values through
global variables.

Every function is preceded by paragraphs which give its specification and describe its local
variables. Also notes are made on the definition and correctness of the function, and on the validity

16



of its local variables. In the notes we use interchangeably the name of a local variable, given in
fixed font, and its value.

6.4.2 Important functions

Sigma is a global function, which takes one argument [ and returns 2k + ¢, where (¢,k) =
a([log® n],1).

global function Sigma
k := [log@n];
while true
if k = 0 then return 1;
else
if 1 = 1 then return 2-k;
else
if 1l = 3.2 — 2 then return 2-k+1;
else
if1 > 3.25! then1 :=1 — 3-25141;
k :=k — 1;

Valid, ContractDegree, and ContractOnly are global functions which do not take arguments
and return correspondingly v(cl), what is the contract parameter for level cl, and whether we
perform hooking to define C!; (see section 3.3).

global function Valid

2+4Sigma(level) div 2
return 21+271Emcerel) ;

global function ContractDegree

22Sigma(leval) div 2 + Sigma(level) mod 2.
return ;

global function ContractOnly
return (Sigma(level) div 2) (Sigma(level) mod 2) # O0;

Let Mp,...,M; be a path description relative to the current vertex (see section 4.2).
after M;,...,M; do B changes the current vertex according to the moves in Mj,..., M, executes
B, and finally restores the original current vertex. Its local variables are 1i,...,1;. A function
using after must make sure that the values of 11,...,1; are valid using “safeguard” checks as
explained in section 6.4.1.

define after My, My, ..., M; do B
1; := My; 19 := Mo ...; 1 := Mg;
B;
Reverse(Mg, 1g); ...; Reverse(Ms, 13); Reverse(M;, 17);

The operators <, =, and <4 take as arguments two path descriptions relative to the current vertex
P; and Py. Let v; and vs be the end vertex of P; and Ps, correspondingly. The three operators
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check correspondingly, whether v; < vg, v1 = v2, and v; <4 ve. The local variables of < and = are
i, by, and by. The local variables of <; are d; and ds.

Bit(s,t) returns the s-th most significant bit of ¢. b; and by are single bits, and the function
using <; must make sure that the values of d; and ds are valid using a corresponding “safeguard”
check as explained in section 6.4.1. The i variables of < and = are the only local variable whose
value is ©(log n). As given in Lemma 1, all other local variables are valid. Thus the space for level
1 is O(max{logv(),log® n}).

define P; < Py
for i := 1 to [logn] do
after P; do b; := Bit(i, currvertex);
after P do by := Bit(i, currvertex);
if b; # by then return b; < by;
return false;

define Py = Py
for i := 1 to [logn] do
after P; do b; := Bit(i, currvertex);
after P do by := Bit(i, currvertex);
if b; # bs then return false;
return true;

define Py <4 Py
after P; do d; ::= Prev(Degree);
after Py do d, Prev(Degree) ;
return (d; < dy) or (d; = dy and Py < Py);

6.4.3 Status functions

Done, Active, and Inactive return correspondingly whether cv € D, cv € Ay, and cv € 1.
These functions do not have arguments and local variables.

function Done
return (level = 0 and Degree = 0) or
(level > 0 and (Prev(Done) or Root # 0O or Degree = 0));

function Active
return (not Done) and TreeSize # null;

function Inactive
return (not Done) and TreeSize = null;

6.4.4 Hooking

NewHook does not take arguments and returns H;(cv), ¢l > 1. Its local variables are dy, d, i, j,
and m.

NewHook is defined as given in section 3.2.2. In line 7 we use 1) of Observation 1 to deduce that
Nei—1(cv,1) € Iy_q1. At line 3 cv € A1 and hence d; is valid and non-null. So i and m are also
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valid. At line 10 we have that n._1(cv,1),7e—1(cv,m) € Agy_1. At line 12 all neighbors of cv are in
A. 1. Hence ds and j are valid.

function NewHook

1 if Prev(Inactive) then return Prev(Hook);
2 if Prev(Done) or ContractOnly then return O;
3 dy = Prev(Degree);
4 m := 0;
5 for i := 1 to d4; do
6 [l if the i-th neighbor is inactive then hook to it
7 if not MoveValid(i) then return i;
8 after Move(i) do fl := Prev(Inactive);
9 if f1 then return i;

/| otherwise check if it is bigger than the current biggest

Il active neighbor
10 if Move(m) <4 Move(i) then m := i;
11 if m > 0 then return m;
12 for i := 1 to d4; do
13 after Move(i) do dy ::= Prev(Degree);
14 for j := 1 to d2 do

[l if the j-th neighbor of the i-th neighbor is inactive hook to 1%
15 after Move(i) do fl := MoveValid(j);
16 if not f1 then return i;
17 after Move(i), Move(j) do f1 := Prev(Inactive);
18 if f1 then return i;
|| otherwise hook to i, if its j-th neighbor is bigger than currvertez

19 if Current <; (Move(i), Move(j)) then m := i;
20 return m;

Hook returns H;(cv). It does not have arguments and local variables.

function Hook
if level = 0 then return 0;
if Inactive then return NewHook;
return O;

IsHooked takes one argument 7. Let (v,j) = pe—1(cv,i) and h = H.(v). If cv is valid or
de1—1(cv) < 8g—1(v), then IsHooked is true iff h = j. The local variables of IsHooked are i, j, and
h.

i is valid because of line 2, j is valid because of the assignment in line 5, and h is valid because
of the assignment in line 9.
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function IsHooked
if argIsHooked = 0 then return NewHook = 0;
if argIsHooked > Valid then return Prev(IsHooked(argIsHooked));
i := arglsHooked;
if Prev(Degree) > Valid then return Prev(IsHooked(i));

Bw NN -

j := Prev(BackLabel(i));

if j = null then
if Prev(Active) then return false;
return Prev(IsHooked(i));

after Move(i) do h ::= NewHook;

10 return h = j;

© 0 ~N O O,

We will prove the correctness of IsHooked by induction on ¢l. Notice that for ¢l = 1, the checks
in lines 2, 4, and 6 all fail because at level 1 all vertices are valid, and we compare h and j in line
10.

First consider the case when cv € A,_1. In this case cv is valid by 1) of Observation 1. If j is
invalid, then v € I; 1, and it did not hook to cv (otherwise cv € I,;_1). We catch this in line 7. If
j is valid, then in line 10 we check whether it is equal to h.

Let now cv € I;_1 and v € Ay_1. Since v is valid, cv is valid also, because this follows from
de1-1(cv) <84 1(v) and v valid. So i, j and h are valid and we can compare h and j in line 10.

Assume now that cv,v € I;_1. In this case the only way IsHooked returns an answer without
calling recursively is in line 10, then j is valid and we have compared it to h. Notice now that, if
IsHooked calls itself recursively then §;_1(cv) < d—1(v). This is true for the calls in lines 2 and 4,
because then cv is invalid. For the call in line 8 this is true, because cv is valid and v is invalid. Since
cv,v € Igy_1, we have that ¢l > 2, §_2(cv) = de—1(cv), de1—2(v) = 6q—1(v), (v,3) = per—2(cv, 1),
and h = H], ,(v). Thus the correctness in this case is ensured by the inductive hypothesis.

6.4.5 Exploration walk

The functions in this section come from the definition of a hooking forest of a configuration given
in section 3.2.1. T is the hooking tree of cv in C.,;.

TreeDegree does not take arguments. If cv is valid for level [, it returns dr(cv), otherwise it
returns null. Its local variables are i, d, and td.

In line 5 we use that cv is valid to apply the correctness of IsHooked. d is valid because of the
assignment in line 1, and i and td are valid because at line 3 cv is valid.

function TreeDegree
Il if currvertex is invalid return null
1 d ::= Prev(Degree) ;
2 if d = null then return null;

3 td := 0;

[l count the number of neighbors which hooked to currvertez
4 for i :=1 to d do
5 if IsHooked(i) then td := td + 1;
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[l add 1 if currvertez did not hook to itself
6 if NewHook # O then td := td + 1;
7 return td

TreeMove takes one argument i. Let (v, j) = pr(cv,i). Assume that cv is valid. If a move along
(cv,1) is possible, i.e. v is valid, TreeMove returns j and moves the current vertex to v, otherwise
it does not change the current vertex and returns null. The local variables of TreeMove are i, j,
k, 1, d, dj, and r.

Lines 2-7 convert from the label i of a tree-edge e to a label j of an edge in the graph. In line
5 we use that cv is valid to apply IsHooked. Lines 8-10 handle the case when v is invalid. Lines
11-26 compute the tree back-label r of e and move the current vertex to v. Lines 11-13 handle the
case, when v hoked to the current vertex. Lines 14-26 handle the case when e is the hooking edge
of the current vertex. In lines 19-21 we use that, if the k-th neighbor of v is invalid, then it is not
cv, because cv is valid.

i, j, 1, and d are valid, because cv is valid (the assignments in lines 3 and 7 are non null). d;
is valid because of the assignment in line 9. k and r are valid because at line 14 v is valid.

function TreeMove
i := argTreelMove;

1 if i = 0 then return 0;

[l convert from tree-edge label to graph-edge label

2 1l :=1i;
3 d ::= Prev(Degree);
4 for j :=1 to d do
5 if IsHooked(j) then 1 :=1 - 1;
6 if 1 = 0 then break;
7 if j > d then j ::= NewHook;
[l if the new vertez is invalid return null
8 if not MoveValid(j) then return null;
9 after Move(j) do d; ::= Prev(Degree);
10 if d; = null then return null;
11 if i < TreeDegree or (i = TreeDegree and NewHook = 0) then
[l e goes to a neighbor which hooked to currvertez
12 Move (j);
13 return TreeDegree;
[l e is the hooking edge of currvertez
[| compute the tree back-label
14 r :=1;
15 for ¥ := 1 to d4; do
16 after Move(j) do fl := IsHooked(k);
17 if not f1 then continue;
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/| enumerate all the edges with which neighbors
[| of the new vertex hooked to it

18 after Move(j) do fl := MoveValid(k);

19 if not f1 then

20 /| the k-th neighbor of the new vertexr is invalid
21 r :=r + 1;

22 continue;

[| check if this is the edge with which currvertexr hooked to the
[l new vertez

23 if (Move(j), Move(k)) = Current then break;

24 r :=r + 1;

|| move to the new vertezx

25 Move (j);
[| return the tree back-label
26 return r;

TreeForwardStep takes one argument ¢. Let (v,j) = I'r1(cv,i). Assume that cv is valid. If a
move along (cv, 1) is possible, i.e. v is valid, then TreeForwardStep returns j and moves the current
vertex to v, otherwise it returns null and does not change the current vertex. The local variable
of TreeForwardStep is j.

function TreeForwardStep
j := TreeMove(argTreeForwardStep) ;
if j = null then return null;
joi=3+1;
if j > TreeDegree then j := 1;
return j;

TreeForward takes one argument i. Assume that cv and 7 are valid. If all moves of I'r;(v,1)
are possible and it ends in (v, j), then TreeForward returns j and moves the current vertex to v.
The local variables of TreeForward are i, j, and k.

function TreeForward
argTreeForward;

iz
j =1
for k := 1 to i do

j TreeForwardStep(j);
return j;

TreeBack takes two arguments ¢ and j. Assume that cv and ¢ are valid. If all moves of I"T,i(v, 7)
are possible and it ends in v, then TreeBack does not return anything and moves the current vertex
to v. TreeBack is defined in a way similar to TreeForward using a function TreeBackStep.
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function TreeBackStep
j := argTreeBackStep - 1;
if j = 0 then j := TreeDegree;
return TreeMove(j);

procedure TreeBack
i := arglTreeBack; j := arg2TreeBack;
for ¥k := 1 to i do
j := TreeBackStep(j);

TreeSize does not take arguments. It returns 2(size(7T") — 1), if T is contractable, and null,
otherwise. Its local variables are i, i, k1, ko, d, and td.

2(size(T) — 1) is the length of the exploration walk given in Proposition 1. The method to
compute it is provided by the same proposition, i.e. TreeSize incrementally finds (line 6-22) the
length of a walk which visits the current vertex exactly the number of times equal to its tree-degree
plus 1 (the check is done in lines 13 and 14). Before increasing the length of the walk, we first
makes sure that the next move is possible (lines 7-12). If it is not, TreeSize returns null. This
is correct, because if T' has an invalid vertex, it is not contractable (Valid > ContractDegree).
Otherwise it checks, if the walk went back to the starting vertex and returns, if the starting vertex
was visited sufficiently many times. Also when TreeSize visits a vertex for the first time (lines
15-17), it adds its degree to the current total degree of T' and returns null, if the total degree
becomes larger than ContractDegree (lines 18-21).

The condition of the loop in line 6, makes sure that the current length i of the exploration
walk is valid. If it is not, line 23 returns null because 7T is uncontractable. This is correct because
on one hand s < deg(T) (at line 6, T has at least one edge) and on the other, by Proposition 1,
exploration walk of length 2(s — 1) visits all vertices of a tree of size s and returns to the starting
vertex sufficiently many times. Since Valid > 2 ContractDegree, if the length of the exploration
walk becomes bigger than Valid, then s > ContractDegree, so deg(T") > ContractDegree and T
is uncontractable.

i and i; are valid because of the condition of the loop in line 6. k; is valid because of the
assumption that all vertices visited by the exploration walk of length i — 1 in line 7 are valid. ks is
valid because of the condition on the output of TreeForwardStep in line 8. d is valid because of the
condition on the output of TreeDegree in line 1. td is valid because at line 20 both td and d; are
at most ContractDegree, and since Valid > 2 ContractDegree, the addition in line 20 produces
a valid result.

function TreeSize

1 d := TreeDegree;
[l if currvertez is invalid, then the tree is uncontractable
2 if d = null then return null;

3 if d = 0 then return 0;

4 i:=1;
5 td := 0;
6 while i < Valid do

[l check if we can make one more step from the exzploration walk
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7 ki := TreeForward(i-1);

8 ko := TreeForwardStep(k;);
9 if ko = null then
[l if we cannot then the tree is uncontractable
10 TreeBack(i-1, ki);
11 return null;
12 TreeBack(i, ks);

Il check if we have visited the starting vertez sufficiently many times
13 if TreeForward(i) = Current then d :=d - 1;

Il if yes, then return the current length of the exploration walk
14 if d = 0 then return i;

Il check if the end of the current ezploration walk is visited for
[l the first time

15 for i1 :=0toi -1 do
16 if TreeForward(i) = TreeForward(i;) then break;
17 if i; = i then
[l if it s, add its degree to the total degree
18 after TreeForward(i) do d; ::= Prev(Degree)
[l if the total degree becomes too large then the tree is uncontractable
19 if d; > ContractDegree then return null;
20 td := td + di;
21 if td > ContractDegree then return null;

[| increase the length of the exzploration walk by 1
22 i:=1+ 1;
23 return null;

Root does not take arguments. If 7' is uncontractable or cv € Dg_1, then Root returns 0,
otherwise it returns the index of the first occurrence of root(7) in the exploration walk on T
starting from (cv,1). The local variables of Root are d and i.

According to the definition of root(7") given in section 3.2.1, Root enumerates the vertices of T
using the exploration walk starting from (cv,1) (lines 3-5) and finds the first vertex which hooked
to itself (line 4). d is valid because of the assignment in line 1, and i is valid because at line 3 T is
contractable.

function Root
|| check if T is contractable
1 d := TreeSize;
if d = null or Prev(Done) then return 0;

[l if it is, find the vertex in it which hooked to itself
3 for i := 0 to d-1 do
after TreeForward(i) do fl1 := (NewHook = 0);
5 if f1 then return i;

N
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6.4.6 Contraction

The definitions of the functions in this section come from the definition of the contraction operation
given in section 3.2.3. T is the hooking tree of cv in C.,.

IsEdge takes two arguments ¢ and j. Assume that cv = root(T") and T is contractable. If v is
the end vertex of I'r;(cv, 1), then IsEdge returns true iff the (v,j) is a remaining edge of T' (see
the definition in section 3.2.3). The local variables of IsEdge are i, j, j;, k, ki1, d, d1, and ds.

The definition of IsEdge follows exactly the definition of the remaining edges of T given in
section 3.2.3. Let e = (v,), w = 1¢_1(e), and T be the hooking tree of w in C,;. Lines 2-5 check,
if T" is contractable. Line 7 checks, if e is internal. Let u be the k-th vertex in the exploration
walk of T starting from cv. Because of lines 9 and 10, at line 12 (u, j;) is an edge before e in the
enumeration of the remaining edges of T' given in section 3.2.3. Let v’ = ng—1(u, j;). Lines 14-16
check whether «’ is in 7”. In line 13 we use that, if the hooking tree of ' in C; is uncontractable,
then v’ is not from 7", because at this point 7" is contractable.

i, j, and d are valid because T is contractable. dy and k; are valid, because at line 6 T' is
contractable. Lines 9 and 10 ensure the validity of d; and j;.

function IsEdge
i := arglIsEdge; j := arg2IsEdge;

1 d := TreeSize;
[l if T’ is uncontractable, then e remains
after TreeForward(i) do f1 := MoveValid(j);
if not f1 then return true;
after TreeForward(i), Move(j) do dp := TreeSize;
if do = null then return true;

oW N

[l T’ is contractable
6 for k := 0 to d-1 do
/| e does not remain, if it is an internal edge

7 if TreeForward(k) = (TreeForward(i), Move(j)) then return false;
8 if k > i then continue;
9 if k = i then d; := j - 1;
else
10 after TreeForward(k) do d; ::= Prev(Degree);

Il e does not remain, if it is not the first edge from T to T’
11 for j; := 1 to d; do

12 after TreeForward(k) do fl := MoveValid(ji);

13 if not f1 then continue;

14 for k; := 0 to dy-1 do

15 if (Treeforward(i), Move(j), TreeForward(k;)) =
(TreeForward(k), Move(ji)) then

16 return false;

17 return true;
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Let P be a path description relative to the current vertex, v be the vertex with path description
P, and 7" is its hooking tree in C.;,. Assume that 7" is contractable and v = root(7"). Let B be some
instruction(s) which might depend on the variables i and j. after P for every edge (i,j) do B
executes B for all possible values of (i, j) such that (u,j) is a remaining edge of 7", where u is the
end vertex of I' j (v,1). The local variables are i1, d, d2. i and j are local to the function using
after P for every edge (i, j) doB.

Lines 3-5 check, if this is the first time the exploration walk on 7" visits the i-th vertex v. If
50, lines 7-9 enumerate the remaining edges of 7" incident to v. All local variables, and i and j,
are valid because 7" is contractable.

define after P for every edge (i, j) do B
after P do d; := TreeSize;
for i := 0tod; -1 do
Il visit only once every vertez of T’
3 for i; :=0toi -1 do

N

4 if (P, TreeForward(i)) = (P, TreeForward(i;)) then break;
5 if i; < i then continue;
6 after P, TreeForward(i) do dy ::= Prev(Degree);
7 for j :=1 to dy do
8 after P do f1 := IsEdge(i, j);
9 if not f1 then continue;
[l if (i, j) is a remaining edge, then ezecute B
10 B;

Degree does not take arguments and returns §.(cv). Its local variables are i, j, and td.

To obtain the degree of the current vertex, we just enumerate all remaining edges of 7. If T’
is not contractable, then, by definition, the degree comes from a previous level (line 2). Line 2
handles the case when cv € I, and line 3 the case when cv € D.. All local variables are valid
because at line 3 T is contractable.

GraphDegree returns the degree of the current vertex in the input graph G.

function Degree

1 if level = 0 then return GraphDegree;
if TreeSize = null then return Prev(Degree);
3 if Prev(Done) or Root # 0 then return O;

4 td := 0;
after Current for every edge (i,j) do td := td + 1;
6 return td;

o

Neighbor takes one argument :. It does not return anything, but moves the current vertex to
Nei(cv,i). Its variables are i, j, 1, and d.

The definition of Neighbor follows the definitions in section 3.2.3. First we make sure that
T is contractable (lines 3 and 9). If not, then we call recursively. Otherwise, ¢ is the index of a
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remaining edge e of T', and we locate e and move along it (lines 13-19). Once we move along e, we
move the current vertex to the representative of the new current vertex, i.e. the root of the new
current hooking tree 7", if it is contractable (lines 5, 11, and 18).

1 is valid because at line 7 argNeighbor is valid, and the other local variables are valid because
at line 13 T is contractable.

GraphNeighbor(i) moves the current vertex to its i-th neighbor in the input graph G.

procedure Neighbor

1 if 1level = 0 then GraphNeighbor(argNeighbor) ;
[| handle the self-loop case

2 if argNeighbor = 0 then return;
3 if argNeighbor > Valid then

[l ©f T is uncontractable, call recursively
4 Prev(Neighbor (argNeighbor)) ;

[l if T’ is contractable, move to its root
5 if TreeSize # null then TreeForward(Root);
6 return;
7 1 := argNeighbor;
8 d := TreeSize;
9 if d = null then

Il T is uncontractable
10 Prev(Neighbor(1));
11 if TreeSize # null then TreeForward(Root);
12 return;

/| T is contractable

13 after Current for every edge (i, j) do
14 1:=1-1;

Il check if (i, j) is e
15 if 1 > 0 then continue;

|| move to e and then along e

16 TreeForward(i);
17 Prev(Neighbor(j));
/| move to the root of T’
18 if TreeSize # null then TreeForward(Root);
19 return;

BackLabel takes one argument i and returns fS.(cv,i). BackLabel uses the array method
described in section 6.1.2 of taking arguments and returning values. Its local variables are i, j, jq,
k, k1, 1, d, nd, and r.

The first case of BackLabel is when T is contractable. In this case we find the remaining edge
e of T' with index ¢ (lines 11-13). Let v = ng-1(e) and 7" be the hooking tree of v in C.,. If
T' is uncontractable, then we call recursively, because in this case the back-label comes from the
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previous level of recursion (line 21). Otherwise we have to find the index nd of the first remaining
edge €' of T' which goes from 7" to T (lines 23-31). This is the new back-label. To find the index of
e, first we find the root of 7" (line 19) and then enumerate all remaining edges of 7" (lines 24-31).
For each remaining edge of T" we check if it goes to T' (line 29-31). In lines 26-28, we use that, if
a remaining edge of T" goes to an uncontractable hooking tree, then it does not go to T, because
at this point 7" is contractable. The case when 7' is uncontractable is handled by BackLabelAux
(lines 4 and 9).

1 is valid because of line 3. 4 is valid because of the assignment in line 7. i, j, and k; are valid
because at line 11 T is contractable. r is valid because of line 19. j;, k, and nd are valid because
at line 23 T is contractable.

The recursive call in line 21 does not assign the returned value to a local variable, i.e. this call
returns a value at some higher level of recursion, depending on the array for returning values of
BackLabel. This call is the reason why BackLabel returns through an array instead of a global
variable. The conventional thing to do is to store the result of this call locally, and once the after
statement has restored the original current vertex, return the stored value. This will not work for
us, because the value returned from the recursive call might be invalid. Instead, using that the
only reason why we store the returned value is to pass it back, when BackLabel produces a result
we let it store the result at the level at which it is requested. This works because BackLabel is
always called on the previous level of recursion.

GraphBackLabel() returns the back-label of the i-th edge incident to cv in the input graph G.

function BackLabel

1 if 1level = 0 then return GraphBackLabel(argBackLabel) ;
2 if argBackLabel = 0 then return 0;

Il if currvertez is invalid call BackLabelduz
3 if argBackLabel > Valid then
4 BackLabelAux;
5 return;
6 1 := argBackLabel;

[l ©f T is uncontractable call BackLabelduz
7 d := TreeSize;
8 if d = null then
9 BackLabelAux;
10 return;

[l T is contractable
11 after Current for every edge (i, j) do
12 1:=1-1;

[l find e

13 if 1 > 0 then continue;
14 after TreeForward(i) do
15 f1l := MoveValid(j);
16 if £f1 then
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17 after Move(j) do

18 fl := (TreeSize # null);
19 if £f1 then r := Root;
20 if not f1 then

[l if T’ %is uncontractable call recursively
21 after TreeForward(i) do Prev(BackLabel(j));
22 return;

[| T’ i3 contractable

23 nd := 0;
[l find the first edge of T’ which goes to T and return its index
24 after TreeForward(i), Move(j), TreeForward(r)
for every edge (k, ji) do

25 nd := nd + 1;
26 after TreeForward(i), Move(j),

TreeForward(r), TreeForward(k) do
27 f1 := MoveValid(ji);
28 if not f1 then continue;
29 for k; := 0 to d-1 do
30 if (TreeForward(i), Move(j),

TreeForward(r), TreeForward(k), Move(ji)) =

TreeForward(k;) then

31 return nd;

BackLabelAux takes one argument ;. To take argument and return value BackLabelAux uses
the arrays of BackLabel. BackLabelAux handles the 7" uncontractable case of BackLabel. Its local
variables are i, j, k, b1, nbl, r, and d.

The definition of BackLabelAux follows the definitions given in section 3.2.3 when T is uncon-
tractable. Let v and T' be as in the note for BackLabel. If 7" is uncontractable, the back-label
is inherited from the previous level of recursion, so we call BackLabel recursively (lines 3 and 10).
Otherwise at line 12, 7" is contractable, the current vertex is v (because of line 5), and bl is the
back-label of e (because of line 1). So we have to find the index of (v,bl) in 7" ((v,bl) is a remain-
ing edge of T" because T is uncontractable). Line 12 finds the root of 7", and lines 13 and 14 find
the index k of the first occurrence of v in the exploration walk of 7" starting from its root. Lines
16-20 enumerate the remaining edges of 7" until we find (v,bl).

bl is valid by the assumption for the return convention of BackLabel for line 1. d is valid because
of the assignment in line 6. r, i, j, k, and nbl are valid because at line 12 7" is contractable.

Just like for BackLabel, the calls to BackLabel in lines 3 and 10 return values at some higher
level of recursion. The calls to BackLabel in lines 1, 3, and 10 do not have arguments — by
convention this means that the argument to BackLabel comes from a higher level of recursion.

The case when T is uncontractable is the reason why the argument to BackLabel is passed
through an array instead of a global variable. More precisely, the problem is when the current
vertex is invalid, then the argument ¢ to BackLabel, which is the label of an edge incident to cv,
might be invalid and storing it locally will be impossible. In this case we still want to be able to use
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the value of i after calling functions which can potentially change the value of a global argument
to BackLabel. The decision is to let the value of the argument stay at the level which produced
it, because it certainly is valid for this level. For this to work, it is important that the value of the
argument stored in the array is not changed while processing the call to BackLabel. Fortunately
this does not happen, because BackLabel is always called on the previous level of recursion.

function BackLabelAux
1 bl := Prev(BackLabel);
if b1 = null then
[l ©f T’ 4s uncontractable call recursively
3 Prev(BackLabel) ;
4 return;

/| move along e

5 Prev (Neighbor (argBackLabel) ) ;

6 d := TreeSize;

7 if d = null then

8 [l if T’ 4is uncontractable go back and call recursively
9 Prev(Neighbor(bl)) ;

10 Prev(BackLabel) ;

11 return;

[l T° is contractable
12 r := Root;
Il find the index of the first occurrence of v in
[| the exploration of T’ starting from r
13 for k :=0tod-1do
14 if TreeForward(r), TreeForward(k) = Current then break;

|| compute the new back-label
15 nbl := 0;
16 after TreeForward(r) for every edge (i, j) do
[| increase the new back-label by one for every edge that happens before e
17 nbl := nbl + 1;

18 if i = k and j = bl then

Il if we are at (v,bl) move back and return the new back-label
19 Prev(Neighbor(bl)) ;
20 return nbl;

Move takes one argument i. Let (v, j) = pe—1(cv,i). Assume that ¢ and j are valid. Then Move
returns j and moves the current vertex to v. Its local variables are i and j, which are valid by the
assumption about the argument of Move.

function Move
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i := argMove;

j := Prev(BackLabel(i));
Prev(Neighbor(i));
return j;

MoveValid takes one argument ¢ and returns true iff 8,_1(cv,?) is valid. It does not have local

variables.

function MoveValid

return Prev(BackLabel(argMoveValid)) # null;

6.4.7 Solving undirected s,t-connectivity

MoveToRep moves the current vertex to repg  (cv). It does not have arguments and local variables.

procedure MoveToRep
if level > 0 then
Prev(MoveToRep) ;

if TreeSize # null then TreeForward(Root);

Connected is a global function which takes two arguments s and ¢ and returns true iff s and ¢

are connected in G.

global function Connected
level := 3- 2“°g(2) n] _ 2;

currvertex := s; MoveToRep;
r := currvertex;
currvertex := t; MoveToRep;

return r = currvertex;
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