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Abstract

Max-Satisfy is the problem of finding an assignment that satisfies the
maximum number of equations in a system of linear equations over Q.
We prove that unless NPCBPP there is no polynomial time algorithm
for the problem achieving an approximation ratio of 1/n'™¢, where n
is the number of equations in the system and ¢ > 0 is an arbitrarily
small constant. Previously, it was known that the problem is NP-hard
to approximate within a ratio of 1/n%, but 0 < a < 1 was some specific
constant that could not be taken to be arbitrarily close to 1.
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1 Introduction

MAX-SATISFY is the problem finding an assignment that satisfies as many
equations as possible in a system of linear equations over the field of rational
numbers. This problem appears in various contexts such as pattern recognition,
operations research and artificial neural networks (see the references in [2], for
example). MAX-SATISFY is NP-hard. We say that an algorithm approximates
MAX-SATISFY within a ratio of p (where 0 < p < 1) if on every instance
of MAX-SATISFY the algorithm returns an assignment that satisfies at least
p - opt(I) equations, where opt([) is the maximum number of equations of I
that can be satisfied simultaneously.

If the system is satisfiable then one can find an assignment satisfying all
equations in polynomial time, using Gaussian elimination. However, if the sys-
tem is not satisfiable, then even approximating MAX-SATISFY within a ratio
of 1/n® (where n is the number of equations and « is some specific constant less
than 1) is NP-hard [2, 3]. The best approximation algorithm for the problem
(due to Halldorsson [10]) achieves approximation ratio O(logn/n).

One may hope that the constant « in the 1/n* hardness of approximation
result can be taken to be arbitrarily close to 1. In particular, the construction of
arbitrarily low amortized free bits PCPs ([11, 13]) together with the appropriate
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reductions ([7, 6]) has resulted in such an inapproximability result for MAX-
CLIQUE (unless NP=ZPP). In this work we show that this methodology works
for MAX-SATISFY as well. However, there are some difficulties in applying this
methodology compared to the case of MAX-CLIQUE. One of them is that the
relation between amortized free bits and the approximation of MAX-SATISFY
is not as direct as their relation with MAX-CLIQUE, and in fact was not present
in the works of [2, 3]. This we handle in Lemma 8, which arithmetizes the low
amortized free bits PCP of [13] (using principles taken from [9]). A somewhat
more challenging difficulty is that the number of possible assignments to the
variables of a system over Q is infinite (whereas the number of possible cliques in
an n-vertex graph is at most 2"). This complicates the analysis of a randomized
reduction (originally due to [7]) that we use. In order to overcome this difficulty
(in Lemma 7) we make use of a theorem of [5] regarding the number of so called
zero patterns of a system of polynomials. We remark that also [2, 3] needed
to overcome such a difficulty, but their method of doing so would not give
hardness of approximation results beyond 1 /nl/ 2=¢ not even if coupled with
our Lemma 8, and not even if the deterministic amplification technique that
they use (based on [1]) is replaced by its more efficient randomized counterpart.
Our main theorem is the following.

Theorem 1 Unless NPC BPP, MAX-SATISFY cannot be approximated within
a ratio of nl%é, where n is the number of equations in the system and € > 0 is
an arbitrarily small constant.

2 Preliminaries

We denote by [n] the set of integers between 1 and n. Q is the field of rational
numbers. N is the set of natural numbers.
We give some definitions regarding probabilistic proof systems.

Definition 1 Letr and q be two functions from N to N. A randomized polynomial-
time Turing machine V' with an access to an oracle (string) m, is called an (r,q)
restricted verifier if, for every oracle m and for every input x, V uses O(r(|z|))
random bits and queries O(q(|z|)) bits of .

We deal exclusively with non-adaptive verifiers. A nonadaptive verifier decides
which queries to make based only on the input and on its random bits (but
not on answers it gets from previous queries). We are now ready to define the
concept of probabilistically checkable proof:

Definition 2 Let 0 < s < ¢ < 1. A language L is said to belong to the class
PCP, ([r,q] if there is an (r,q) restricted verifier V s.t.

1. Ifx € L there exists an oracle w s.t. the probability V' accepts x with oracle

access to m, is at least ¢, where the probability is taken over the random
bits used by V.



2. Ifx ¢ L then, for any oracle w, the probability V accepts with oracle access
to m is at most s.

We refer to ¢ as the completeness of the PCP and to s as the soundness of the
PCP. If ¢ = 1, we say that the verifier has perfect completeness.

Arora et al. [4] proved the following important result which is widely known
as the PCP Theorem:

Theorem 2 NP = PCP, /5(logn,1).

The discovery of the PCP Theorem was followed by attempts to optimize
various parameters in proof systems. One such parameter of importance is the
amortized free bit complexity [6].

Definition 3 We say that a PCP with query complezity q has free bit complezity
I < q if for every set of q queries (that the verifier may make) there are at most
2F assignments to the queried locations that cause the verifier to accept. The
amortized free bit complexity of a PCP with free bit complexity f and soundness
s is f/logs™ L.

The amortized free bit complexity is related to the hardness of approximating
Max-Clique. In particular, PCP with arbitrarily small amortized free bit com-
plexity implies that Max-Clique cannot be approximated within a ratio 1/n!~¢
for any positive ¢, unless NP=ZPP (n is the number of vertices in the graph)
[6]. A PCP with arbitrarily low amortized free bit complexity was first given by
Héstad [11]. His construction was quite involved. A simpler construction was
given by Samorodnitsky and Trevisan [13]:

Theorem 3 For every positive € and integer [ there is a PCP characterization
of NP with free bit complexity f and query complexity q = f2/4 + f, such that
a correct proof is accepted with probability at least 1 — € and a wrong proof is
accepted with probability at most o—1*/4,

We shall need the notion of zero patterns:

Definition 4 Let ey ...en be d-variate linear equations over a field F. We say
¢ € {0,1}¥ is a zero pattern of these equations if there is an assignment o (()
to the variables of the equations ey, ...,en such that o(() zeros e; iff the ith
coordinate of  is zero.

It is clear that the number of zero patterns of N equations is bounded by
2N It turns out that if d is small, we can get a better bound, as shown in
Lemma 4. (We remark that Lemma 4 is a special case of a more general result
that is proved in [5], where it is shown that the number of zero patterns of a
system of polynomials of maximum degree D is at most (D A(T'd). In our case,
D=1)



Lemma 4 For every system of n linear equations over d variables, the number

of zero patterns is at most (”:;d).

Proof: Let ey, ...,e, be linear equations. With every equation e; we as-
sociate the d dimensional vector c(e;) corresponding to the coefficients of the
variables of the equation. For example, when d = 3 the 3-dimensional vector
associated with the equation 2z; —x3 +5 = 01is (2,0,—1). Say a set of equa-
tions is independent if their associated vectors are linearly independent. Now
we show that the number of zero patterns is at most as large as the number
of sets of independent equations. With every zero pattern we associate a max-
imal independent set of equations among those equations that are zeroed by
the pattern. (If there is more than one maximal independent set, we choose
one of them arbitrarily.) An independent set S of equations cannot be max-
imal for two different zero patterns, because the fact that all equations in S
are zeroed uniquely determines the value of every equation that depends on S.
Hence no independent set is associated with two different zero patterns, and
indeed the number of zero patterns is at most the number of independent sets.
Since the vectors associated with the equations are d dimensional, the size of
an independent set is at most d, and the number of independent sets is at most
Z?:o (M) < ("jl'd), proving the lemma. [

Finally we shall need the following tail estimate widely known as the Chernoff
bound:

Corollary 5 Assume X ... X, are mutually independent {0, 1}-valued random
variables. Let X = Y"1 | X;. For any 6 € (0,1) we have:

Pr(X > (14 6)E(X)) < e ¥ B/

Pr(X < (1 - 6)E(X)) < e ¥ B2
Where E(X) is the expectation of the random variable X .

For a proof see [12].

3 The Main Result

We begin by describing a way to increase the gap in MAX-SATISFY beyond
any constant. This approach was suggested in [3] as well as in [2].

Our starting point is existence of universal constants 9,7 € (0,1) such that it
is NP-hard to distinguish between instances of MAX-SATISFY with n equations
in which OPT > 7-n and instances in which OPT < 7-§-n (lemma 8). Take k and
T to be integers that will be determined later. Let E be an instance of MAX-
SATISFY with n equations, py = 0,...,p, = 0 (Of course the equations need
not be homogenous. The free coefficient is on the left hand side). For every k-
tuple (i1, ...i,) € [n]¥, construct a block of T' equations Zle Pi; - y? =0, where
y ranges over all integers in [T]. If all equations p;; are satisfied in a given



assignment, then all the equations in the corresponding block will be satisfied.
If even one of the equations p;; is not satisfied, then at most k out of the T'
equations in the block will be satisfied, as p(x) = Z?Zl Dij 27 is a polynomial
of degree at most k& which is not identically 0, and such a polynomial can have
at most k distinct roots. The total number of equations in this instance is
T - nF. We name the new system of equations obtained in this way E*. If we
can satisfy in the original instance 7 - n equations, the same assignment will
satisfy at least T'(n-n)* equations. If, on the other hand, we can satisfy at most
n-6-n equations in the original system we can satisfy at most T'(n-d-n)* +k-n*
equations. Taking T large enough (larger than k/(dn)*, say) we get a gap of
approximately (1/)¥. Taking k to be arbitrarily large constant, the gap can be
made arbitrarily large, ruling out the exitance of a constant ratio approximation
algorithm for MAX-SATISFY.

By taking k to be a function of n such as logn (ignoring for the moment the
fact that in this case the reduction is no longer polynomial) one may increase the
gap in the approximation ratio to some function that depends on n. However,
at the same time the number of equations increases, and this approach does
not prove that MAX-SATISFY is hard to approximate within 1/n® for some
positive a. We can overcome this obstacle by using random sampling, following
the approach used by [7, 8] in a related context. We remark that in [2, 3] a
similar idea was also used, but the sampling there was taken from a different
distribution that is easier to analyse, but does not give as good results as we
get here.

Throughout n will denote the number of equations in the original system. We
construct a new linear system from the original one as follows. Let k = O(logn).
In order to simplify the notation we denote 7 -9 by b and n by a. As we will
see later, we have such a and b where b < aP for arbitrarily large p. Choose
k such that a=* = ©(n?). We now create a system RE* containing a~(P+1*
equations chosen at random from the system E* described above. We cannot
afford to first construct E* explicitly (because E* contains superpolynomially
many equations when k = ©(logn)) but we can still construct RE* in random

polynomial time. Pick uniformly at random i1 € [n],i2 € [n],...,i; € [n], and
y € [T]. Add the equation Z?:l pi, - 47 = 0 to the system. Repeat this process
independently a~ Dk times. We thus get a total of a~®TD¥ equations.

What is the idea in this construction? Assume we have an assignment 7 that
satisfies a - n equations in the original instance. We fall into a block in which
all equations are satisfied with probability a*. Hence, the expected number of
equations in REF satisfied by 7 is at least a P*. Suppose we have an assignment
o which satisfies at most a” - n equations in the original system. Then the
expected number of equations satisfied by ¢ in the new instance is at most
a~ POk (gPF 4 |/T). If we take T to be larger than k(1)Pk then the gap
between the two instances is Q(a#®~1)). As we have a~P*TD¥ equations we get
that MAX-SATISFY is hard to approximate within roughly n~ (=71 (recall
that n is the number of equations in the instance). Since p can be taken to be
arbitrarily large we get that the problem is hard to approximate within —— for
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arbitrarily small positive e.
We first prove:

Lemma 6 If the original instance E is a-satisfiable, then, with probability at

least (1 — e=2("")) REF is 3 - a Pk satisfiable.

Proof: Let o be an assignment satisfying a - n equations in the original
system E. Give to the variables of RE* the same values given to them by
0. The expected number of equations satisfied in RE is at least a=P* (where
expectation is taken over the random choice of RE*). Applying the Chernoff
bound, we get that with probability at least 1 — e=2("") (remember (a =P is
Q(n?)), the number of satisfied equations in RE* with this assignment is at
least % .a”Pk. O

We now want to use the Chernoff bound along with the union bound in
order to show that if our original system FE was at most a? satisfiable, then
every assignment to the variables of RE* will satisfy “few” equations. There is
a problem, however, in applying the union bound as the number of assignments
to the variables of RE® is infinite. The crucial observation in overcoming this
problem is that if two assignments have identical zero patterns over E* (namely,
they satisfy the same subset of equations from E*, but may differ on the nonzero
values that they give to other equations), then their zero patterns with respect
to RE® are also identical.

The number of equations in E¥ is T'- n*. Recall k was chosen s.t. a~
O(n?). Choose T to be k-a~PF. Thus, T is O(n') for some constant | where [
depends only on the constants a and p. The number of variables in E* is the
same as in E which is O(n) (see Lemma 8; Recall n is the number of equations
in the original system). Using lemma 4 we get that the number of zero patterns
of the set E¥ of linear equations is at most

n©Uogn) _ 2O(n-10g2 n)
O(n)

k

Now we can prove:

Lemma 7 If the orz'ginazl instance E was at most aP-satisfiable, then with prob-
ability at least 1 — e~ ") RE¥ is at most 3-a~" satisfiable.

Proof: Consider an arbitrary zero pattern of E¥, o. Once we choose the
equations in RE*, o induces a zero pattern on RE*. Denote this zero pattern
by o’. The expected number of satisfied equations in ¢’ is at most

0k 4 gk E

T

By our choice of T' the expression above is at most 2a~*. Applying the Cher-
noff bound we infer that the pgobability that the number of satisfied equations
exceeds 3a~* is at most e~2("") (since we choose k so that a=* is Q(n?)). We



have seen that the number of zero patterns of E* is at most 90(n-log”n) Taking
the union bound over all zero patterns, we get the required result. [

We now justify our assumption that for arbitrarily large p there exists some
a € (0,1) such that it is NP-hard to distinguish between linear systems that
are a satisfiable and linear systems that are at most a? satisfiable. This follows
from the following lemmas:

Lemma 8 For arbitrarily small positive § there are 0 < b < a < 1 with llgi‘; <9
such that it is NP-hard to tell whether a linear system over the rationals is at

most b-satisfiable or at least a-satisfiable.

Proof: We take the PCP from Theorem 3. Recall this PCP has f free
bits and query complexity ¢ = f2?/4 + f. The completeness is at least 1 — €
and the soundness is at most 27/°/4. Create a linear set of equations over
rational as follows: We introduce a variable for every position in the proof
that has positive probability of being queried. Thus, the number of variables
is at most 2" - q. For every possible choice of random bits we have at most
2f possibilities for the queried positions that make the verifier accept. Fix [ to
equal 27°/4, If the values by, ..., b, cause the verifier to accept, we add [ equations
Zg:l (JCZ - bz) = 0, Zg=1 (2132 - 61)22 =0... Z;'Zzl (.TZ - bz)ll = 0. (Note — the
indices of the variables should correspond to the queried positions and not to
1,2,...,q. We write it like we did to avoid notational difficulties). Clearly, if for
every i, x; = b; then all [ equations are satisfied. If x; # b; for some ¢, then at
most ¢q out of the [ equations are satisfied.

We get a total of 1(2/+7) = 2r+/+/%/4 equations. (Note that the number of
equations is larger than the number of variables.) If we have success probability
at least 1 — e in the above proof system then we can satisfy at least (1 —
€)l2r = 2r+f*/4+0(1) equations. If, on the other hand, our success probability
is at most 2=7°/4 then we can satisfy at most oria—f*/4 4 q2rtf = orto(f)
equations. (Note that ¢ = 20(log f ).) In the first case, we can satisfy at least
2(r+(f*) /4o =(r+/+*/9=2""" fraction of the equations. In the second case,
we can satisfy at most 27O —(r+f+12/4) = 9=2(f*) fraction of the equations.
Hence, we get 0 < b < a < 1 such that logb = —Q(f?), loga = —O(f) and it is
NP-hard to distinguish between equations over the rationals that are at most a
satisfiable to equations that are at least b satisfiable. As f can be taken to be
arbitrarily large, we are done. [

The proof of Theorem 1 follows by combining the three lemmas above.
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