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Abstract

A statistical zero knowledge argument for NP is a cryptographic primitive that allows a
polynomial-time prover to convince another polynomial-time verifier of the validity of an NP
statement. It is guaranteed that even an infinitely powerful verifier does not learn any additional
information but the validity of the claim.

Naor et al. [NOVY98] showed how to implement such a protocol using any one-way per-
mutation. We achieve such a protocol using any approximable-preimage-size one-way function.
These are one-way functions with the additional feature that there is a feasible way to approx-
imate the number of preimages of a given output. A special case is regular one-way functions
where each output has the same number of preimages.

Our result is achieved by showing that a variant of the computationally-binding bit-commitment
protocol of Naor et al. can be implemented using a any one-way functions with “sufficiently
dense” output distribution. We construct such functions from approximable-preimage-size one-
way functions using “hashing techniques” inspired by Hastad et al. [HILL98].

1 Introduction

1.1 Zero-Knowledge

A Zero-Knowledge proof of some statement (a notion introduced in [GMR89]) is a way for one
player (“the prover”) to convince another player (“the verifier”) in the validity of a statement
without revealing any additional information. We are interested in the setting where the proof is
done interactively and the statement to be proven is the validity of an NP statement. The notion of
zero-knowledge has become fundamental in Cryptography, and zero-knowledge protocols are used
as a building block for many applications (c.f. [Gol02]). It is important to distinguish between two
variants:

Zero-Knowledge Proofs: In this setup (introduced by Goldwasser et al. [GMR89]) the sound-
ness of the proof is information theoretic meaning that even an infinitely powerful prover cannot
convince the verifier of a false statement. However, the zero-knowledge guarantee is computational,
meaning that a computationally-bounded verifier learns no additional information.
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Zero-Knowledge Arguments: In this setup (introduced by Chaum et al. [BCC88]) the sound-
ness of the proof is computational meaning that a computationally-bounded prover cannot convince
the verifier of a false statement. However, the zero-knowledge guarantee is information theoretic
meaning that even an infinitely powerful verifier cannot extract additional information. Here there
is an additional distinction between perfect protocols (in which the verifier gets no information
whatsoever) and statistical protocols (in which the verifier might get some information with negli-
gible probability). 1

A fundamental problem is to construct zero-knowledge protocols using as weak as possible
assumptions. The existing protocols for both variants use a protocol by Goldreich et al. [GMW91].
This protocol reduces the task of zero-knowledge to that of “bit-commitment”.

1.2 Bit-Commitment

A Bit-Commitment protocol is a protocol in which one party, “the sender”, is giving the other party,
“the receiver”, a “sealed envelope” containing some secret bit. The protocol should be “hiding”
meaning that the receiver learns nothing about this bit. It should also be “binding” meaning that
in a later stage the sender can “open the envelope” and the receiver can be sure that its content
did not change. Once again, there are two variants:

Computationally-hiding and Perfectly-binding: Here the hiding guarantee is computational
meaning that a computationally-bounded receiver gains knowledge on the content of the envelope
with at most negligible probability. The binding guarantee is information theoretic meaning that
even an infinitely powerful sender cannot “change” the content of the envelope after it has been
sealed.

Perfectly-hiding and Computationally-binding: Here the hiding guarantee is information
theoretic meaning that even an infinitely powerful receiver learns nothing on the content of the
envelope. The hiding guarantee is computational meaning that a computationally-bounded sender
cannot “change” the content of the envelope. Again, there is an additional distinction. A protocol
is Statistically-hiding if an infinitely powerful receiver learns unallowed information with at most
negligible probability.

Interestingly, invoking the [GMW91] proof systems with the “right type” of bit-commitment
yields the “right type” of zero-knowledge protocol. More precisely, invoking the protocol with
a computationally-hiding perfectly-binding bit-commitment yields zero-knowledge proofs for NP.
Invoking the protocol with a perfectly-hiding computationally-binding bit-commitment yields per-
fect zero-knowledge arguments, and a computationally-binding statistically-hiding bit-commitment
yields statistical zero-knowledge arguments.

This allows us to limit our interest to bit-commitment protocols. Our focus is the assumptions
required to construct such protocols. Quite a few constructions of bit-commitment protocol assum-
ing different hardness assumption were presented. The situation is tight for computationally-hiding
protocols: It was shown by Naor [Nao89] how to construct a perfectly-binding computationally-
hiding bit-commitment using any “pseudorandom generator” which in turn can be constructed

1We remark that this notion may be preferable in settings where the zero-knowledge guarantee is critical. In such
protocols the soundness is compromised only if the prover is unbounded during the execution of the protocol. It
does not help the prover to “gain more computational power” after the execution. Nevertheless, the zero-knowledge
guarantee holds “forever” even if the verifier’s “gains more computational power” after the execution.
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from any one-way function by Hastad et al. [HILL98]. On the other hand it was shown by [IL89]
that bit-commitment implies the existence of one-way functions.

The picture is less clear for perfect/statistially-hiding bit-commitment. Perfectly-hiding computationally-
binding bit-commitment protocols were constructed under: (1) specific algebraic assumptions
[BMO90, BKK87, BCC88, BY90, IN93, IY87], (2) under the assumption that “collision intractable
hash functions” exist [NY01] and (3) using one-way permutations [NOVY98]. However, it is not
known whether such a protocol can be based only on the existence of one-way functions.

1.3 Our results

We construct a statistically-hiding computationally-binding bit-commitment (and hence construct a
statistically-hiding zero-knowledge arguments) using the assumption that there exist approximable-
preimage-size one-way functions:

Approximable-preimage-size one-way functions: are one-way functions with the extra fea-
ture that there is a feasible way to approximate the number of preimages of a given output
of the function.

We remark that a special case are regular one-way functions in which every output element has
the same number of preimages. This construction is an improvement to the protocol presented by
[NOVY98] (which requires one-way permutations). 2 It can be viewed as a step towards narrowing
the gap between the current implementation of statistically-hiding computationally-binding bit-
commitment and the lower bound that states that statistically-hiding computationally-binding
bit-commitment implies the existence of one-way functions [IL89].

1.4 Our Technique

Our protocol is based on the protocol of Naor et al. [NOVY98]. This protocol implements perfectly-
hiding bit-commitment when applied using a one-way permutation. It is natural to ask what
happens when this protocol is applied using a one-way function (rather than a permutation).

Given a one-way function f : {0, 1}n → {0, 1}l(n) we distinguish between two distributions: Y =
f(Un) (the distribution of the function when applied on a uniformly chosen input) and Y ′ = Ul(n)

(the uniform distribution over the outputs). Note that Y = Y ′ for a one-way permutation.
We first observe that the main argument of [NOVY98] gives that for any function f , if the

binding guarantee is broken then f can be inverted on the distribution Y ′. (Note that this does
not necessarily mean that f can be inverted on the distribution Y ).

We also present a modified protocol (which preserves the binding guarantee above) and on
which we can prove that if Y and Y ′ are “sufficiently similar” in a sense to be explained later, then
the amount of information on the content of the envelope that is “leaked” during the execution can
be bounded.

This motivates constructing one-way functions where the distribution Y is as “similar as pos-
sible” to Y ′. A little bit more precisely, we show that if Y is a “dense distribution” meaning that
(1) Y has “high” Renyi-entropy, and (2) Y does not assign “too low” probability to any element,
then the modified protocol is computationally-binding and “somewhat statically hiding”. Such a
protocol can be amplified to give a computationally-binding and statistically-hiding protocol.

2We note that the protocol we achieve is only statistically-hiding whereas the protocol in [NOVY98] is perfectly-
hiding.
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The challenge is to transform an arbitrary one-way function into a one-way function with
dense output distribution. We are not able to fulfill this task using any one-way function, and
only succeed when given an approximable-preimage-size one-way function. For this task we use
“hashing techniques” inspired by [HILL98]. Loosely speaking, by hashing f(x) and x into smaller
domains we can hope to get a more dense distribution. A concern is that this process might reveal
information that will allow an adversary to invert the function.

1.5 Organization of the paper

In Section 2 we give notations and definitions used in this paper. In Section 3 we review the
bit-commitment protocol presented by [NOVY98], “the NOVY protocol”, and present a modified
version of the protocol that yields stronger results. In Section 4 we are using one-way functions
with approximable-preimage-size to construct one-way functions that are, in a sense, close to being
permutations. In Section 5 we combine the results proven in the previous sections to achieve
a computationally-binding statistically-hiding bit-commitment. Finally in Section 6 we conclude
that the existence of non-uniform approximable-preimage-size one-way functions yields a statistical
zero-knowledge arguments for every language L ∈ NP .

2 Preliminaries

• A function µ : N → [0, 1] is negligible if for every positive polynomial p(·), µ(n) < 1/p(n) for
large enough n.

• A function µ : N → [0, 1] is noticeable if there exists a positive polynomial p(·) such that
µ(n) > 1

p(n) for large enough n.

2.1 Distributions and Entropy

We denote by Un the uniform distribution over {0, 1}n. Given a function f : {0, 1}n → {0, 1}l(n), we

denote by f(Un) the distribution over {0, 1}l(n) induced by f operating on the uniform distribution.
Given a distribution D over some set X, the support of D is defined as:

sup(D) = {x ∈ X|D(x) > 0}

Given two distribution X and Y , the statistical difference between them is defined as:

stat(X,Y ) =
1

2

∑

z∈(sup(X)
⋃

sup(Y ))

|X(z) − Y (z)|

Let D be a distribution over some finite domain X, we use the following “measures” of entropy:

• The min-entropy of D is H∞(D) = minx∈X log 1
D(x) .

• The collision-probability of D is CP (D) =
∑

x∈X D(x)2.

• The Renyi entropy of D is H2(D) = log 1
CP (D) .
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2.2 Some technical Lemmas on probability distributions

Our proof requires several standard Lemmas on probability distributions. We include proofs for
completeness.

Lemma 2.1 Let D be a distribution over {0, 1}n such that CP (D) ≤ 1+δ
2n , then stat(D,Un) ≤

√
δ

2 .

Proof: On one hand

‖ D − Un ‖2
2=‖ D ‖2

2 + ‖ Un ‖2
2 −2 < D,Un >= CP (D) − 1

2n
≤ δ

2n

On the other hand by the Chebyshev Sum Inequality

‖ D − Un ‖2
1≤ 2n ‖ D − Un ‖2

2

Hence

stat(D,Un)
def
=

1

2
‖ D − Un ‖1≤

√
δ

2

Lemma 2.2 Let D be a distribution over {0, 1}n such that H2(D) ≥ k then for every ε > 0 there
exists a distribution D′ such that H∞(D′) ≥ k − log( 1

ε ) and stat(D,D′) ≤ ε.

Proof: Let Z be a distribution defined over [0, 1] as Z(y) =
∑

x∈{0,1}n,D(x)=y y, hence E(Z) =

CP (D) ≤ 2−k. Therefore by the Markov inequality we have that for any c > 0,

PrZ [x ≥ c2−k] ≤ 1

c

Now let D’ be the distribution obtained from D by “flattening” the probability of all the elements
with probability higher than c2−k, it is easy to see that stat(D,D′) ≤ 1

c and H∞(D′) ≥ k − log(c).
We are done by letting ε = 1

c .

Lemma 2.3 Let D and D′ be distributions over {0, 1}n and let ε and k be positive constants such
that stat(D,D′) ≤ ε and H2(D

′) ≥ k, then there exists a set B ⊆ {0, 1}n such that the following
hold:

• Prx∈D{0,1}n [x ∈ B] ≤ 4ε.

• ∀y /∈ B Prx∈D{0,1}n [x = y] ≤ 21−k.

Proof: Assume not, therefore there exists a set B ⊆ {0, 1}n such that:

• Prx∈D{0,1}n [x ∈ B] ≥ 4ε.

• ∀y ∈ B Prx∈D{0,1}n [x = y] > 21−k.

Hence ‖ D − D′ ‖1> 4ε − 4ε
21−k · 2−k = 2ε a contradiction.

The following lemma is a combination of Lemmas 2.2 and 2.3:

Corollary 2.4 Let D be a distribution over {0, 1}n such that H2(D) ≥ k and let ε be any positive
constant, then there exists a set B ⊆ {0, 1}n such that the following hold:

• Prx∈D{0,1}n [x ∈ B] ≤ 4ε.

• ∀y /∈ B Prx∈D{0,1}n [x = y] ≤ 21−k

ε .
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2.3 Universal hash functions

Definition 2.5 Let Hn : {0, 1}n × {0, 1}j(n) → {0, 1}l(n) be a collection of functions indexed by n
such that l(n) ≤ n. Hn is a universal family of hash functions if Hn, j(n) and l(n) are polynomial
computable functions, and for all n, for all x ∈ {0, 1}n and x′ ∈ {0, 1}n \ {x} and all y, y′ ∈
{0, 1}l(n),

Pr
j∈R{0,1}j(n) [Hn(x, j) = y and Hn(x′, j) = y′] =

1

22l(n)

Given j ∈ {0, 1}j(n) we define hj : {0, 1}n → {0, 1}l(n) as hj(x) = Hn(x′, j).

There are few efficient constructions of universal hash functions for any values of n and l(n)
whose index length (i.e., |j(n)|) is polynomial or even linear in n [CW77, GL89].

2.4 Different types of one-way functions

We now define several types of one-way functions that come up in the paper.

Definition 2.6 (One-way function) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function. f is one-way if for every probabilistic-polynomial-time algorithm A, the function

µ(n) = Prx∈{0,1}n [A(f(x)) ∈ f−1(f(x))]

is negligible. A one-way permutation is a function f that is a permutation over any input length n.

Definition 2.7 (One-way function with approximable-preimage-size) Let f : {0, 1}n →
{0, 1}l(n) be a one-way function, f has approximable-preimage-size if the function

D̃f (y)
def
= dlog(|f−1(y)| e

is polynomial computable 3.

A particular case is that of a regular one-way function. This is a one-way function such that
for any input length n, each output has the same number of preimages, and furthermore there is a
polynomial-time algorithm which given n computes this value. We now define two special versions
of one-way functions, with additional requirements on their output distribution.

Definition 2.8 (One-way function with high-output-entropy) Let f : {0, 1}n → {0, 1}l(n)

be a one-way function, f has high-output-entropy if H2(f(Un)) > n − 1.

Definition 2.9 (One-way function with δ-dense-output-distribution) Let f : {0, 1}n → {0, 1}l(n)

be a one-way function, f has δ-dense-output-distribution if H2(f(Un)) ≥ l(n) − δ and there exists
a positive constant c such that l(n) > n − c · log(n).

3We note that as far as the scope of this paper, we may allow the algorithm that computes D̃f to have additive
errors of order O(log(n)) and to fail completely with some negligible probability.
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2.5 Bit-commitment protocol

Definition 2.10 (Bit-commitment protocol) A Bit-commitment is an interactive two-party
protocol between a sender and a receiver. The protocol has two stages:

• The commit stage: the sender, S, has a (secret) bit b to which he wishes to commit to the
receiver, R. S and R exchange message(s), where at the end of this stage R possessed a
“commitment” to b without knowing its value.

• The reveal stage: S reveals b to R and try to persuade him that this is the bit he had committed
to in the commit-stage. At the end of this stage R either accepts or rejects.

The security of a bit-commitment protocol is measured by the following criterions:

Hiding: Let R∗ be some strategy for the receiver. Let V IEWR∗(b) be the random variable defined
from the R∗’s view of the commit-stage of the protocol where S has committed to the bit
b. Intuitively, the protocol is “hiding” if for every “allowed” strategy R∗, V IEWR∗(0) and
V IEWR∗(1) are “close”. We distinguish between several variants:

Perfectly-hiding: For every strategy R∗, V IEWR∗(0) = V IEWR∗(1).

Statistically-hiding: For every strategy R∗, stat(V IEWR∗(0), V IEWR∗(1)) is negligible.
A protocol is ε-Statistically-hiding for some function ε(n) if stat(V IEWR∗(0), V IEWR∗(1)) ≤
ε(n).

Computationally hiding: For every probabilistic-polynomial-time strategy R∗, V IEWR∗(0)
and V IEWR∗(1) are “computationally indistinguishable”.4

Binding: Let S∗ be some strategy for the sender. We say that S∗ can cheat if following the commit-
stage, he can persuade R to accept on both values of b. Intuitively, the protocol is “binding”
if every “allowed” strategy S∗ cannot cheat. We distinguish between several variants:

Perfectly-binding: No strategy S∗ can cheat.

Almost perfectly-binding: No strategy S∗ can cheat with more than negligible probability.

Computationally-binding No probabilistic-polynomial-time strategy S ∗ can cheat with more
than negligible probability. A protocol is ε-Computationally-binding for some function
ε(n) if no probabilistic-polynomial-time strategy S ∗ can cheat with probability larger than
ε(n).

Remark 2.11 (Uniform and non-uniform bit-commitment) In the definition above we de-
fine “uniform versions” of bit-commitment. By that we mean that security is guaranteed against
adversaries that are uniform (that is polynomial time probabilistic algorithms). One can anal-
ogously define “nonuniform versions” by replacing “polynomial time probabilistic algorithms” by
“polynomial size circuits”. This gives a stronger guarantee of security.

This stronger notion is required when applying a computationally-binding bit-commitment into
a perfect/statistical-zero-knowledge argument.

The construction of this paper (as well as all the constructions we are aware of) gives a uniform
reduction that transforms an adversary that “breaks” the computational guarantee of the commit-
ment scheme into an inverting procedure for the one-way function used. A consequence is that our

4That is, that every probabilistic-polynomial-time machine distinguishes between the two distributions with neg-
ligible probability, where the success probability is measured as a function of the security parameter of the protocol.
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constructions and results immediately translate to the “nonuniform setting” and give a construction
of non-uniform computationally-binding statistically-hiding bit-commitment given a non-uniform
approximable-preimage-size one-way function (that is one that cannot be inverted by polynomial
size circuits). We use this observation to construct statistical zero-knowledge arguments in Sec-
tion 6.

3 The NOVY protocol and its consequences

An ingredient in our construction is the NOVY protocol for bit-commitment presented by Naor
et al. [NOVY98]. The latter is a computationally-binding perfectly-hiding bit-commitment based
on any one-way permutation. We now describe the protocol. For future use we give a general
definition of the protocol where the function used by the protocol is any one-way function and not
necessarily a one-way permutation.

Definition 3.1 The NOVY protocol (using one-way function f : {0, 1}n → {0, 1}l(n)) - Let x � y,
where x and y are two vectors of the same length, be the inner-product of x and y modulo 2 and let
b ∈ {0, 1} be the bit that S wants to commit to.

Commit stage

C1. S selects a random x ∈ {0, 1}n and computes y = f(x). S keeps both x and y secret from R.

C2. For j from 1 to l(n) − 1

(a) R selects a random rj ∈ {0, 1}l(n)−j−1 and sends hj = 0j−1 ‖ 1 ‖ rj to S. (where ‖
denotes the concatenation of the strings).

(b) S sends aj = hj � y to R.

C3. At this point there are exactly two vectors y0, y1 ∈ {0, 1}l(n), such that for both i ∈ {0, 1}, for
all 1 ≤ j ≤ l(n)− 1, aj = hj � yi. Fix some ordering on {0, 1}l(n) and assume y0 < y1. There
exists i ∈ {0, 1} such that yi = y. S sends d = b ⊕ i to R.

Reveal stage

R1. S sends x and b to R.

R2. S verifies that for all j in [1 . . . l(n) − 1], aj = hj � y and that f(x) = yi where i = b ⊕ d.

We now give intuition why this protocol works when f is a one-way permutation. From R’s
point of view it is equally likely that y = y0 or y = y1 and therefore R gets no information about
b in the commit stage. On the other hand the fact that the h’s are chosen at random prevents S
from inverting y1−i and thus he cannot cheat. The reason that the h’s are given to S one-by-one
(Line C2.), is to prevent a dishonest S from selecting x after seeing the h’s, an advantage that
could have enable S to find the preimages of both y’s (and thus to cheat in the reveal stage).

Theorem 3.2 ([NOVY98, Theorem 2]) The above protocol when f is a one-way permutation is a
computationally-binding perfectly-hiding bit-commitment protocol.

We use (a variant of) the NOVY protocol with one-way functions f that are not permutations.
It is helpful to abstract the following property of the protocol.
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Lemma 3.3 Assume that there exists a probabilistic polynomial time strategy S ∗ that following
the commit-stage of the modified NOVY protocol, using f : {0, 1}n → {0, 1}l(n) as its underlined
one-way function, can reveal to an honest receiver two different values of b with non-negligible
probability. Then there exists a probabilistic polynomial time algorithm A that inverts f on a
uniformly chosen element in {0, 1}(l(n) with non-negligible probability

Proof: It is proven in [NOVY98, Lemma 2] that the existence of such S ′ implies the existence of a

probabilistic polynomial time algorithm A that inverts f on a uniformly chosen element in {0, 1} l(n)

with non-negligible probability. This proof applies to any function f (although in [NOVY98] it is
claimed only for a one-way permutation).

Note that in Lemma 3.3 above the algorithm A inverts f with respect to the uniform distribution
on the output, rather than the distribution of the function on a uniformly chosen input. These two
distributions coincide when f is a one-way permutation. We show that these two distributions are
“close enough” when f is a dense-one-way function.

3.1 A modified NOVY protocol

We now present a modified version of Protocol 3.1. In this version the receiver’s selection of
h1, . . . , hl(n)−1 is done using a “coin-tossing” protocol which prevents a dishonest receiver from
choosing h1, . . . , hl(n)−1 maliciously as a function of the messages he receives.

Definition 3.4 The modified NOVY protocol (the modified steps)

C2.’ For j from 1 to l(n) − 1

(a) R selects a random rj ∈ {0, 1}l(n)−j and commits to the value of rj through a perfect-
binding computational-hiding protocol (recall that by [Nao89] such a protocol can be based
on any one-way function).

(b) S selects a random wj ∈ {0, 1}l(n)−j and sends wj to R.

(c) R reveals the value of rj to S and both parties set hj = 0j−1 ‖ 1 ‖ (rj ⊕ wj).

(d) S sends aj = hj � y to R.

Before explaining the usefulness of the above modification for the hiding property of the protocol
we observe that the binding property was not damaged.

Claim 3.5 Let f be some one-way function. If the NOVY protocol using f is computationally-
binding then the modified protocol is also computationally-binding.

Proof: Every receiver strategy R∗ for the modified protocol can also be executed in the original
protocol.

The advantage of using the modified version of the NOVY protocol is given in the following
lemma.

Lemma 3.6 Let f be a one-way function with δ-dense-output-distribution for δ ≤ (1/26)2. There
exists some positive polynomial p(n) such that The modified NOVY protocol based on f is (1 −
1/p(n))-statistically-hiding.
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Proof: Let R∗ be some receiver strategy. We now examine the view of R∗ where S has committed
to a bit b. Throughout the proof we consider the probability space induced by the coin tosses of
the two parties. In particular, x, y, r1, . . . , rl(n)−1, w1, . . . , wl(n)−1, h1, . . . , hl(n)−1, a1, . . . , a(l(n)−1,
y0, y1, i and d are the random variables induced by this probability space. The modification in the
protocol allows us to prove the following Claim.

Claim 3.7 The random variables h1, . . . , hl(n)−1 are independent of x, and are distributed identi-
cally no matter whether b = 0 or b = 1.

Proof: Immediate from the protocol description.

Note that the view of R∗ contains the random variables h̄ = (h1, . . . , hl(n)−1), ā = (a1, . . . , al(n)−1)
and d = b ⊕ i. Let h′ and a′ be some fixed values of h̄ and ā respectively. Let Eh′,a′ be the event
{

h̄ = h′} ∩ {ā = a′}. Note that the pair y0, y1 are fixed to some values y′
0, y

′
1 in the event Eh′,a′ .

We call y′0, y
′
1 the preimages of Eh′,a′ . Values h′, a′ are called ρ-hiding if

|Pr[y = y′0|Eh′,a′ ] − Pr[y = y′1|Eh′,a′ ]| ≤ ρ

We call a pair y′0, y
′
1 t-balanced if

1/t ≤ Pr[y = y′0]
Pr[y = y′1]

≤ t

Claim 3.8 Let h′, a′ be some values, and let y0, y1 be the associated pair of preimages. If y0, y1 are
t-balanced then h′, a′ are (1 − 1/2t)-hiding.

Proof: For every fixed values h′ and a′ we define the event E ′
h′,a′ = ∩j

{

h′
j � yi = a′j

}

. Note that

E′
h′,a′ is an event that is defined only over the choice of x made by the sender.

By Claim 3.7 we have that h̄ is independent of x (and therefore independent of y). Thus, for
every b ∈ {0, 1}, and h′, a′,

Pr[y = yb|Eh′,a′ ] = Pr[y = yb|E′
h′,a′ ] = Pr[y = yb|y ∈

{

y′0, y
′
1

}

]

where y′0, y
′
1 is the pair associated with h′ and a′. Note that

Pr[y = y′0]
Pr[y = y′1]

=
Pr[y = y′0|y ∈ {y′0, y′1}]
Pr[y = y′1|y ∈ {y′0, y′1}]

The claim now follows from the fact that y0, y1 are t-balanced by observing that for two numbers
p0, p1 ∈ (0, 1], if 1/t ≤ p1

p0
≤ t then |p1 − p0| ≤ 1 − 1/2t.

Note that for every h′ and y′ ∈ {0, 1}l(n), we can associate a value a′ (which is obtained when
the sender uses y′) and consequently a pair of preimages y ′

0, y
′
1. For every value h′ we define:

Gh′ =
{

y′ : y′0, y
′
1 associated with h′ and y′ are 2nc-balanced

}

where c is the constant such that l(n) ≥ n − c · log(n) guaranteed from the assumption that f
has a dense-output-distribution.

Claim 3.9 For every h′, Pr[f(x) ∈ Gh′ ] ≥ 1 − 13
√

δ.
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Proof: We have that H2(f(Un)) ≥ l(n)−δ. We apply Lemma 2.1 and conclude that stat(f(Un), Ul(n)) ≤√
δ. We apply Lemma 2.3 (with k = n) and conclude that there exists a set B1 such that

• Pr[f(x) ∈ B1] ≤ 4
√

δ.

• ∀y′ /∈ B1 Pr[f(x) = y′] ≤ 2−l(n)+1.

Let B2 = {0, 1}l(n)\sup(f(X)). We have that Pr[f(x) ∈ B2] = 0 and therefore Pry∈R{0,1}l(n) [y ∈
B2] ≤

√
δ.

¿From the assumption on f we also have that there exists a positive constant c > 0 such that
l(n) > n − c · log(n). This means that for every y 6∈ B2, Pr[f(x) = y] ≥ 2−n ≥ 2−l(n)/nc.

Let B3 be the set of all y′ such that one of the preimages of y′ using h′ is in B1 ∪B2. It follows
that |B3| ≤ 2|B1 ∪ B2|. We want to show that Pr[f(x) ∈ B3] is small.

Pr[f(x) ∈ B3] ≤
|B3|
2l(n)

+
√

δ ≤ 2 ·
( |B1|

2l(n)
+

|B2|
2l(n)

)

+
√

δ ≤ 13
√

δ

where the first equality holds because stat(f(Un), Ul(n)) ≤
√

δ and the second holds because of
the bound on the bound on the size of B3. The third inequality holds by the bounds we have on
the probabilities of B1 and B2.

For every y′ 6∈ B3, let y′0, y
′
1 be the associated preimages using h′. We have that for every

b ∈ {0, 1},
2−l(n)

nc
≤ Pr[y = y′b] ≤ 2 · 2−l(n)

Thus, the pair is 2nc-balanced.
Let G′

h′ = {0, 1}l(n) \ B3. We conclude that for every y′ ∈ G′
h′ , y′ and its other preimage are

2nc-balanced. Thus, G′
h′ ⊆ Gh′ and the claim follows.

To conclude the proof we need to bound stat(V IEWR∗(0), V IEWR∗(1). Note that for every
h′, a′ which are ρ-hiding, the distance between the two variables conditioned on Eh′,a′ is at most ρ.
This is because the only difference in the views under the conditioning is in the random variable c.

It follows from Claim 3.9 that:

Pr[h̄, ā are 2nc-balanced] ≥ 1 − 13
√

δ

and therefore using Claim 3.8

Pr[h̄, ā are 1 − 1/4nc-hiding] ≥ 1 − 13
√

δ

We conclude that the protocol is (13
√

δ + (1 − 13
√

δ)(1 − 1/4nc))-statistically-hiding. Note that
13
√

δ + (1 − 13
√

δ)(1 − 1/4nc) ≤ 1 − 1/8nc for 13
√

δ ≤ 1/2 which is satisfied by our requirement
on δ.

4 One-way function with approximable-preimage-size to one-way

function with dense-output-distribution

In this section we show how to transform any one-way function with approximable-preimage-size
into a one-way function with dense output distribution.

11



Theorem 4.1 If there exist one-way functions with approximable-preimage-size then for any δ > 0
there exist one-way functions with δ-dense-output-distribution. 5

The construction is done through the following two steps:

4.1 One-way function with approximable-preimage-size to one-way function

with high-output-entropy

The following construction appeared in the seminal paper of Hastad et al. [HILL98]: Let f :

{0, 1}n → {0, 1}l(n) be a one-way function with approximable-preimage-size, and let Hn : {0, 1}n ×
{0, 1}j(n) → {0, 1}n be a universal family of hash functions. We define g(x, j) : {0, 1}n×{0, 1}j(n) →
{0, 1}l(n)+n+j(n) as:

g(x, j) = f(x) ‖ hj(x)1...(D̃f (f(x))+2) ‖ 0n−(D̃f (f(x))+2) ‖ j

where hj(x)1...m stands for the first m bits of hj(x).
The following claim, proven in [HILL98, Lemma 5.2], shows that g is a one-way function with

high-output-entropy:

Claim 4.2 g constructed above has the following properties:

1. g is a one-way function.

2. H2(g(Un, Uj(n))) > n + j(n) − 1.

4.2 One-way function with high-output-entropy to one-way function with δ-
dense-output-distribution

We assume for simplicity that δ < 1. Let f : {0, 1}n → {0, 1}l(n) be a one-way function with

high-output-entropy, let m = bn − 1 − log( 1
δ )c and let Hn : {0, 1}l(n) × {0, 1}j(n) → {0, 1}m be a

universal family of hash functions. We define g : {0, 1}n × {0, 1}j(n) → {0, 1}m+j(n) as:

g(x, j) = hj(f(x)) ‖ j

The following claim shows that g is a one-way function with δ-dense-output-distribution:

Claim 4.3 g has the following properties:

1. g is a one-way function.

2. H2(g(Un, Uj(n))) > m + j(n) − δ.

Proving 4.3(2): The probability that two randomly chosen elements in {0, 1}n have the same
hash value is the sum of the following probabilities: The probability that the same element is
chosen twice, which is the collision-probability of f(Un), and the probability that two different
elements in {0, 1}n has the same hash value, which equals by the property of a universal hash
function 1

2m . Hence CP (g(Un, Uj(n))) = 1
2j(n) (CP (f(Un)+ 1

2m ) < 1
2j(n) (

2
2n + 1

2m ) ≤ δ+1
2j(n)+m and thus

H2(g(Un, Uj(n)))
def
= − log(CP (g(Un, Uj(n)))) > j(n) + m − δ (where the last inequality holds since

for any δ < 1 log(1 + δ) < δ).

5Actually, our construction works even for δ = o(1) as long as it is noticeable.
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Proving 4.3(1): We assume towards a contradiction that g is not one-way and show that this
leads to algorithm that inverts f with non-negligible success probability. By the contradiction
assumption there exists a probabilistic polynomial time algorithm A, a polynomial fraction ε(·)
and infinity many n’s such that:

Pr
(x,j)∈R{0,1}n+j(n) [A(g(x, h)) ∈ g−1(x, j)] > ε(n) (1)

Using the second part of the current claim together with Corollary 2.4 (with ε = ε(n)
8 ) we have

that there exists a set B ⊆ {0, 1}m+j(n) such that:

Pr
(x,j)∈R{0,1}n+j(n) [g(x, j) ∈ B] ≤ ε(n)

2
(2)

∀y /∈ B Pr
(x,j)∈R{0,1}n+j(n) [g(x, j) = y] ≤ 32

ε(n)2m+j(n)

It is easy to see that, since B is small, algorithm A works quite well even when restricted to
inputs outside of B, that is:

Pr
(x,j)∈R({0,1}n+j(n)\ g−1(B))

[A(g(x, j)) ∈ g−1(x, j)] >
ε(n)

2
(3)

We now define algorithm MA that inverts f with non-negligible success probability. Given
y ∈ {0, 1}l(n), algorithm MA selects a random j ∈ {0, 1}j(n) and returns A(h(y) ‖ j)1 (i.e., the first
element of A(h(y) ‖ j)). Note that even when A is successful in inverting hj(f(x)) ‖ j we are not
guaranteed that MA’s answer is in f−1(x) (since its answer might be another x′ ∈ {0, 1}n such that
f(x′) 6= f(x) but hj(f(x)) = hj(f(x′)). Fortunately, we are guaranteed that when restricting our
interest to inputs outside of B, given that A is successful in inverting (hj(f(x)) ‖ j) implies that
MA’s answer is in f−1(x) with noticeable probability. The proof follows:

Pr[MA(f(x)) ∈ f−1(x)] ≥ (ignoring the cases when g(x) ∈ B)

Pr[MA(f(x)) ∈ f−1(x) | g(x) /∈ B] · Pr[g(x) /∈ B] ≥
(ignoring the cases when A is not successful in inverting g(x))

Pr[A(g(x))1 ∈ f−1(x) | g(x) /∈ B and A(g(x)) ∈ g−1(g(x))]

· Pr[A(g(x)) ∈ g−1(g(x)) | g(x) /∈ B] · Pr[g(x) /∈ B] ≥
(calculating the conditional probability that A(g(x))1 ∈ f−1(x))

2−(n+j(n))

maxx/∈g−1(B)(Pr[g(x)])
·
(

ε(n)

2

)2

≥ (by Equation 2)

2−(n+j(n)) · ε(n)2m+j(n)

32
·
(

ε(n)

2

)2

≥ (by the definition of m)

ε(n)3

256

δ

2
=

ε(n)3δ

512
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5 Computationally-binding statistically-hiding bit-commitment us-

ing one-way function with dense-output-distribution

In this section we put things together and prove our main theorem.

Theorem 5.1 (main theorem) If there exist one-way functions with approximable-preimage-size
then there are computationally-binding statistically-hiding bit-commitment protocols.

Given a one-way function with approximable-preimage-size, we first apply Theorem 4.1 to
convert it into a δ-one-way function for δ = (1/26)2. We now use the modified NOVY protocol
from Section 3 with this function. By Lemma 3.6 we have that there exists some positive polynomial
p(n) such that this protocol is (1−1/p(n))-statistically-hiding. To show that it is computationally-
binding we combine Lemma 3.3, Claim 3.5, and the following Lemma:

Lemma 5.2 For every δ < 1, let f : {0, 1}n → {0, 1}l(n) be a one-way function with δ-dense-output-
distribution then f is a one-way even with respect to the uniform distribution over its outputs.

Proof: The proof is done by contradiction. We assume the exitance of an efficient algorithm A that
inverts f with non-negligible probability over its outputs and show that it leads to the existence
of an efficient algorithm that inverts f with non-negligible probability over its inputs (and thus
contradicts the onewayness of f). Let ε(·) be a polynomial fraction such that for infinity many n’s:

Pry∈R{0,1}l(n) [A(y) ∈ f−1(y)] > ε(n)

where the probability in is also over the random coins of A. It follows that:

Pry∈Rsup(f(Un))[A(y) ∈ f−1(y)] > ε(n)

By an averaging argument we have that there exists a set Y ⊆ sup(f(Un)) such that:

|Y |
sup(f(Un)

≥ ε(n)

2
(4)

for all y ∈ Y Pr[A(y) ∈ f−1(y)] ≥ ε(n)

2

We have that H2(f(Un)) ≥ l(n)−δ. We apply Lemma 2.1 and conclude that stat(f(Un), Ul(n)) ≤√
δ and thus our requirement on δ implies that

sup(f(Un) ≥ 2l(n)−1

Let c is the constant such that l(n) > n − c · log(n) guaranteed from the assumption that f has a
dense-output-distribution. Hence,

Prx∈R{0,1}n [f(x) ∈ Y ] ≥ |Y |
2n

≥ ε(n)

4nc

Therefore,

Prx∈R{0,1}n [A(f(x)) ∈ f−1(f(x))] ≥ Pr[A(f(x)) ∈ f−1(f(x))|f(x) ∈ Y ] · Pr[f(x) ∈ Y ] ≥
ε(n)

2

ε(n)

4nc
=

ε(n)2

8nc

Finally, in the following section we show how to amplify the binding property of the protocol
and obtain a computationally-binding statistically-hiding commitment, thus completing the proof
of Theorem 5.1.
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5.1 Computationally-binding (1−1/poly)-statistically-hiding bit-commitment to

computationally-binding statistically-hiding

Given a computationally-binding (1−1/p(n))-statistically-hiding bit-commitment. The two parties
invoke the following protocol:

Commit stage

C1. S chooses np(n) − 1 random bits b1, . . . bnp(n)−1 ∈ {0, 1} and sets bnp(n) = b ⊕ (
⊕np(n)−1

j=1 bj).

C2. The two parties invoke the commit-stage of P for each of the bits.

Reveal stage

R1. The two parties invoke the reveal-stage of P for each of the bi’s.

R2. R sets
⊕np(n)

j=1 bj as the revealed value.

Claim 5.3 The above protocol is a computationally-binding statistically-hiding bit-commitment
protocol.

Proof: The binding is by the straight forward hybrid argument relaying of the computationally-
binding property of the underlined protocol. For the hiding property we are using the following
claim, which is an immediate extension of [SV97, Prop. 3.6], to get that the protocol is a e−n-
statistically-hiding.

Claim 5.4 Let
{

X1
0 , X2

0 , . . . , Xn
0

}

and
{

X1
1 , X2

1 , . . . , Xn
1

}

be two sequences of independent random
variables, and let Yk, for both k ∈ {0, 1}, be the following random variable:

Yk: Choose m1,m2, . . . ,mn uniformly in {0, 1} such that
(

⊕n
j=1 mj

)

= k. Output a sample of

(X1
m1

, X2
m2

, . . . , Xn
mn

).

Then

stat(Y0, Y1) =

n
∏

j=1

stat(Xj
0 , X

j
1)

6 Obtaining statistical zero-knowledge arguments

We now turn our attention to constructing statistical zero-knowledge arguments. A technicality, is
that this requires a nonuniform version of bit-commitment. In Theorem 5.1 we have shown how to
base a computationally-binding statistically-hiding bit-commitment on any approximable-preimage-
size one-way function. The same result holds in the “non-uniform setting” (see the discussion
in remark 2.11). That is, given an approximable-preimage-size function that is one-way against
polynomial size circuits, we can construct a bit-commitment scheme that is computationally-binding
against polynomial size circuits. We refer to both these notions as non-uniform in the results below.

The construction of the statistical zero-knowledge arguments is achieved by the above and the
following theorem 6:

6The actual theorem was stated for the perfectly-hiding case, however, the proof for the statistically-hiding case
is essentially the same.
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Theorem 6.1 ([BCC88]) If non-uniform computationally-binding statistically-hiding bit-commitment
exists, then every language L ∈ NP has a statistical zero-knowledge arguments.

To conclude we have the following corollary:

Corollary 6.2 If any non-uniform approximable-preimage-size one-way function exist, then every
language L ∈ NP has a statistical zero-knowledge arguments.

7 Open problems

The natural question to ask is whether it is possible to construct a computationally-binding
statistically-hiding bit-commitment using any one-way function. An alternative task would be
to present a black box separation between these two primitives.

While we are not sure which of the two directions is more promising, we remark that using
similar ideas to the ones used in this paper, it is possible to construct computationally-binding
statistically-hiding bit-commitment in the random oracle model. This gives evidence that it may
be hard to provide a black-box separation.
Another open problem is to reduce the number of rounds of communication in the NOVY protocol.
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