Electronic Colloquium on Computational Complexity, Report No. 118 (2004) b rar

A Note on Traversing Skew Merkle
Trees

Marek Karpinski* Yakov Nekrich'

Abstract. We consider the problem of traversing skew (unbalanced)
Merkle trees and design an algorithm for traversing a skew Merkle tree
in time O(logn/logt) and space O(logn(t/logt)), for any choice of pa-
rameter ¢ > 2. This algorithm can be of special interest in situations
when the exact number of items to be identified is not known in advance.

1 Introduction

Merkle tree is a complete binary tree such that the values of internal nodes
are one-way functions of the values of their children. Every leaf value in a
Merkle tree can be verified with respect to a publicly known root and the
authentication path of that leaf. An authentication path of a leaf consists of
the siblings of all nodes on the path from this leaf to the root.

Merkle trees can be used in different cryptographic applications, and in
many such applications the so-called Merkle tree traversal, i.e. consecutive
generation of authentication paths for all tree leaves, must be performed.

The problem of Merkle tree traversal for balanced trees, i.e. trees of loga-
rithmic height , was considered in a number of papers, e.g. [S03], [JLMS03],
[BKNO4].

In this note we introduce a notion of a skew Merkle tree. In a skew
Merkle tree different leaves are allowed to have different depths. We show

*Dept. of Computer Science, University of Bonn. Work partially supported by DFG
grants , Max-Planck Research Prize, DIMACS, and IST grant 14036 (RAND-APX). E-
mail marek@cs.uni-bonn.de

tDept. of Computer Science, University of Bonn. Work partially supported by IST
grant 14036 (RAND-APX). E-mail yasha@cs.uni-bonn.de

ISSN 1433-8092

how Merkle tree traversal algorithms can be extended to the case of certain
skew Merkle trees without additional time and memory resources.

We can imagine a skew Merkle tree as a traditional Merkle tree with some
extra nodes appended to some of the leaves. In other words, in this paper we
show that extra nodes can be appended to a balanced Merkle tree without
changing the time and space bounds of the traversal algorithm.

It is an interesting open question, whether we can also apply the approach

of this paper to hash chains ([CJ02], [J02]).

2 Algorithm Description

In the argumentation below we will use the same notation as in [BKNO04].
We denote by n the minimal number of items in a skew Merkle tree and
H = logn. Parameter h is the height of the subtree that is stored after
every node computation (see [JLMS03] and [BKNO04] for an explanation of
this concept).

The key idea of our traversal method is that we do not have to re-compute
subtrees on higher levels from a certain time. Therefore we can use the
resources wasted in the case of balanced trees and append some additional
nodes. In [BKN04] and [JLMS03] subtree levels were indexed by numbers
between 1 and L = H/h. In this note we modify the definition of tree
level and we also use zero or negative subtree levels to specify the levels of
appended subtrees. We say that a node is on level k if its depth d = H — kh.

The authentication path for a leaf j is output during the j-th round,
7 = 0,.... We will also use the notion of superround . During the k-th
superround the algorithm outputs authentication paths of all descendants
of the k-th node of depth H. Note that since different leaves in a tree
have different depths, the number of authentication paths output during a
superround can vary. Thus the algorithm consists of 27 superrounds, and
each superround consists of a variable number of rounds.

For easiness of description we start by considering the case of h =1 and
show that for A = 1 almost nlogn/2 nodes can be added. The general case
will be considered later.

Since we do not have to compute the subtree on the H — 1-th level during
the last 27! superrounds, we have two spare computation units during each
of these superrounds. We can use these units to attach two extra leaves to
leaves 24=1 42, ... 2 Tn other words, during superrounds 281 41, .. 2H
we compute nodes on levels 0,1,2,..., H — 2 instead of computing nodes on
levels 1,2, ..., H—1 as we did before. This results in 27 —2—-2H-1 = 2H-1_9
new leaves.

Figure 1: Example of a skew Merkle tree for A = 1 with two appended levels

By the same argument we do not compute the subtree on the H—2-th level
during superrounds 27-1 4 2H-2 1 1 2H Therefore we can attach two
more leaves to each of the last 277! extra leaves. This accounts for another
2H=191 _ 9 — 2H-1 nodes. In the same way an arbirtary number m of levels

can be added. Repeating the same for levels H —3, H —4,...,1,...,—m we
see, that we can add in total (QH_221 — 2) + (QH_322 — 2) o (2H4_12i —
2) + ... = m27=1 — 2m leaves. And the last expression equals to nm/2 —

2m. However this method puts additional memory requirements, because
the rightmost path in the skew Merkle tree has to be stored. Therefore m
additional memory units must be stored.

For the general case A > 1 our method is similar to described above.
Namely, we add levels 0,—1,—2,... to the Merkle tree. Level 0 can be
added after 27 — 2(F=1)F 4 9% _ 1 superrounds, level —1 can be added after
o _ 9(L=2)h 4 9k _ | gsuperrounds, and level —i can be added after 27 —
L=k 4 9h 1 superrounds.

Since subtrees appended at levels 0, —1,... have 2" leaves, superrounds
oH _ Z(L_l)?‘ 42k 20 —ol=2h L 9k _ 1 consist of 27 rounds, superrounds
9H _ 9(L=2)h Zh, .. .,2H — L=3)h 1 9k _ 1 consist of 22" rounds and so

on. Thus the total number of rounds is Z:-r;/lh_l(Q(L_i_l)hQih -2+ 1) =

2= _ 19k 1 [, Therefore the total number of extra nodes that could be
appended to a Merkle tree is (nm/h2") — 2"m/h + m/h

We sum up the above argument in a theorem:

Theorem 1 There exists an efficient skew Merkle tree traversal algorithm
that works in O(logn) time and O(logn) + m space. This algorithm can
be used to authenticate up to n + mn — m items. There exists an effi-
cient skew Merkle tree traversal algorithm that works in O(logn/h) time
and O((2"/h)logn) + m space. This algorithm can be used to authenticate
n 4+ nm — (m/h)?h + (m/h) items.

An interesting question remains on the optimal trade-off for traversing
hash chains (c.f.e.g., [CJ02], [J02]). Unlike the Merkle tree, in hash chains
all the values result from applying the hash function to the same initial
seed value. That is, a hash chain is a sequence of values hg, hy,..., h, so
that h; = H(hi—1), where H is a hash function. The problem of a hash
sequence traversal, 1.e. that of generating the hash values in reverse order
hn—1,hn_2, ..., ho was considered e.g. by Coppersmith and Jakobsson [CJ02]
and Jakobsson [J02]. In [CJ02] it was shown that hash chains can be traversed
with O(log n) hash function applications per value and O(log n) memory cells.
Another interesting modification of hash chains is described in [HJP03].

We leave it as an open question whether our approach can be also applied
for the general hash chains.

Acknowledgements

We thank Markus Jakobsson and Michael Szydlo for helpful discussions.

References

[BKNO04] P. Berman, M. Karpinski, Y. Nekrich, Optimal Trade-Off for
Merkle Tree Traversal , ECCC Report TR04-049, 2004. Available
at http://www.eccc.uni-trier.de/eccc-reports/2004/TR04-049/
index.html

[CJ02] D. Coppersmith, M. Jakobsson, “Almost Optimal Hash Sequence
Traversal”, Financial Cryptography, 2002, 102-119

[HIJP03] Y.-C. Hu, M. Jakobsson, A.Perrig “Efficient Constructions for One-
way Hash Chains”, Technical Roprt CMU-CS-03-220, Carnegie Mellon
University, 2003.

[J02] M. Jakobsson, Fractal Hash Sequence Representation and Traversal,
Proc. of the ISIT, 2002 p.437; Full version available at
http://citeseer.ist.psu.edu/jakobsson02fractal.html

4

[JLMS03] M. Jakobsson, T. Leighton, S. Micali and M. Szydlo, Fractal
Merkle Tree Representation and Traversal, RSA Cryptographers Track,
RSA Security Conference, 2003.

[S03] M. Szydlo, Merkle Tree Traversal in Log Space and
Time, to appear in Eurocrypt 2004 Available at
http://www.szydlo.com/logspacetime.ps.gz

ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

5 ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

