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Abstract

We study in this paper the computational complexity of some equivalence relations
on polynomial systems of equations over finite fields. These problems are analyzed with
respect to polynomial-time many-one reductions (resp. Turing reductions, Levin reduc-
tions). In particular, we show that some of these problems are between P and NP. To do
so, we compare these problems with the Graph Isomorphism problem. Moreover, using
Interactive Proofs [9] we prove that, provided the Polynomial Hierarchy does not collapse,
these problems are not NP-Complete (resp. NP-Hard).

1 Introduction

An interesting problem, both from a practical and theoretical point of view in computer sci-
ence is the Graph Isomorphism problem (GI). Briefly, we recall that GI is the problem of
deciding if there exists a bijective function p between two undirected graphs G; = (V, E1) and
Go = (V, E») such that (i,j) € Ey if, and only if, (p(i),p(j)) € Eo.

22 ing a group-theoretical approach of GI, Mathon has given the first indication that GI is
31y not an NP-Complete problem [12]. Finally, Interactive Proof (IP) systems [9] and a

=Acsult of Boppana, Hastad, and Zachos [1] have permitted to show that, provided the Poly-

nomial Hierarchy (PH) does not collapse, GI is not NP-Complete.

Zero-knowledge (ZK) proofs are, loosely speaking, proofs that yield nothing beyond the va-
lidity of the assertion [7]. Such proofs, introduced by Goldwasser, Micali and Rackoff in
[9], have permitted to give a rigorous framework for a typical problem in cryptography: au-
thentication. Goldreich, Micali and Wigderson have presented a non-trivial example of ZK
proof system based on the Graph Isomorphism problem (GI) [8]. Unfortunately an authen-
tication protocol based on GI will not be practical at all. Indeed, algorithms for GI being
very efficient [4], it will impose to use huge public keys (i.e. graphs) to achieve a reason-
able level of security. To circumvent this problem, a variant of GI called Isomorphism of
Polynomials with one Secret problem (IP1S), has been introduced by Patarin in [13]. It
can be outlined as follows: given multivariate polynomials (al(xl cees Ty ey Gy(T .- ,xn))
and (bi(z1...,Zn),...,bu(z1...,2n)) over Fy[z1,...,2,], find - if any - an invertible matrix
S € GLy(F;) and a vector T’ € Fy such that:

bi(z1...,2n) =ai((z1...,2,)S + T),for all i,1 < i < u.



In other words, Graphs have been replaced by multivariate polynomials and permutations by
bijective affine mappings. A new authentication protocol, based on IP1S, as well as a public
key signature scheme were then designed in [13].

The main motivation of this paper is to study, from a complexity-theoretic point of view,
the security of cryptographic schemes based on IP1S. To do so, we address here two relevant
variants of it. The problem we call Polynomial Linear Equivalence problem (PLE) is the
restriction of IP1S to bijective linear mappings. This is in fact not really a restriction since
Perret proved, in [14], that TP1S and PLE are equivalent!. We also study the Polynomial
Isomorphism Equivalence problem (PIE) which is the restriction of PLE to permutations.

1.1 Previous Work

To the best of our knowledge, PLE and PIE have not been, from a complexity-theoretic point
of view, previously studied. However, we mention that, in [2], it is claimed that IP1S is at
least as difficult as GI. Unfortunately, the least we can say is that the proof given in the
extended version of that paper [3] is not clear and thus to our opinion subject to caution. We
would like to emphasize that one of the aims of this paper is to give proofs of results which
seem natural regarding the kind of problems studied. We mention that some techniques used

in this paper are adapted - in the context of polynomial systems of equations - from ones for
GL

1.2 Organization of the paper and main results

This paper is organized as follows. In section 2, we introduce the notations and define more
formally the problems studied.

Section 3 contains several properties that are used in the other sections. We present, in
particular, some structural properties of PLE and PIE. We also show that some well known
group-theoretical results in the Graph Isomorphism context can be extended to PIE and PLE.
Section 4 is devoted to the study of PIE, its decisional version called dPIE, and its counting
version called #PIE. We give a lower bound on the theoretical complexity of? (d)PIE. To
do so, we prove that GI is polynomial-time many-one reducible to dPIE. We then show that
dPIE behaves differently than NP-Complete problems, by proving that it is Turing equivalent
to its counting version #PIE. Finally, we conclude this section by proving that, provided the
PH does not collapse, dPIE (resp. PIE) is not NP-Complete (resp. NP-Hard).

In section 5, we investigate more particularly dPLE and PLE. Similarly to (d)PIE, we give
a lower bound on the complexity of (d)PLE, by proving that PIE is polynomial-time Turing
reducible to dPLE. We also present a result permitting to improve the efficiency of crypto-
graphic schemes based on PLE. Finally, we obtain, similarly to section 4 that, provided the
PH does not collapse, dPLE (resp. PLE) is not NP-Complete (resp. NP-Hard).

Lunder Levin reductions
2(d)PIE is a shortcut for dPIE and PIE



2 Preliminaries

2.1 Notations

We introduce in this part the notations used throughout this paper. We denote by F,, the
finite field with ¢ = p” elements? (p a prime, and r > 1), by z the vector (z1,...,z,), and by

Fy(z] = Fy[z1,..., 2], the polynomial ring in the n indeterminates z1,...,z, over F,.
A monomial is a power product of the variables z1,...,z,, and a term is a coefficient multi-
plied by a monomial. We shall define the total degree of a monomial z5* - - - 28, (a1, ..., ap) €

N, by the sum ) 7 ; ;. Obviously, the total degree of a term cz{" -+ 28", c € I, is the total
degree of 27" ---z3". Let f € Fy[z], the leading term of f denoted LT'(f), is the largest term
among the terms of f with respect to some admissible ordering on the monomials, and the
degree of f is the total degree of its leading term. We shall say that f is homogeneous of degree
d if every term appearing in f has total degree d. An important fact is that every polynomial
can be written uniquely as a sum of homogeneous polynomials, i.e. f =), f (@) with f(@)
being the sum of all terms of f of total degree d. Notice that each f(9) is homogeneous,
and we call f(@ the dth homogeneous component of f. We extend this notation to vectors of
polynomials. We shall denote by a(® = (agd), ceey aq(td)) the dth homogeneous components of
the polynomials of ¢ = (al, e ,au) € Fy[z]™

We shall denote by S, the symmetric group on {1,...,n} and for o € S, we set zo =
(To(1)s+ -+ »To(n))- We shall call M, ,(F,) the set of n X u matrices with components in T,
GL,(F,) denotes as usual the set of invertible matrices of M, ,(F,;), and AGL,(F;) is the
the cartesian product GL,(F,) x Fy.

Finally, for the definitions of reductions used throughout this paper, namely polynomial-time
many-one reduction (resp. Turing reduction, Levin reduction), the reader is referred to [5].

2.2 Polynomial equivalence problems

Let a = (a1,...,ay) and b = (b1,...,by) be two sets of polynomials over F,[z]. We mainly
study in this paper two variants of IP1S. A first natural restriction is to consider linear
bijective mappings. We shall say that ¢ and b are linear-equivalent, denoted by a =1, b, if
there exists S € GLy(F,;), such that:

bi(z) = a;(zS),for all 1,1 <7 < u. (1)

In the sequel we shall denote, for convenience, equations (1) by b(z) = a(zS).

We call such a matrix a linear equivalence matriz. The Polynomial Linear Equivalence prob-
lem (PLE) is then the one of finding - if any - a linear equivalence matrix between the two
sets of polynomials ¢ and b. Moreover, we shall call dPLE the decisional version of PLE
and Lgprg denotes the language associated to dPLE. Note that, from a practical point of
view, IP1S and PLE have been studied in [6], [11] (where IP1S is called Polynomial Affine
Equivalence problem), [15], and [14].

We shall say that ¢ and b are isomorphic, denoted by a ~ b, if there exists o € S,, such that:

b(z) = a(zo).

3note that p, the characteristic of F,, is denoted char(IF,) in this paper




We call such a permutation an equivalence permutation. The Polynomial Isomorphism Equiv-
alence (PIE) problem is then the one of finding - if any - an equivalence permutation between
the two sets of polynomials ¢ and b. Moreover, we shall call dPIE the decisional version of
PIE and Lgp;g denotes the language associated to dPLE. Finally, #PIE denotes the problem
of counting the number of solutions of an instance of PIE; #PLE is defined similarly.

Remark 2.1. In the sequel, we restrict our attention to instances (a,b) of (d)PIE (resp.
(d)PLE) such that given ¢ € S, (resp. S € GLy,(F;)) the equality b(z) = a(zo) (resp.
b(z) = a(zS)) can be checked in polynomial-time. For (d)PIE, this simply implies that the
polynomials of a and b have a polynomial (in n) number of terms. For (d)PLE, we restrict
our attention to instances used in cryptographic applications, i.e. composed of polynomials of
highest total degree equal to 2 or 3. Remember that the number of monomials of total degree

d is equal to (":d) < % < (n 4+ d)®. Therefore, as soon as the highest total degree of the
polynomials of a and b is fized, the number of terms in a(zS) is polynomial in n, and the

equality b(z) = a(zS) can be checked in polynomial-time, i.e. dPLE € NP.

3 Properties of PLE and PIE

We present in this part several properties of PLE and PIE. We first investigate, in 3.1,
structural properties of PLE and PIE. In 3.2, we show that some well known group-theoretical
results in the Graph Isomorphism context can be extended to PLE and PIE. For a description
of the group-theoretical approach of GI, we refer the reader to [10].

3.1 Structural Properties

For all 4,1 <4 < u, D; denotes the degree of the homogeneous component of highest degree
in a;. We stress that ¢ =y, b implies that, for all 7,1 <% < u, a; and b; must have the same
highest total degree D;.

Proposition 3.1. Let D = mazi<i<y(D;) and S € GL,(F;). We have:
b(z) = a(zS) <= b9 (z) = a'¥(2S), for all d,0 < d < D.

Proof. Let S € GLy(Fy), such that b(z) = a(zS). Foralli,1 <i <wu,andforalld, 0 <d < D,
(4)

the terms of total degree d of a;(xS) are equal to those of the homogeneous polynomial a;

evaluated in 25, i.e. the terms of agd) (zS). Thus, by equating the terms of total degree d of

bi(z) with those of a;(zS), we get that for all 7,1 <7 < u:
d d
bz( )(g) = ag )(QS),fOI‘ all d,0 < d < D.

Let S € GL,(FF,;) such that for all 4,1 <4 < u, and for all d,0 < d < D, bz(-d) (z) = az(d) (zS).
Consequently, we get that ZdD:O bgd) (z) = ZdD:O az(d) (zS5), i.e. b(z) = a(zS). O
Remark that proposition 3.1 already appeared, without proof, in [11]. It is quoted here for
the sake of completeness.

Following a similar idea we obtain for PIE:

Proposition 3.2. Let D = mazi<ij<y(D;) and 0 € S,. We have:
b(z) = a(zo) <= b (z) = o) (z0), for all d,0 < d < D.



In some case, we can easily check that a % b. Indeed:

Lemma 3.1. For all i, 1 < i < u, let |a;| and |b;| be the number of terms of a; and b;. If
there exist i,1 <1 <wu and d,1 < d < D, such that |a§d)| + |b§d)|, then a # b.

Proof. We prove in fact that if b(z) = a(zo), for some o € S, then |b;| = |a;|, for all
i,1 < i < u. Remark that for all 4,1 < i < u, |a;(zo)| < |a;(z)], i.e. the permutation o do
not increase the number of terms of a;(zo). Moreover, since b(zo~!) = a(:v) also holds, we
get that for all i,1 < i < u, |b;(z)| = |ai(zo)| < |a;(z)] and |a;(z)| = |b;j(zo )| < |bi(z)], ie.
|b;| = |a;|, for all 4,1 <@ < w. 0
Let 0, be the null vector of ;. For d = 0, we obtain that if a;(0,) # b;(0), for some i, then
a o b (this last result also holds for PLE).

3.2 A group-theoretical approach of PLE and PIE

We first introduce the following notations. For (a,b) € F,[z]* x IF,[z]*, we shall denote by
Ligp) ={S € GLy(Fy) : b(z) = a(xS)}, the set of linear equivalence matrices between a and
b. Moreover, we shall call:

Autgr, (r,)(@) = {S € GL,(F,) : a(z) = a(zS)}, and
Autgy, ) (b) = {S € GLy(F,) : b(z) = b(zS)},

the automorphism groups, w.r.t. GL,(Fy), of a and b respectively. One can see at once that
Autgr,w,)(a) and Autgr, w,)(b) are subgroups of G L, (F).

Proposition 3.3. Let S € GLy(F,), such that b(z) = a(zS). Then Ly is a left (resp.
right) coset, in GLn(Fy), of the automorphism group Autgr, (w,)(b) (resp. Autgr,w,)(a))-
That is Ligp) = Autgr,(w,) (b)S (resp. Ligp) = SAutGLn(]Fq)(_))

Proof. We first show that L, ;) = Autgr, (r,)(b)S.

Let S € Ligp), ie. b(z) = a(zS'). We have b(zS™ ') = b(zS'"!), and so b(zS'S™') = b(z).
Thus S'S~! € Autgr,, (F, )(b) ie. S'e AUtGLn( q)(b)S.

Now, let M € Autgp,r,)(b)S, i.e. M = §'S for some §' € Autg,(r,)(b). Thus, since
b(z) = a(zS), we get by definition of §' that b(z) = b(zS") = a(zM), i.e. M € Lgp)-
Similarly, one can prove that L, ;) = SAutgr,(r,)(a)- O

From this proposition, we deduce:

Corollary 3.1. If b(z) = a(zS), for some S € GLy(F,), then:

|Lap)| = [Autgr, w,)(0)| = [Autgr, x,)(a)]-
Finally:

Proposition 3.4. Let S € GLy(F,), such that b(z) = a(zS), then Autgr,r,)(a) and
AutGLn(Fq)(l_)) are conjugate, i.e. AutGLn(Fq)(g) = SAutGLn(Fq)(l_))Sfl.

Proof. We first remark that, for each u > 1, the linear group GL,(F;) acts on the F,[z]-
modulus F, [z]*, through the following map:

Gy : GLn(Fq)XFq[Q]u — ]FQ[E]U
(G,a(z)) —  a(zS)



In this context Autgr,(r,)(a) (resp. Autgr, (r,)(b)) is also called stabilizer of a (resp. b).
Thus, since there exists S € GL,(F,;) such that b(z) = a(zS), then b lies in the G L, (IF,)-orbit
of a. Thus, we immediately deduce that the stabilizers of ¢ and b are conjugate and more
precisely Autgr,(r,)(a) = SAutGLn(]Fq)(Q)S_l. 0
Let us consider now the Polynomial Isomorphism Equivalence problem.

Extending the notations given for PLE, P, 4) = {0 € Sp : b(z) = a(z0)} shall denote the set
of equivalence permutations between g and b. We shall also call Autg, (a) = {0 € Sy, : a(z) =
a(zo)}, and Autg,(b) = {0 € S, : b(z) = b(zo)}, the automorphism groups, w.r.t. S,, of a
and b respectively. We then have:

Proposition 3.5. If b(z) = a(z0o), for some o € Sy, then Pop) is a left (resp. right) coset,
in Sp, of the automorphism group Auts, (b)(resp. Auts,(a)). That is Py = Auts,(b)o
(resp. Pop) = cAuts, (a)).

We then deduce:

Corollary 3.2. If b(z) = a(zo), for some o € S,,, then:
|Play)| = |Auts, (b)| = |Auts, (a)-
Finally:

Proposition 3.6. If b(z) = a(zo), for some o € S,, then Auts,(a) and Autgs, (b) are
conjugate, i.e. Auts, (a) = oAuts, (b)o '.

The proofs of the those results are omitted since they are very similar to the ones already
given for PLE.

4 The Polynomial Isomorphism Equivalence problem

Let Gy = (V, E1) and Gy = (V, E3) be two undirected graphs with the same set of vertices V,
and with set of edges £ and F» respectively. We recall that the Graph Isomorphism problem
is the one of deciding if there exists a bijective function p : V' — V such that:

(i,4) € B if, and only if, (p(i),p(j)) € Es.

We start this part by proving that GI is polynomial-time many-one reducible to dPIE. Re-
member that the n x n adjacency matrix Mg of a graph G = (V ={1,...,n}, E) is defined

for all 4,5,1 < i,5 < n, by (Mg)ij = 1iff (i,5) € E and (Mg)”. = 0 otherwise.

Proposition 4.1. GI<]'dPIE.

Proof. Let Gi = (V,E1) and G2 = (V, E2) be two undirected graphs with the same set of
vertices V', and with set of edges E; and Ej respectively. Moreover, let n = |V|, and f be a
mapping from the instances of GI to the instances of dPIE, defined such that:

f(G1,G2) = (az,a1),

with a1(z) = Mg, z* and as(z) = zMg,z' being polynomials of F,[z] (with char(F,)# 2).
We shall now prove that f is a polynomial-time many-one reduction from GI to dPIE.



Let (G1,G2) € Lgy, ie. there exists a bijective function p : V. — V such that (i,j) €
E, if, and only if (p(¢),p(j)) € FEa. We then easily deduce that the adjacency matrices of
G; and G9 are such that:

(Mgl)i’j = (Mg2)p(i),p(j)’ for all 4,5,1 < 14,5 < n.

Thus, if we denote by P the permutation matrix associated to p (i.e. for all ,5,1 < 1i,5 <,
P,; = 1iff p(i) = j and P,j = 0 otherwise), then Mg, = PMg,P* holds. Indeed, for all
1,7,1 < 1,7 <n, we have:

n

n
(PMg2Pt)i,j = ZPi,lc(Z(Mgz)k,ijae)
k=1 =1

= ZPi,k((Mgz)k,ZjP',fj) = ZPi,k(Mgg)k,p(j)
k=1 k=1

(PMg,PY)ij = Pig,(Mg,)k, p() = (Mgy)piip() = (Mg, )ig

Thus a1(z) = zMg,z! = zPMg, P'z! = as(zP), i.e. f(G1,G2) = (a2,a1) € Lyprg-

Now, let f(G1,G2) = (a2,a1) € Lgprg, i-e. ai(z) = ao(zo), for some o € S,. Let also
P, be the permutation matrix associated to o (i.e. for all 7,7,1 < i,j < n, (P”)i,j =1 iff
o(i) = j and (P‘T)i,j = 0 otherwise). By construction, a2 and a; are homogeneous polynomials
of degree 2, thus there exist symmetric matrices M; and M, such that a; = zMjz! and
ay = xMszt. Since char(IF;)# 2, these matrices are unique, thus M; = Mg, and My = Mg,.
Finally, ai(z) = a2(zo), implies that z Mg, 2! = zPMg, P!z’ and thus Mg, = P,Mg,P., i.e.
(G1,G2) € Lgy. 0

Proposition 4.2. dPIE is polynomial-time Turing equivalent to PIE.

Proof. Obviously dPIE polynomial-time Turing reduces to PIE. Let us prove also that PIE
polynomial-time Turing reduces to dPIE. The reduction is mainly based on the following
remark.

Let (a,b) € Fy[z]" x Fy[z]", and @} = (@, z1). Moreover, for all j,1 < j <n, let b; = (b, z;).
If for some j1,1 < j1 < 7, there exists an equivalence permutation o between a} ‘and b, we
deduce that o is an equivalence permutation between g and b, transposing z; and :v; ie.
IEjl = xa(l).

We can generalize this idea. Let k,1 < k < n, and suppose that we have recovered for all
i,1 <1 < k—1, zj, such that zj, = z,(; for some equivalence permutation o between a
and b. In order to recover an equivalence permutation o between g and b transposing zy
and z;,, we submit for all j,1 < j < n, the polynomials a) = (a,1,...,z;) and b;c,j =
(b,zj,,--.,%j,_,,2;) to a dPIE oracle. If for some ji,1 < j; < n, there exists an equiv%nce
permutation o between % and b;c, oo We deduce that o is an equivalence permutation, between
a and b, transposing z; and z;,, for all 1,1 <7 < k.

Therefore for each 7, 1 < 1 < n, we recover z;; such that z;, = z,(; for some equivalence
permutation o between g and b, with at most n queries to a dPIE oracle, i.e. one can recover
a solution of PIE by sending at most n? queries to a dPIE oracle. 0

Historically, the first indication that GI is not likely to be NP-Complete was given by Mathon
[12]. He has shown that GI behaves differently than NP-Complete problems by proving that it



is polynomial-time Turing equivalent to its counting version #GI. We present a similar result
for dPIE. For this, we introduce the following problems. Given ¢ = (a1,...,a,) € F;[z]*,
we shall call PAg, the problem of finding - if any - o € Autg,(a). Moreover, #PAg, is the
counting problem associated to PAg, , i.e. the problem of finding the order of Auts, (a).

Theorem 4.1. #PIE is polynomial-time Turing equivalent to dPIE.

Proof. One can see at once that dPIE is polynomial-time Turing reducible to #PIE.
To show that #PIE is Turing reducible to dPIE, we first remark that according to corollary
3.2, a ~ b implies that P, = |Auts,(a)| = |Auts, (b)|. Thus #PIE is Turing reducible to
#PAs, . We now prove that #PAg, is Turing reducible to dPIE. The crucial point in this
reduction is to remark that if for all k,1 <k <n, a}, = (a,1,...,Zk), we* then have:

|Auts, (ay,_,)| = di|Auts, (a3)], (2)

with di = [{z,) : 0 € Auts,(a},_,)}|, i-e. the size of the orbit of z; in Auts, (aj,_,).
To prove (2), we remark that for all k,1 < k < n, Autg,(a}) is a subgroup of Auts, (aj,_,)-

Thus, by Lagrange’s theorem, we get that:
|Auts, (ap_1)| = (Auts, (ap_,) : Auts,(a}))|Auts, (a})]-

Concluding the proof of (2) since (Auts,(a} ;) : Auts, (%)), the index of Auts,(a}) in

Auts, (a)_,) is equal to di. Therefore, since |Auts, (ay,)| = 1, we get that:

n
|duts, (ap)| = |Auts, (a)] = ] ] d.
k=1

Moreover, for each k,1 < k < n, di can be computed, by using a technique similar to the
one described in the proof of proposition 4.2, by sending n — k + 1 queries to a dPIE oracle.
Thus, the order of Auts, (a) can be computed with at most n? queries to a dPIE oracle, i.e.
#PAs Turing reduces to dPIE. Therefore, #PIE is Turing equivalent to dPIE. 0

Since PIE and dPIE are Turing equivalent, we get:
Corollary 4.1. #PIE is Turing equivalent to PIE.

In order to prove that dPIE is not NP-Complete, we introduce now Interactive Proof (IP)
systems.

Definition 4.1. An Interactive Proof (IP) system for a language L consists of a randomized
polynomial-time algorithm called verifier, denoted by V, and a prover, denoted by P, which
can make arbitrary many computations. The two players interact by sending messages to
each other. After at most a polynomial number of communications, the verifier finally has to
accept or reject a given input such that the following conditions hold:

Completeness. For all z € L:

Pr[(V, P)(z) accepts | = 1.

4For k=0, we set ap = a



Soundness. For all x € L and for any prover P*:

Pr[(V, P*)(z) accepts ] <

N =

The probabilities are taken over the random choices of the verifier.

IP denotes the set of languages having an interactive proof system. Finally, TP[k] is a subset
of IP denoting the set of languages having an interactive proof system where the prover and
the verifier exchange at most k messages.

In order to prove that dPIE is not NP-Complete, we will show that its complementary prob-
lem, denoted dPIE, has a constant round Interactive Proof protocol.

Proposition 4.3. dPIE € IP[2].

Proof. Let us prove that the following IP protocol accept dPIE.
Input: (ao,a1) € Fy[z]" x Fy[z]".
Question: Is ap £ a1 ?
Protocol.
The Verifier picks 7 € {0,1}, and o € S,,, both uniformly at random,
and sends @' = a;(zo) to the Prover.
The Prover answers by sending j € {0,1} to the Verifier.
The Verifier accepts if ¢ = j and rejects otherwise.

Completeness. If gy 7 a1, then a Prover can always determine whether @’ ~ ag or a’ ~ a;.
Thus the Verifier accepts with probability one.

Soundness. On the other hand, if ag ~ ai, then @' is isomorphic to both gy and a;. In
this case, we prove that ¢’ = ai(zo) gives no information about 4, i.e. the distribution of
i given d' is equal to the distribution of ¢ (which is chosen uniformly at random in {0,1}).
We introduce for this a random variable ¢ uniformly distributed over {0,1} and a random
variable ¥ uniformly distributed over S,,. We get:

Lemma 4.1. Let (ag,a1) € Fy[z]* X Fy[z]* such that ag ~ a1. Then, for all ' € Fy[z]*, such
that @/ ~ ag, we have Pritp = 0|ay(zX) = d/] = Prly = 1]ay(2X) = d] = z.

a',a0) |- Moreover,

Proof. Remark that Prla, (zX) = a' |9 = 0] = Prlag(zX) = a'] = Pr[% € L
according to corollary 3.2, we have [Pl a0)| = |Auts, (@) = |P(g q;)l; and thus Prlag(zX) =
a'] = Prla;(zX) = d']. Therefore, Prlay(zX) = o' |y = 0] = Prlay(zX) = o |4 = 1].
Concluding the proof, according to the Bayes formula. 0
From this lemma, it follows that no prover (no matter what its strategy is) can guess ¢ with
probability greater than % Therefore no Prover can fool the Verifier, into accepting that
ag # a1, with probability greater than % 0

Finally, according to [1], we deduce an upper bound for the complexity of (d)PIE.

Corollary 4.2. If dPIE (resp. PIE) is NP-Complete (resp. NP-Hard) then the Polynomial
Hierarchy (PH) collapse at the second level, i.e. PH=3}.



5 The Polynomial Linear Equivalence problem

We investigate in this part (d)PLE.
The following result permits to give a lower bound on the theoretical complexity of dPLE.

Proposition 5.1. PIE is polynomial-time Turing reducible to dPLE.

Proof. The proof is similar to the one given in proposition 4.2, and the reduction is mainly
based on the following remark.

Let (a,b) € Fy[z]" x Fy[z]", and @} = (@, z1). Moreover, for all j,1 < j < n, let b; = (b, z;).
If for some 71,1 < j1 < n, there exists a linear equivalence matrix S between a_'l ‘and b;-l, we

deduce that S is a linear equivalence between ¢ and b, transposing x1 and z;,, i.e. for all
5,1<73<n, 8 ;=1iff j =3 and Si; = 0 otherwise. Therefore, if o is a permutation of
Sy, such that zj, = z,(1), then we have:

b(z) = a(z,q), S2(), - - -, Sn(x)),

with (Sl( ) ) g
More generally, let k 1 < k < n, and suppose that we have constructed o € S,, such that
Tj; = To(i), for all 4,1 <4 S k —1, and:

b(z) = a(zeq1), - -+ » Toh—1), Sk(2), - -, Sn()),

for some S € L(gp)-

By submitting for all j,1 < j < n, a_;c = (a,r1,-..,2x) and b;c_,] = (b,zj,,...,%j,_,,T;) tO &
dPLE oracle, one can recover - if any - jx, 1 < ji < n such that there is a linear equivalence
matrix S between % and b;c, e (We mention that if for all j, % %1 b;c_,] then a £ b). Thus, if
we impose that o also verifies 1, = ,(), then we have:

I_)(E) = Q(ma(l)a . 1‘Ta(k;)a Sk—}—l(g)a ey Sn(l))
Therefore one can see that a solution of PIE can be constructed by sending at most n? queries
to a dPLE oracle. m
Since GI<J'dPIE and dPLE obviously polynomial-time Turing reduces to PLE, it holds that:

Corollary 5.1. GI is polynomial-time Turing reducible to dPLE and PLE.

We stress that proving GI<J'dPLE, as claimed in [3], seems hard to achieve.

We introduce now some new problems. We shall call Hom_PLE the restriction of PLE to
homogeneous instances, i.e. each polynomial of a (resp. b) is homogeneous. Moreover,
dHom_PLE denotes the decisional version of Hom_PLE.

Proposition 5.2. dPLE is polynomial-time many-one equivalent to dHom_PLE.

Proof. One can see at once that the function f(a,b) = (a,b), for all (a,b) € F,[z]* xF,[z]*, is a
polynomial-time many-one reduction between dHom_PLE and dPLE. Thus dHom_PLE<*dPLE.

Now, let (a,b) € F;[z]* x Fy[z]"* be an instance of dPLE and D = mazi<ij<y(D;). In order
to prove that dPLE<'dHom_PLE, we define a function g : Fy[z]* x F,[z]* — F, [z](PH1)
F, [z](P+1)* in the following way. For all (a,b) € F,[z]* x F,[z]*:

9(a,b) = (4,B),
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with 4 = (a(P),aP-V,...,a®) and B = (4?),5P~ ... p©®).

Remark that by its very construction, g(a,b) is an instance of dHom_PLE.

Now, let (a,b) € LgpLE, i-e. b(z) = a(zS), for some S € GL,(FF;). According to proposition
3.1, we have b¥(z) = a@(2S),for all d,0 < d < D. Thus B(z) = A(zS), i.e. g(a,b) =
(A4,B) € Litom_PLE-

Let g(g,l_)) = (A,E) € Lixom_pLE, 1. B(z) = A(zS'), for some S’ € GL,(F,). Since
B(z) = A(zS') implies that I_)(d)(g) = Q(d)(gS'), for all d,0 < d < D, we then get by
proposition 3.1 that b(z) = a(zS’). Thus (a,b) € LyprE- 0
Note that, according to proposition 3.2, this result also holds for dPIE and dHom_PIE, using
an obvious notation.

Corollary 5.2. PLE is polynomial-time Levin equivalent to Hom_PLE.

Proof. Let f and g be defined as in the proof of proposition 5.2, and h be the identity
mapping of GL,(F,). It is easy to see that (f,h,h) ( resp. (g,h,h)) is a Levin reduction
between Hom _PLE and PLE (resp. PLE and Hom_PLE). 0

We stress that this result is also of practical interest. Indeed, for the same value of u,n and g,
an instance of Hom_PLE have in general less terms than an instance of PLE. Thus, restricting
PLE to Hom_PLE permits to decrease the size of the public key in cryptographic schemes
based on PLE. Moreover, for the authentication scheme (resp. signature scheme) based on
PLE, such a restriction also permits to decrease the size of the interactions between a Prover
and a Verifier (resp. to decrease the size of a signature), without changing the theoretical
complexity.

We show now that the complementary problem of dPLE, denoted dPLE, has a constant round
IP protocol. The proof is adapted to the one previously given for dPIE. The only difference
here is that the Verifier must randomly generate a matrix in GL, (F,).

We can proceed as follows, the verifier randomly generates a matrix in M, ,(F,;). If this
matrix is invertible then the protocol is similar to the one described for dPIE, otherwise if
(after several attempts) the Verifier fails to obtain an invertible matrix it accepts directly.
The number of attempts is derived from this lemma:

Lemma 5.1. We have:

GLE) | 1
[ Mann(Fg)| — 4
: GLn(Fy) GLn(F, GLn :
Proof. Since |‘M (11? )|‘ =1l (1— p 1), we have \'an((ﬁ))n > ||M ((H‘%))‘I concluding the proof,
since at least 1/4 of the matrices in My, n(IF2) are invertible (see [16], p. 45). n

We can now describe the protocol:
Proposition 5.3. dPLE € IP[2].

Proof. Consider the following IP protocol for dPLE.

11



Input: (ag,a1) € Fylz]" x Fy[z]".

Question: Is ag #Z1 a1 7

Protocol.

The Verifier picks uniformly at random i € {0, 1}, and randomly generates matrices
in My, »(Fy). Until one matrix, say S, is invertible. The Verifier then sends

a' = ai(zS) to the Prover.

If after five trials no matrix is invertible, the Verifier stops and accepts directly.
The Prover answers by sending j € {0,1} to the Verifier.

The Verifier accepts if ¢ = j and rejects otherwise.

Completeness. Clearly, if ag Z1, a1 then the Prover will never fail in convincing the Verifier.

Soundness. If ay =1, a1, then @’ is linear equivalent to ap and a;. Similarly to the proof
of proposition 4.3, one can prove that ¢’ = a;(zS) gives no information about %, i.e. the
distribution of 4 given ¢’ is equal to the distribution of i (which is chosen uniformly at
random in {0,1}). This is mainly due to the fact that, according to corollary 3.1, we have
|L(¢,a0)| = |Autcr, (@) = |Lg ap)|-

It follows that no prover (no matter what its strategy is) can guess i with probability greater
than 1 + (3)° < & (with (3)® < & being the probability of not obtaining an invertible

2 4 16
matrix). Finally, by repeating the protocol two times, we obtain that no Prover can fool the
Verifier into accepting that ayp #1 a1 with probability greater than (%)2 < % 0

We then obtain:

Corollary 5.3. If dPLE (resp. PLE) is NP-Complete (resp. NP-Hard) then the Polynomial
Hierarchy (PH) collapse at the second level, i.e. PH=3}.

6 Conclusion

From a complexity-theoretic point of view, we have proved that dPIE (resp. dPLE) is at least
as difficult as the Graph Isomorphism problem. It also appears that, using Interactive Proofs,
dPIE and dPLE (resp. PIE and PLE) are, assuming PH does not collapse, not NP-Complete
(resp. NP-Hard).

We also believe that the group-theoretical properties given in 3.2 could be used in the design
of an (efficient) algorithm for PLE or PIE.
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