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Abstract

Lovász and Schrijver described a generic method of tightening the LP and SDP relaxation for
any 0-1 optimization problem. These tightened relaxations were the basis of several celebrated
approximation algorithms (such as for MAX-CUT, MAX-3SAT, and SPARSEST CUT).

We prove strong nonapproximability results in this model for well-known problems such as
MAX-3SAT, Hypergraph Vertex Cover and Minimum Set Cover. We show that the relaxations
produced by as many as Ω(n) rounds of the LS+ procedure do not allow nontrivial approxima-
tion, thus ruling out the possibility that the LS+ approach gives even slightly subexponential
approximation algorithms for these problems.

We also point out why our results are somewhat incomparable to known nonapproximability
results proved using PCPs, and formalize several interesting open questions.

1 Introduction

The past decade has seen a dramatic improvement of our understanding of the approximation
properties of many NP-hard optimization problems. Many new approximation algorithms were
designed, especially using linear programming (LP) or semidefinite programming (SDP) relax-
ations. For many problems it was proved using probabilistically checkable proofs (PCPs) that
these algorithms are the best possible polynomial-time algorithms unless NP has subexponential
time algorithms.

This paper is motivated by two nagging facts about the state of the art. First, for some
problems there is a large gap between the approximation ratio achieved by the best algorithms
known and the approximation ratio ruled out by PCP-based results. For instance, the two
ratios are 1.5 and 1.02 respectively for metric TSP, and 2 and 1.36... respectively for Vertex
Cover in graphs. Second, current PCP-based results do not rule out the existence of slightly
subexponential-time approximation algorithms. This happens because they often use reductions
that greatly increase the instance size. For example, the reduction from 3SAT to Vertex Cover
by Dinur and Safra [5] reduces 3SAT instances of size n to 1.36-approximation for Vertex Cover
on graphs of size nC where C is an astronomical constant. Thus it does not rule out that
1.2-approximation to Vertex Cover is possible in say 2n0.01

time —an interesting possibility.
A recent paper of Arora, Bollobás, and Lovász [1] pointed out both these issues. It also

suggested a concrete approach to study such questions: rule out good approximation algorithms
that use “standard methods” of writing LP and SDP relaxations. After all, even though linear
programming is P-complete, and hence in principle capable of representing arbitrary polynomial-
time computations, current approximation algorithms are designed by writing LP relaxations
in a certain way. A lowerbound for “large” families of relaxations could thus be viewed as a
lowerbound for a restricted but important computational model (analogous to lowerbounds for
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restricted circuit classes or proof systems). Arora et al. proved that several families of relaxations
cannot achieve an approximation ratio better than 2 − o(1) for Vertex Cover. Related work of
this nature is described below.

In this paper, we concentrate on lowerbounds for the approximation ratio of relaxations
obtained by a general technique of Lovász and Schrijver [11]. (A related “lift and project”
technique was also proposed by Sherali and Adams [13].) Given an arbitrary relaxation of a 0-1
optimization problem, this gives two procedures LS and LS+ for obtaining tighter and tighter
relaxations for the integral polytope (formal definitions appear in Section 2). The relaxation
obtained from r rounds is solvable in nO(r) time. Thus though r = O(1) is the most interesting
case, if we are also interested in subexponential algorithms then any value of r less than n/ logn
is also interesting. In general n rounds suffice to obtain the integral polytope, which achieves
an approximation ratio 1. But it is conceivable that much fewer rounds suffice to get a very
nontrivial approximation ratio. The well-known SDP relaxation in the Goemans-Williamson [9]
0.878-approximation to MAX-CUT is obtained by using one round of LS+ on the standard
LP relaxation, and the SDP relaxation with triangle inequalities used in the recent Arora-Rao-
Vazirani [2] approximation for SPARSEST CUT is implied by two rounds of LS+.

We show that Ω(n) rounds of LS+ do not suffice to achieve the following approximations for
any ε > 0: (i) approximating MAX-3SAT within a factor better than 7/8− ε (ii) approximating
Vertex Cover in rank-k hypergraphs within a factor better than k − 1 − ε (iii) approximating
SET COVER within a factor better than (1 − ε) ln n.

Note that there are nonapproximability results in the PCP setting where all the above factors
appear [4, 10, 6, 12]. However, as mentioned already, those results use reductions that greatly
blow up the instance size, and hence imply the above integrality gaps—under any complexity
assumption at all—for nδ rounds instead of for Ω(n) rounds. (An integrality gap of (1 − ε) ln n
for SET COVER would be implied only for no(1) rounds [6].)

We further note a curious difference between the above lowerbounds for LS+ and PCP-based
nonapproximability results. In the PCP world, once we have proved an inapproximability results
for “canonical” problems (such MAX-3SAT) we can use reductions to prove inapproximability
results for many other problems. Proving integrality gaps via reductions in the LS world seems
much harder if not impossible. In general this should not be surprising, since reductions use
arbitrary polynomial-time computations, which may be outside the purview of the limited “rea-
soning” available in the LS+ system (note that LS+ is technically a proof system). What is more
surprising to us is that even the simple gadget-based reductions typically encountered in NP-
hardness proofs seem outside the purview of LS+ reasoning. To give an example, approximating
MAX-3SAT within a factor better than 7/8 is reducible via a textbook reduction (carried out
entirely with local gadgets) to approximating Vertex Cover in graphs within a factor better than
17/16. Nevertheless, we are unable to rule out 17/16 − ε (or even weaker) approximations to
Vertex Cover in graphs, even though we have ruled out 7/8 − ε approximations to MAX-3SAT.
We describe the difficulties in Section 7.

This raises the tantalizing possibility that the familiar interrelationships among approxima-
tion problems that emerged in the past decade breaks down when one considers subexponential
time approximation algorithms. Only further work can resolve such issues, and we list some in-
teresting open problems later. (We should mention that our lowerbound results were motivated
by a failure to prove upperbounds.)

Comparison with related results. Goemans and Tuncel show that that LS+ procedure
cannot derive some simple inequalities in Ω(n) rounds, showing its limitations. Results relating
to integrality gaps appear in more recent papers. Arora et al. [1] show that the integrality for
Vertex Cover remains 2 − δ after Ω(

√
log n) rounds of LS. Feige and Krauthgamer [7] show

a large gap remains for the maximum independent set problem after Ω(log n) rounds of LS
liftings.

Buresh-Oppenheim et al. [3] considered the problem of proving integrality gaps from the
angle of propositional proof complexity. In the proof complexity setting, LS-type procedures
can be viewed as deduction systems with a prescribed set of derivation rules. The axioms are
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the polytope constraints and the derivation rules give the inequalities implied by one round of
LS+. (See also Section 7.) Their paper [3] shows a linear lower bound on the number of LS+

rounds needed to refute an unsatisfiable linear system for MAX-kSAT and MAX-kXOR-SAT
when k ≥ 5.

Our work has been partially inspired by this paper, namely we tried to apply their methods
for other optimization problems. It is not difficult to show how ideas similar to [3] allow one to
prove (albeit loose) integrality gaps for Vertex Cover on rank-k hypergraphs for big values of k.
However their techniques seem to break down for k = 3 and k = 4—the most interesting cases
after the celebrated vertex cover problem. We overcome the arising difficulties by introducing
two new elements: a more subtle expansion correction strategy as well as a new family of
positive semidefinite matrices specifically designed to protect noninteger points in the vertex
cover polytopes. The latter concept plays a key role in proving rank lower bounds for LS-lifting
procedures, so we would like to elaborate more on it.

With a couple of exceptions, lowerbounds in all prior papers use a certain “protection lemma”
due to Lovász and Schrijver (see Section 2): this gives a sufficient condition for a point x outside
the integral hull to survive one round of lifting. In particular, the protection lemma reduces the
problem of showing that such a point survives r rounds, to showing that some specific set T of
points survives r − 1 rounds. The simple protection lemma observes that it suffices to let T be
the 2n points that differ from x in exactly one coordinate. (The lone exceptions are two proofs
in [11] and [1] where the set T is obtained by LP duality and not explicitly described.) The
simple protection lemma fails to prove the integrality gaps that interest us, and we introduce
a new protection lemma that may be of interest in subsequent work. One curious feature is
that in order for this protection lemma to work for even one round, we need the underlying
problem instance to have some expansion properties. In fact, expansion plays a key role in our
lowerbounds, analogous to the role it played in Buresh-Oppenheim et al. [3].

2 Relaxations, Tightenings and our Methodology

Using the Vertex Cover problem (for graphs) we explain relaxations and how to tighten them
using LS+ lifting. The integer program (IP) characterization for a graph G = (V, E) is: minimize
∑

i∈V vi such that vi + vj ≥ 1 for all {i, j} ∈ G in the graph, where vi ∈ {0, 1}. The integer
hull denoted I , is the convex hull of all solutions to this problem. The standard LP relaxation
is to allow 0 ≤ vi ≤ 1. The value of the LP is no more than that of the IP. Let P be the convex
hull of all solutions vectors in [0, 1]n to the LP. A linear relaxation is tightened by adding more
and more constraints that also hold for the integral hull; in general this gives some polytope P ′

such that P ⊆ P ′ ⊆ I .
The quality of a linear relaxation is measured by optimum value over I

optimum value over P , usually called its inte-

grality gap. For the vertex cover relation, this ratio is 2. (Note: When designing approximation
algorithms, one also needs some kind of rounding algorithm to convert fractional solutions to
integer ones in polynomial time, but we ignore this aspect.)

Lovász and Schrijver [11] present a so-called “lift-and-project” technique for deriving tighter
and tighter relaxations of a 0-1 integer program. The n dimensional relaxed polytope is lifted to
n2 dimensions, new constraints are introduced, and then projected back into the original space.

The notation for the LS-liftings uses homogenized inequalities. In particular, given a poly-
tope P ⊆ R

n for a linear relaxation, let Q ⊆ R
n+1 be the cone {

(

a
~x

)

: ~x/a ∈ P}. For example, if
P is the Vertex Cover polytope, then (x0, x1, . . . , xn) ∈ Q iff the edge constraints xi + xj ≥ x0

hold for all edges {xi, xj} in the graph. Denote by N r(Q) and Nr
+(Q) the feasible cone of

all inequalities derivable in r rounds of the LS and LS+ lifting procedure, respectively. Let
N0(Q) = N0

+(Q) = Q. The rth round polytope is then obtained by projecting along the hyper-
plane x0 = 1. We will often abuse notation and write N r

+(P ) to indicate the polytope obtained
after r rounds of LS+ lifting. Lovász and Schrijver prove that if there exists a polynomial time
separation oracle for P then one can optimize a linear function over N r(P ) and Nr

+(P ) in time

nO(r).
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The following lemma from [11] characterizes the N and N+ operators.

Lemma 2.1. Let Q be a cone as defined above. Then y =
(

1
~x

)

is in N(Q) iff there is a symmetric

matrix Y ∈ R
(n+1)×(n+1) such that:

1. Y e0 = diag(Y ) = y,

2. For each i such that xi = 0, Y ei = 0; for each i such that xi = 1, Y ei = y; Otherwise
Y ei/xi and Y (e0 − ei)/(1 − xi) are both in Q.

Moreover, y =
(

1
x

)

is in N+(Q) iff in addition Y is positive semidefinite.

Note that N r+1
+ (Q) ⊆ Nr

+(Q). Note that to prove that y ∈ N r+1
+ (Q), we have to construct a

specific matrix Y and prove that the 2n vectors defined in Lemma 2.1 are in N r
+(Q). Choosing

such a Y gives what Buresh-Oppenheim et al. call a “protection lemma”: a point survives one
round of LS if the 2n vectors given by Y are in the previous polytope.

The simplest Y one could conceive of is Yij = yiyj (this is trivially positive semidefinite);
however, this matrix satisfies diag(Y ) = y only if y is a 0-1 vector. Indeed, this proves that
all polytopes resulting from LS-type liftings contain the integral hull. The next simplest Y one
could conceive is Y = yyT + Diag(y − y2), that is, the matrix that has Yij = yiyj except along
the diagonal where Yii = yi. For y ∈ [0, 1]n this is clearly positive semidefinite, and indeed, this
matrix was used in early results by Lovasz-Schrijver [11] and Goemans-Tuncel [8], and more
recently, Buresh-Oppenheim et al. [3].

With this choice of Y , the vectors Y ei/xi and Y (e0 −ei)/(1−xi) are obtained from changing
one coordinate in y to a 0 or a 1. However, for MAX-3SAT and hypergraph Vertex Cover, these
vectors are not guaranteed to be in the polytope. Thus other than for the Set Cover problem,
this simple protection lemma does not suffice for us.

Our response is to use a more complicated Y , such that most entries satisfy Yij = yiyj , but
some don’t. Then the 2n vectors generated above correspond to modifying Y in a small number
of entries. (A similar idea occurred in [1], except the Y there was not explicit.) This is at the
heart of our new protection lemmas for MAX-3SAT and hypergraph Vertex Cover. To make
this choice of Y work out, we need certain expansion requirements to be met.

With our “protection lemma” in hand, the lowerbound strategy will be as follows: Given our
relaxed polytope P , we identify a point w ∈ P for which the ratio between the integral optimum
and the value of the objective function at w is large. We will then prove the lowerbound by
showing that w survives many rounds of LS+. We do this via a Prover-Adversary game where
the Prover is trying to prove that w ∈ N r

+(P ) and the Adversary’s goal is to show the opposite.
For the Adversary to win, it will suffice for him to exhibit a vector amongst the 2n vectors given
by our “protection lemma” that is not in N r−1

+ (P ). He picks such a vector x and “challenges”

the Prover to show it is in N r−1
+ (P ). Things continue this way, and the Prover loses if she cannot

keep the game going for r steps. To keep the argument clean, we need to maintain the vector
x in a nice form throughout the game. To this end, we borrow an idea from [3]: during each
round, to prove that a particular point x is in a certain polytope, the Prover can also choose to
express the point as a convex combination

∑

j ρjzj and claims that every zj ∈ Nr−1
+ (P ) (and

consequently so is x). To counter this claim, the Adversary picks some zj which he thinks is not
in Nr−1

+ (P ), and the game continues for that vector. We will show that if the equations defining
P satisfy certain expansion requirements, then for appropriate w, the Prover has a linear round
strategy against any Adversary.

3 Incidence Graphs of Equations and their Properties

Given a hypergraph G = (V, E), let HG be the bipartite incidence graph on E × V where each
each hyperedge is connected to the vertices it contains. We will often use the notion of expansion
in a bipartite graph.

Definition 3.1. A bipartite graph G = (V1, V2, E) is an (r, c)-expander if every subset S ⊆ V1,
|S| ≤ r, satisfies |Γ(S)| ≥ c|S|, where Γ(S) is the set of neighbours of S in V2.

4



Throughout this paper we will deal with constraints of the form
∑

i vεi

i ≥ 1 where vεi

i

represents vi if εi = 1 and vεi

i represents 1 − vi if εi = 0. Say that a variable vεi

i occurs negated
in a constraint if εi = 0. Let C be a set of such constraints on a set V of n variables. Given an
assignment vector x ∈ [0, 1]n for V , we define C(x) to be the set of constraints obtained from
C as follows: (a) If xi = 0, remove all constraints containing vi negated; (b) if xi = 1, remove
all constraints containing vi unnegated; and (c) remove all variables set to 0-1 by x from the
remaining constraints. Intuitively, C(x) is the set of simplified constraints in C not trivially
satisfied by x. In particular, if x satisfies C(x), then x satisfies C.

Let V (x) be the set of those variables in V not set to 0-1 by x and let H(x) be the bipartite
incidence graph on C(x) × V (x); that is, for each equation in C(x) there is an edge to every
variable it contains. Let H be the incidence graph on C × V . We will say that C(x) is an
(r, c)-expander if H(x) is an (r, c)-expander. We will say that the arity of a constraint is t if it
has t neighbours in H(x). For a subset S ⊆ C(x) of equations, denote the variables in S (i.e.,
the neighbours of S in H(x)) by Γ(S).

Usually C(x) will have some expansion property, and in particular will be at least a (2, k −
1 − ε)-expander. Then all equations in C(x) will have arity at least k − 1. Moreover, whenever
C(x) is an expander, equations of arity k − 1 will enjoy some special properties of which we will
take advantage. For a vector x ∈ R

n, let R(x) to denote the set of all indices to non-integral
coordinates of x.

Definition 3.2. Let 0 < ε < 1/2 and x ∈ {0, 1
k−1 , 1}n and suppose C(x) is a (2, k − 1 − ε)-

expander. Two indices i, j ∈ R(x) are C(x)-equivalent (written i ∼C(x) j) if there is a constraint
in C(x) of arity k − 1 containing vi and vj . Let E(x) ⊆ R(x) contain all indices i ∈ R(x) for
which there exists j ∈ R(x), j 6= i such that i ∼C(x) j.

The following proposition will be used repeatedly in our lower bound proofs and follows
easily from expansion.

Proposition 3.3 (Facts about C(x)-equivalence classes). Let 0 < ε < 1/2 and x ∈
{0, 1

k−1 , 1}n and suppose C(x) is (2, k − 1 − ε)-expanding.

1. A given variable can only occur in one arity k − 1 equation in C(x). Hence, each C(x)-
equivalence class has exactly k − 1 elements.

2. Any given equation in C(x) (other than the arity k − 1 equation defining the equivalence)
can contain at most one variable from any given C(x)-equivalence class.

4 Lowerbounds for Hypergraph Vertex Cover

Let G = (V, E), E ⊆ V k, be a k-uniform hypergraph. The vertex cover problem for G is to
find the smallest subset S ⊆ V such that all hyperedges in G contain at least one element
from S. The problem is expressed by the following integer program where variable vi ∈ {0, 1}
corresponds to vertex i in the graph:

min
∑

vi∈V

vi :

k
∑

j=1

vj ≥ 1 ∀(v1, . . . , vk) ∈ E. (4.1)

Let us relax to 0 ≤ vi ≤ 1. Let VC(G) then be the polytope consisting of all points w ∈ R
n

satisfying the relaxed constraints, that is, w ∈ R
n is in VC(G) if setting vi = wi for all i results

in all relaxed constraints being satisfied. It is easy to see for the complete k-uniform hypergraph
on n vertices the optimal value of the integer program is n − k + 1 while the optimum value of
the relaxed linear program is n/k. Therefore, the integrality gap between the integer and linear
programs is at least k − o(1).

We prove that even after a linear number of rounds of LS+ tightenings of VC(G) there still
exists some graph for which the integrality gap is k − 1 − o(1).
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Theorem 4.1. Let k ≥ 3. For all α > 0 there exists γ > 0 and a k-uniform hypergraph G such
that the integrality gap of any γn round LS+ relaxation of VC(G) is at least (k − 1)(1 − α).

Given G = (V, E), let CG be the set of hyperedge constraints defining VC(G). Since the
underlying graph G will usually be clear, we omit the subscript unless extra precision is needed.
In this section we will always have x ∈ {0, 1

k−1 , 1}n and C(x) will be at least a (2, k − 1 − ε)-
expander. Then all equations in C(x) will have arity at least k − 1 and the following will
hold:

Proposition 4.2. Let 0 < ε < 1/2, and x ∈ {0, 1
k−1 , 1}n, and suppose that C(x) is (2, k−1−ε)-

expanding. Then x ∈ VC(G).

We now define the vectors that will appear in our “protection lemma” for vertex cover. For
the remainder of this section we will always assume 0 < ε < 1/2.

Definition 4.3. Given x ∈ [0, 1]n, for all i ∈ R(x) and all a ∈ {0, 1} define x(i,a) to be identical

to x except that x
(i,a)
i = a.

Definition 4.4. Let x ∈ {0, 1
k−1 , 1}n, and suppose C(x) is (2, k − 1 − ε)-expanding. For all

i ∈ E(x) define x[i] to be identical to x except that x
[i]
i = 1 and x

[i]
j = 0 for all j ∼C(x) i. Let

the set Tx ⊆ {0, 1
k−1 , 1}n equal the union {x[i] : i ∈ E(x)} ∪ {x(i,a) : i ∈ R(x)\E(x), a ∈ {0, 1}}.

Lemma 4.5. Let x ∈ {0, 1
k−1 , 1}n, and suppose C(x) is (2, k − 1 − ε)-expanding. Then R(x) ⊆

VC(G). Moreover, for all y ∈ Tx, each equation in C(y) has arity at least k − 1.

Proof. There are two types of points in Tx: (1) x(i,a) for i ∈ R(x)\E(x) and (2) x[i] for i ∈ E(x).
Consider a point x(i,a) in Tx where i ∈ R(x)\E(x). In this case, vi does not belong to any arity
k − 1 equation in C(x). Hence, every equation in C(x(i,a)) has arity at least k − 1 in C(x(i,a)),
and is therefore satisfied by x(i,a).

Now consider a point x[i] in Tx such that i ∈ E(x). By Fact 2 on equivalences and the
definition of x[i], every equation in C(x) that had arity k in C(x) has arity at least k − 1 in
C(x(i,a)), and hence is satisfied by x(i,a). By Fact 1 on equivalences, the only arity k−1 equation
in C(x) for which the values of any of its variables changes under x[i] is the unique arity k − 1
equation containing vi. But such an equation is satisfied by x[i] since vi is set to 1 in x[i].

Lemma 4.6 (“Protection Lemma”). Let x ∈ {0, 1
k−1 , 1}n, and suppose C(x) is (2, k−1−ε)-

expanding. Suppose moreover that Tx ⊆ Nm
+ (VC(G)). Then x ∈ Nm+1

+ (VC(G)).

Proof. Let y =
(

1
x

)

. The proof uses Lemma 2.1 and the following choice of an (n + 1) × (n + 1)
positive semi-definite symmetric matrix Y that is yyT + Diag(y − y2) except that Yij = 0
whenever i ∼C(x) j. Note that Y is symmetric and that Y e0 = diag(Y ) = y. Moreover, by
Proposition 9.1 in the appendix, Y is positive semi-definite. So by Lemma 2.1, to show that
x ∈ Nm+1

+ (VC(G)) it remains only to show that for all i ∈ R(x), Y ei/xi and Y (e0 − ei)/(1−xi)
are in Nm

+ (VC(G)).

For i ∈ R(x)\E(x), Y ei/xi =
(

1
x(i,1)

)

and Y (e0 − ei)/(1−xi) =
(

1
x(i,0)

)

and hence are both in

Tx ⊆ Nm
+ (VC(G)). For i ∈ E(x), Y ei/xi =

(

1
x[i]

)

which is in Tx ⊆ Nm
+ (VC(G)). Finally, for i ∈

E(x), Y (e0−ei)/(1−xi) =
(

1
z

)

where z = 1
k−2

∑

j∼C(x)i,j 6=i x[j]. In particular, Y (e0−ei)/(1−xi)

is in the convex hull of Tx ⊆ Nm
+ (VC(G)), and hence is also in Nm

+ (VC(G)).

4.1 Proof of Theorem 4.1

Let α, ε > 0 be arbitrarily small. By Lemma 9.2 in the Appendix, there are constants β, δ > 0
such that a rank k hypergraph G exists with n vertices and βn edges such that the bipartite
graph HG is a (δn, k−1−ε)-expander, and every vertex cover of G has size at least (1−α)n. We
show that the vector w = ( 1

k−1 , . . . , 1
k−1 ), corresponding to a fractional vertex cover of “size”
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n/(k − 1), is in N r
+(VC(G)) where r = εδn

k−1 . It follows that this many rounds of LS+ cannot

reduce the integrality gap below (k − 1)(1 − α), and Theorem 4.1 then follows for γ = εδ
k−1 .

Note that HG is isomorphic to H(w), and hence, C(w) is (δn, k − 1 − ε)-expanding. This
will be crucial for the lower bound.

The lowerbound follows from a Prover-Adversary game of the type discussed in Section 2.
We describe the game more formally. In round i there is a parameter `i ≥ 2 and a current
point x ∈ {0, 1

k−1 , 1}n. For i = 0, x is w. At the beginning of round i, C(x) will be an
(`i, k − 1 − 2ε)-expander. In round i the following two moves are made.

1. Adversary Move: The Adversary selects z from Tx.

2. Expansion Correction: The Prover constructs a set Y ⊆ {0, 1
k−1 , 1}n such that (1) z is

in the convex hull of Y , and (2) for all y ∈ Y , C(y) is an (`i+1, k − 1 − 2ε)-expander where
`i+1 ≤ `i. The Adversary selects one point y ∈ Y to be the new x.

The game ends when `i+1 ≤ 1.
Intuitively, the Adversary fixes more and more coordinates in the initial point w to 0-1 values

by replacing the current point x with a point z from Tx (note that once a coordinate is set to
0-1 it remains fixed). The Prover wants this to continue for as long as possible but may run into
trouble if C(z) is no longer a good expander. The Prover therefore does Expansion Correction
to obtain a new x for which C(x) is a good expander. The next lemma shows that a good Prover
strategy implies w has high rank.

Lemma 4.7. If the Prover has an m round strategy against any adversary, then w ∈ N m
+ (VC(G)).

Proof. By induction on m. By Proposition 4.2, w ∈ VC(G) = N 0
+(VC(G)), and case m = 0

follows. So suppose the claim is true for m and that the Prover has an m + 1 round strategy
against any adversary. Consider the first round of the game and suppose the Adversary picks
z ∈ Tx. Let Y be the set subsequently constructed by the Prover in the Expansion Correction
move. Since the game runs for m more rounds regardless of which y ∈ Y the Adversary chooses,
Y ⊆ Nm

+ (VC(G)) by induction, and z ∈ Nm
+ (VC(G)) by convexity. This holds no matter

which z ∈ Tx the Adversary chooses, and so Tx ⊆ Nm
+ (VC(G)). Lemma 4.6 then implies

w ∈ Nm+1
+ (VC(G)).

So to prove w ∈ N r
+(VC(G)) and complete the proof of Theorem 4.1, it suffices to describe

an r round strategy for the Prover.

Lemma 4.8. If C(w) is a (δn, k − 1 − ε)-expander, then the Prover has an r round strategy
against any Adversary, where r = εδn

k−1 .

Proof. We start the game with x = w. Proposition 4.2 implies w ∈ VC(G). In round i of the
strategy the parameter `i will be defined such that for the current point x the Prover can ensure
C(x) is an (`i, k − 1 − 2ε)-expander. At the start, `1 = δn.

The strategy will work as follows: The two moves made in each round of the game remove
more and more variable vertices from the incidence graph H(w) on C(w)×V (w). In each round
at most k−1 variable vertices are removed from H(w) by the Adversary choosing z ∈ Tx. As for
the Expansion Correction move, the Prover will “correct” expansion in round i by identifying a
maximal non-expanding set Si of equations of size at most `i and removing it and its neighbours
from H(x). Letting `i+1 = `i − |Si|, the resulting graph would then be an (`i+1, k − 1 − 2ε)-
expander. The Prover removes these equations in Si by having the assignments Y be 0-1 on
Γ(Si) and equal to x outside Γ(Si). If `i+1 ≤ 1, the game ends; otherwise, the game continues.
The claim is that such a strategy results in at least r rounds: Suppose the strategy lasts m
rounds and consider S = ∪Si. Then |S| =

∑m
i=1 |Si| =

∑m
i=1 `i − `i+1 = δn − `m+1. By

expansion, S had at least (k−1−ε)|S| neighbours in H(w). However, at the end of the game, S
has no neighbours. Expansion Correction removes at most (k −1−2ε)|S| neighbours. Since the
Adversary Move removes at most k−1 neighbours per round, there must be at least εδn/(k−1)
rounds.

7



It remains to describe the Prover’s strategy in round i in detail: If `i ≤ 1 the game ends.
Otherwise, Proposition 4.2 implies x ∈ VC(G) and the Adversary selects z ∈ Tx. Note that
Lemma 4.5 implies z ∈ VC(G) and that every equation in C(z) has arity at least k −1. We now
describe how the Prover constructs the set Y for Expansion Correction:

1. If C(z) is an (`i, k − 1 − 2ε)-expander, the Prover takes Y = {z} and sets Si = ∅.

2. Otherwise, let Si ⊆ C(z), |Si| ≤ `i, be a maximal subset of equations with expansion less
than k − 1 − 2ε in C(z). If |Si| ≥ `i − 1, i.e., `i+1 ≤ 1, the game ends, and we let the final
x be the same as z except it is 0 on Γ(Si).

3. Otherwise we claim that for all subsets S ′ ⊆ Si of equations in C(z), |Γ(S ′)| > (k − 2)|S′|:
Either the Adversary chose some x(j,a) ∈ Tx where j is not in any C(x)-equivalence class
(in which case S′ has expansion greater than k − 2 in C(z)), or it chose x[j] where vj

occurs in some arity k − 1 equation φ ∈ C(x). Suppose φ shares t variables with Γ(S ′).
By expansion of C(x),

|Γ(S′)| = |Γ(S′ ∪ {φ})| − k + 1 + t ≥ (k − 1 − 2ε)|S ′| + t − 2ε.

Since S′ has exactly t fewer neighbours in C(z) than in C(x), the claim follows.

4. Let Si = (e1, . . . , et). By Lemma 9.4 in the appendix there exists a mapping η : S →
P(Γ(S)) such that (1) for all i ∈ [t], |η(ei)| = k − 1, and (2) for all i ∈ [t], |η(ei) \
⋃

j<i η(ej)| ≥ k − 2. We construct k − 1 assignments y1, . . . , yk−1 inductively according to

the ordering e1, . . . , et. At the beginning all the yj equal x outside C(z) and are undefined
on Γ(Si). Assume that at step t the values yj

i for all j ∈ [k − 1] and for all i such that
vi ∈ ⋃

i′<t η(ei′) have been defined so that the constructed partial assignments satisfy all

ei′ , i′ < t, and the assigned values y1
i , . . . , yk−1

i contain exactly one 1 for each i. Consider

et. Choose k − 2 vertices vi1 , . . . , vik−2
∈ η(et) such that the values yj

i1
, . . . , yj

ik−2
are

undefined for all j ∈ [k − 1] (these vertices exist by definition of η). Let vik−1
be the other

vertex in η(et+1). If the corresponding variables y1
ik−1

, . . . , yk−1
ik−1

are undefined then set the
last of these variables to one and the rest to zeros. Assume without loss of generality that
yk−1

ik−1
= 1. For all other vertices in η(et+1) we set yj

ij
= 1 and the rest to zeros. We have

extended our partial assignments for η(et) in a way that satisfies the induction hypothesis.
At the the end, y1, . . . , yk−1 each satisfy Si and z is their average. Let Y = {y1, . . . , yk−1}.

5 Lowerbounds for MAX-3SAT

The arguments used to prove Theorem 4.1 can be adapted to prove integrality gaps for 3-
SAT. Given a 3-CNF formula φ, we convert its clauses to inequalities in the obvious way, i.e.,
x1 ∨ x2 ∨ ¬x3 becomes x1 + x2 + (1 − x3) ≥ 1. Let Cφ be the set of these inequalities. Note
that the 0-1 solutions to the inequalities correspond exactly to the satisfying assignments for φ.
Relaxing to xi ∈ [0, 1] yields a polytope SAT(φ) whose integral points are solutions for φ. Let
w = ( 1

2 , . . . , 1
2 ) and note that w ∈ SAT(φ) for any formula φ.

Lemma 5.1. Suppose Cφ(w) is a (δn, 2 − ε)-expander, 0 < ε < 1
2 . Then w ∈ N

εδn/2
+ (SAT(φ)).

Proof. The proof is similar to the proof of Lemma 4.8. The only changes are: (1) The “protection
lemma” (in particular Lemmas 4.5 and 4.6) must be altered to take negated variables into
account; and (2) in the game, the Prover’s Expansion Correction strategy has to accommodate
negated variables. We sketch proofs of these differences.

Definition 5.2. Suppose x ∈ 1
2Z

n and let i ∈ R(x), a ∈ {0, 1}. Let x[i,a] ∈ 1
2Z

n be identical to

x except (1) x
[i,a]
i = a, and (2) if there exists an arity 2 equation vεi

i + v
εj

j ≥ 1 in C(x), then

x
[i,a]
j = 1 − a if εi = εj and x

[i,a]
j = a if εi 6= εj .

8



Arguing as in Lemma 4.5, it follows that if C(x) is (2, 2 − ε)-expanding, then for all i ∈
R(x), a ∈ {0, 1}, each equation in C(x[i,a]) has arity at least 2 and hence, x[i,a] ∈ SAT(φ). If we
let y =

(

1
x

)

, then the “Protection Lemma” for SAT(φ) will use the matrix Y that is the matrix
yyT + Diag(y − y2) except that if xεi

i + x
εj

j ≥ 1 is an equation in C(x), then Yij = 0 if εi = εj

and Yij = 1
2 if εi 6= εj . It can be verified that Y is positive semidefinite, and moreover, for all

i ∈ R(x), Y ei/xi =
(

1
x[i,1]

)

and Y (e0 − xi)/(1 − xi) =
(

1
x[i,0]

)

. Hence, as the set of vectors for the

protection lemma we can take Tx = {x[i,a] : i ∈ R(x), a ∈ {0, 1}}.
We now sketch how the Expansion Correction Strategy is altered. The overall argument

goes the same way using Lemma 9.4 with the only difference being that for vi ∈ η(et), the yj
i ,

j = {1, 2}, are set according to the signs the variables have in clause et so as to satisfy et.

It is well-known that for all α, ε > 0, there exist constants β, δ > 0 such that if we pick a
random 3-CNF φ with βn clauses, then with high probability (1) no boolean assignment satisfies
more than a 7

8 + α fraction of the clauses in φ and (2) Cφ is a (δn, 2 − ε)-expander. On the
other hand, Lemma 5.1 says that w, which satisfies all clauses in φ, is in N r

+(SAT(φ)) where
r = εδn/2. We have proved the following:

Theorem 5.3. For any constant α > 0, there exist constants β, γ > 0 such that if φ is a
random βn clause 3-CNF formula on n variables, then the integrality gap of any γn round LS+

relaxation of SAT(φ) is at least 7
8 − α with high probability.

6 Lowerbounds for SET COVER

An instance of SET COVER consists of a tuple (S, C) where C is a collection of n subsets of a
finite set S of size m. The objective is to find a minimum size subset C ′ ⊆ C such that each
element of S is in some set in C ′. If for each set Si ∈ C we have a variable xi indicating whether
or not set Si is included in the set cover, then the SET COVER problem is expressed by the
following integer program:

min
n

∑

i=1

xi : ∀j ∈ [m],
∑

i:j∈Si

xi ≥ 1.

The relaxed SET COVER polytope MSC(S, C) is the polytope defined by the above constraints
but where we allow 0 ≤ xi ≤ 1. Note now that if G = (V, E) is a k-uniform hypergraph, and
we let S = E and C = {Sv}v∈V where Sv = {e ∈ E : v ∈ e}, then MSC(S, C) is identical to
VC(G). Hence, integrality gaps for the hypergraph VC polytope yield integrality gaps for MSC.

Fix ε, δ, γ > 0 such that ε − δ > 0. By Lemma 9.3 in the appendix, there exists an (ε − δ)n-
uniform hypergraph G = (V, E) on n vertices with n edges such that the minimum vertex cover
is at least log1+ε n. Consider the hyperedge constraints CG defining VC(G). Let w be the

all-( 1+γ
(ε−δ)n ) point and note that w is in VC(G). Moreover, at least b γ(ε−δ)n

1+γ c coordinates of w

can be switched to 0 or 1 with the resulting point still satisfying all the constraints CG.
Recall the simple protection lemma used in Buresh-Oppenheim et al. [3] and described in

section 2: For a relaxed polytope P , a point x is in N+(P ) if for all i ∈ R(x) and all a ∈ {0, 1},
x(i,a) is in P . That is, x is in N+(P ) if whenever we change exactly one coordinate of x to 0 or
1, the resulting point is in P . So by induction, this simple protection lemma together with the
observation about w in the previous paragraph prove the following:

Lemma 6.1. The point w is in N r(VC(G)) where r = b γ(ε−δ)n
1+γ c.

Finally note that since the minimum vertex cover for G has size log1+ε n, the integrality gap

for w is (ε−δ) ln n
(1+γ) ln(1+ε) which approaches ln n from below as ε, δ, γ → 0. Thus we have proved the

following theorem:

Theorem 6.2. For all ε > 0, there exists δ > 0 and an instance (S, C), |S| = n, of SET COVER
for which the integrality gap of the δn round LS+ relaxation of MSC(S, C) is (1 − ε) lnn.
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7 Discussion

Technically speaking, proof complexity studies non-deterministic provers showing that a given
problem does not have a solution, e.g., a formula is unsatisfiable. For some proof systems,
whenever a proof exists it may also be found efficiently in which case the proof system is called
automatizable. In this case, the non-deterministic prover becomes a deterministic algorithm,
and propositional complexity becomes computational complexity. This is exactly what is going
on when one considers LS round lowerbounds. The classical propositional complexity measure
is however the number of lines in LS-style reasoning, and no lower bounds are known for this
measure. Since in case of LS round lowerbounds the propositional complexity and computational
look similar, we only talk about the latter in this paper.

In this view, we note why reductions are problematic. The standard reduction from 3SAT to
VC replaces each clause by a triangle of vertices. One may imagine that we add new auxiliary
variables, each variable being a function of at most 3 old variables. Indeed, if a triangle corre-
sponds to a clause in 3SAT then the variables in these triangle are functions over the values of
variables of this clause.

However, in general, when one introduces such auxiliary variables, the proof complexity may
change drastically. For example, weak resolution turns into powerful Extended Frege. On the
other hand, in our case all auxiliary variables are local so intuitively adding them should not
make a big difference. However, our arguments using protection lemmas break down and a
newer lowerbound idea seems necessary.

8 Open Problems

It seems important to extend the nonapproximability results to a variety of problems. (Or to
prove that actually many important optimization problems do have good slightly subexponential
time approximation algorithms via the LS+ procedure or other lift-and-project procedures.) As
we noted above, reductions are problematic in this regard.

Our paper leaves much space for further research. Methods based on games over expanders
do not seem to help against the notoriously difficult vertex cover problem: there are no expanders
of degree 2. This question seems related to proving k − ε integrality gap for k-hypergraphs (a
similar picture with these problems is observed in the PCP world).

Our result for SET COVER is interesting in a different respect: In [6] integrality gaps of
(1−ε) lnn are only ruled out under the assumption NP 6= DTIME(nlog log n). Since we rule out
(1−ε) lnn integrality gaps for Ω(n) rounds of LS+, this strengthens the possibility that stronger
PCP results are possible for this problem. In particular, it further supports the conjecture that
(1 − ε) ln n integrality gaps ought to be ruled out under the weaker assumption of NP 6= ZPP
or even NP 6= P.
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[10] J. H̊astad. Some optimal inapproximability results. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pages 1–10, El Paso, Texas, 4–6 May
1997.

[11] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, May 1991.

[12] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pages 475–484, El Paso, Texas, 4–6 May 1997.

[13] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411–430, Aug. 1990.

Appendix

Proof that protection lemma matrices are positive semidefinite

Proposition 9.1. The matrix Y constructed in Lemma 4.6 is positive semi-definite (PSD).

Proof. By definition, Y equals the matrix yyT + Diag(y − y2) except Yij = 0 if i ∼C (x)j. By
Fact 1 on equivalences, there exist disjoint sets I1, . . . , It of indices such that (a) |Ij | = k − 1
for all j ∈ [t], (b) all indices belonging to an equivalence are in one of the Ij , and (c) for each
j ∈ [t] all indices in Ij are mutually equivalent. Then,

Y = yyT + Diag(y − y2) +
∑

j∈[t]

(

Diag(y2
Ij

) − yIj
yT

Ij

)

,

where yI equals y but is zero outside I .
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To show Y is PSD, we show that zT Y z ≥ 0 for all z ∈ R
n+1. Note that zT (yyT )z = (yT z)2 ≥

0 for all z ∈ R
n+1. Moreover, Diag(w) is PSD for any w such that wj ≥ 0 for all j. Hence, since

the sum of PSD matrices is PSD, to show that Y is PSD it suffices to show for each Ij that the
following quantity is non-negative:

zT (Diag(yIj
− y2

Ij
) + Diag(y2

Ij
) − yIj

yT
Ij

)z = zT (Diag(yIj
) − yIj

yT
Ij

)z.

Since the argument is identical for all Ij we drop the subscript j and assume I = [k − 1]. The
above then simplifies to

∑

i∈[k−1](z
2
i xi) − (

∑

i∈[k−1] zixi)
2. Since xi = 1

k−1 for all indices in

an equivalence, this further simplifies to 1
k−1

∑

i∈[k−1] z
2
i − 1

(k−1)2 (
∑

i∈[k−1] zi)
2. The latter is

non-negative by the fact that
∑

i∈[`] a
2
i ≥ 1

` (
∑

i∈[`] ai)
2.

Graph Theory Lemmas

Lemma 9.2. Let ∆(ε, k, β) =
(

eε−k

5β(k−1−ε)1+ε

)1/ε

. Then for all α, 0 < α < 1, and all ε > 0,

there exists µ(α) such that for all β ≥ µ(α)α−k and all δ, 0 < δ < ∆(ε, k, β), the probability that
a random k-uniform hypergraph G = (V, E) on n vertices with βn hyperedges (1) has no vertex
cover of size smaller than (1 − α)n and (2) HG is a (δn, k − 1 − ε) expander is at least 1/2.

Proof. Let β = µ(α)α−k and suppose the hypergraph has βn randomly and uniformly chosen
hyperedges where µ(α) is chosen below. The probability that there exists a vertex cover of size
(1 − α)n equals the probability that there exists a set S ⊆ V , |S| = αn, such that no edge
contains only elements from S. This probability is bounded by

(

n

αn

)

(1 − αk)βn ≤
( e

α

)αn

(1 − αk)βn =
( e

α

)αn
(

1

e

)µ(α)n

. (9.1)

Let µ(α) > 0 be such that the above is less than 1/4.
Now consider the bipartite graph HG mapping E to V . Note that |E| = βn. The probability

that a subset of s = δn constraints of F does not have expansion more than c = k − 1 − ε is

(

βn

s

)(

n

cs

)

(cs

n

)ks

≤
(

eβn

s

)s
(en

cs

)cs (cs

n

)ks

=
[

δεβek−εc1+ε
]s

.

Let r = δεβek−εc1+ε. Then r < 1/5 when δ <
(

eε−k

5βc1+ε

)1/ε

. Hence, the probability that some

subset of E of size at most δn fails to have expansion greater than k − 1 − ε is bounded by

δn
∑

s=1

rs ≤
∑

s≥1

rs =
r

1 − r
<

1

4
.

So with probability at least 1/2, both G has no vertex cover of size less than (1 − α)n and HG

is a (δn, k − 1 − ε) expander.

Lemma 9.3. For any constant ε, δ ∈ (0, 1) for all n there exists an (ε − δ)n-regular hypergraph
with n vertices and n edges that has vertex cover greater than log(1+ε) n.

Proof. Let ε′ = ε − δ/2. Consider a random hypergraph G with n edges over n vertices in
which every vertex belongs to an edge independently with probability ε′. Let k = log1+ε n. The
probability that G contains a vertex cover of size k is less than or equal

(

n

k

)

·
[

1 − (1 − ε′)k
]m ≤ nke−m·(1−ε′)k

= o(1).

Finally, with high probability every edge in G contains at least (ε′ − δ/2)n = (ε − δ)n elements,
we may throw away any vertices from each edge so that it contains exactly (ε−δ)n of them.
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Lemma 9.4. Let H = (V1, V2, E) be a bipartite graph and let S ⊆ V1 be such that for for all S ′ ⊆
S, |Γ(S′)| > k|S′|. Assume S = {e1, e2, ..., e`}. Then there exists a mapping η : S → P(Γ(S))
such that (1) for all i ∈ [`], |η(ei)| = k + 1, and (2) for all i ∈ [`], |η(ei) \ ⋃

j<i η(ej)| ≥ k.

Proof. By the generalization of Hall’s theorem there exists a k-matching from S into Γ(S).
Fix such a k-matching ν once and for all. We construct η in the following recursive way. By
assumption, Γ(S) contains at least `k+1 elements. So by the pigeon-hole principle there exists a
vertex v ∈ Γ(S) which does not belong to

⋃

e∈S ν(e). Consider any vertex e ∈ S that is adjacent
to v (such a point exists because v ∈ Γ(S)) and let η(e) = {v}∪ν(e). Finally, denote S ′ = S\{e}
and repeat the process recursively for S ′. The vertices in S′ are ordered according to the way
they were ordered in S.

Clearly for all vertices ei in S, η(ei) is a k + 1 element subset of Γ(S). To check the second
required property for η note that at each step of the inductive process, no vertex of ν(e) may
be joined to any of the η(e′) from earlier steps, because η(e′) consists of ν(e′) and v′, v′ 6∈ ν(e).
The lemma follows.
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