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Abstract

Alice and Bob want to know if two strings of length n are almost equal. That is, do they
differ on at most a bits? Let 0 < a < n — 1. We show that any deterministic protocol, as well
as any error-free quantum protocol (C* version), for this problem requires at least n — 2 bits of
communication. We show the same bounds for the problem of determining if two strings differ
in ezactly a bits. We also prove a lower bound of n/2 — 1 for error-free Q* quantum protocols.
Our results are obtained by lower-bounding the ranks of the appropriate matrices.

1 Introduction

Given z,y € {0,1}" one way to measure how much they differ is the Hamming distance.
Definition 1.1 If z,y € {0,1}" then HAM(z, y) is the number of bits on which z and y differ.

If Alice has x and Bob has y then how many bits do they need to communicate such that they
both know HAM(z,y)? The trivial algorithm is to have Alice send z (which takes n bits) and have
Bob send HAM(z,y) (which takes [lg(n + 1)] bits) back to Alice. This takes n + [lg(n + 1)]| bits.
Pang and El Gamal [12] showed that this is essentially optimal. In particular they showed that
HAM requires at least n + lg(n + 1 — y/n) bits to be communicated. (See [1, 3, 9, 11] for more
on the communication complexity of HAM. See [5] for how Alice and Bob can approximate HAM
without giving away too much information.)

What if Alice and Bob just want to know if HAM(z,y) < a?

Definition 1.2 Let n € N. Let a be such that 0 < a < n—1. HAM\" : {0,1}" x {0,1}™ — {0,1}
is the function

1 if HAM(z,y) <a

HAM® = {
n (@) 0 otherwise.
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The problem H AMS? has been studied by Yao [14] and Gavinsky et al [6]. Yao showed that

there is an O(a?) public coin simultaneous protocol for H AMY which yields (by Newman [10],
see also [7]) an O(a? + logn) private coin protocol and also an 0(2* log n) quantum simulataneous
message protocol with bounded error [14]. Gavinsky et al. give an O(alogn) public coin simulta-
neous protocol, which yields an O(alogn) private coin protocol. For a > logn this is better than
Yao’s protocol.

All of the protocols mentioned have a small probability of error. How much communication is
needed for this problem if we demand no error? There is, of course, the trivial (n 4 1)-bit protocol.
Is there a better one?

In this paper we show the following; in the list of results below, the “c” (in the “cy/n” terms)
is some positive absolute constant.

1. Forany 0 <a<n-—-1H AMT(L'I) requires at least n — 2 bits in the deterministic model.
2. For a <c¢y/n, H AM requires at least n bits in the deterministic model.

3. Forany0<a<n-1H AMéa) requires at least m — 2 bits in the quantum model with Alice
and Bob share an infinite number of EPR pairs, using a classical channel, and always obtain
the correct answer.

4. For a < c¢y/n, H AMr(La) requires at least n bits in the quantum model in item 3.

5. Forany0<a<n-—1, H AMy(La) requires at least § — 1 bits in the quantum model with Alice
and Bob share an infinite number of EPR pairs, using a quantum channel, and always obtain
the correct answer.

6. For a < ¢y/n, H AM requires at least n/2 bits in the quantum model in item 5.

Note that if a = n then (Vz,y)[H A (z,y) = 1, hence we do not include that case.
What if Alice and Bob need to determine if HAM(z,y) = a or not?

Definition 1.3 Let n € N. Let a be such that 0 < a < n. HAMS™® : {0,1}" x {0,1}" — {0,1}
is the function

HAME® (2, ) = {1 if HAM(z,y) < a
" 0 otherwise.

We show the exact same results for H AMT(L:a) as we do for H AM,(la). There is one minor
difference: for H AM}LG) the a = n case had complexity 0 since all pairs of strings differ on at most
n bits; however, for H AMy(L:a) the a = n case has complexity n + 1 as it is equivalent to equality.

All our results use the known “log rank” lower bounds on classical and quantum communication
complexity: Lemmas 2.2 and 2.3. Our approach is to lower-bound the ranks of the appropriate
matrices, and then to invoke these known lower bounds.

2 Definitions, Notations, and Useful Lemmas

We give brief definitions of both classical and quantum communication complexity. See [7] for more
details on classical, and [4] for more details on quantum.



Definition 2.1 Let f be any function from {0,1}" x {0,1}" to {0, 1}.

1. A protocol for computing f(z,y), where Alice has x and Bob has y, is defined in the usual
way (formally using decision trees). At the end of the protocol both Alice and Bob know

f(z,y).
2. D(f) is the number of bits transmitted in the optimal deterministic protocol for f.

3. Q*(f) is the number of bits transmitted in the optimal quantum protocol where we allow
Alice and Bob to share an infinite number of EPR pairs and communicate over a quantum
channel.

4. C*(f) is the number of bits transmitted in the optimal quantum protocol where we allow
Alice and Bob to share an infinite number of EPR pairs and communicate over a classical
channel.

5. My is the 2" x 2" matrix where the rows and columns are indexed by {0,1}" and the (z,y)-
entry is f(z,y).

Let lg denote the logarithm to the base two. Also, as usual, if z < y, then (;) is taken to be
ZEro.
The following theorem is due to Mehlhorn and Schmidt [8]; see also [7].

Lemma 2.2 If f: {0,1}" x {0,1}" — {0,1} then D(f) > lg(rank(My)).
Buhrman and de Wolf [2] proved a similar theorem for quantum communication complexity.
Lemma 2.3 If f: {0,1}" x {0,1}" — {0,1} then the following hold.

1. Q*(f) > 3 lg(vank(My)).
2. C*(f) > lg(rank(My)).

3 The Complexity HAM for a < O(y/n)
We start by presenting results for general a, and then specialize to the case where a < ¢y/n.

Definition 3.1 Let M, be M, the 2™ x 2™ matrix representing HAMr(La).

AM

Lemma 3.2 M, has 2™ orthogonal eigenvectors.

Proof:  This follows from M, being symmetric. |

We know that M, has 2" eigenvalues; however, some of them may be 0. We prove that M, has
few 0-eigenvalues. This leads to a lower bound on D(H AMT(La)) by Lemma 2.2.

Definition 3.3 Let z € {0,1}".

1. v, € R?" is defined by, for all z € {0,1}", v,(z) = (—l)zi ¥i%  The entries v,(z) of v, are
ordered in the natural way: in the same order as the order of the index z in the rows (and
columns) of M,.



2. We show that v, is an eigenvector of M,. Once that is done we let eig(z) be the eigenvalue
of M, associated with v,.

Lemma 3.4
1. The vectors {v, : z € {0,1}"} are orthogonal.
2. For all z € {0,1}", v, is an eigenvector of M,.
3. If z has ezxactly m 1’s in it, then

a min{j,m} m\ /n—m
eig(z):Z Z <k>(j—k>(_1)k'

j=0  k=max{0,j+m—n}

Proof:  The first assertion (orthogonality) follows by simple counting. We now prove the final
two assertions together. Let z € {0,1}" have exactly m ones in it.
Fix a row in M, that is indexed by z € {0,1}". Denote this row by R,. We need the following

notation:
Lo= {y|HAM(z,y) < a}
Ej= {y|HAM(z,y) = j}

We will show that R, - v, is a constant multiple (independent of z) times v,(z). Now,

R, v, = Z HAMr(La)(x,y)vz(y) — Z v,(y) = Z (_1)Ziy¢zi.

ye{0,1}" YELg YE€Lq

We would like to have this equal b X v,(z) for some constant b. We set it equal to b x v,(z) and
deduce what b works. So, suppose

b X v,(z) = Z (—1)22'%”.

yE€L,
We have
1
b — -1 Zz Yizi
'Uz(‘T) yeZLa( )
= sfo) 3 (-1)ZarE
yELq
= (—1)Ei iz Z (—1)Z¢Wi (by the definition of v,(x))
yELa
— Z (_1)Ei($¢+yi)2i
yELa
= Z (—]_)Zi @i~ yilzi (since z; +y; = |z; —yi| (mod 2))
yELa
a
= 3 (~n)ZsEulE (since Ly = UL Bj). (1)
Jj=0y€eE;

We partition E;. If y € E; then z and y differ in exactly j places. Some of those places ¢ are
such that z; = 1. Let k be such that the number of places where x; # y; and z; = 1.

4



Upper Bound on k: Since there are exactly m places where z; = 1 we have k¥ < m. Since there
are exactly j places where z; # y; we have k < j. Hence k < min{j,m}.

Lower Bound on k: Since there are exactly n — m places where z; = 0, we have 7 — k < n — m.
Hence k > max{0,j + m — n}.

In summary, the only relevant k are max{0,j + m — n} < k < min{j,m}. Fix j. For
max{0,j +m —n} < k < min{j,m}, let D; be defined as follows:

Djr ={y| ((y € E;) A (on exactly k of the coordinates where x; # y;, we have z; = 1))}.
Note that
min{j,m}
Ei= U Dju
k=0
and Dyl = (7) (%), So, by (1),

min{j;m}

b= i Z (—1)Z¢ | —yilz: — i Z Z (—]_)Zi \;cifyi\z,-.

j=0y€EE; j=0 k=max{0,j+m-n} yED;

By the definition of D; ;, we know that for exactly k of the values of ¢ we have both |z; — ;| =1
and z; = 1. On all other values one of the two quantities is 0. Hence we have the following:

a min{j,m}

I S S

j=0 k=max{0,j+m-n} yE€D;

a min{jam}

= > > Dyl (~ 1)

j=0 k=max{0,j+m—n}

a min{j,m} m n—m
£ e

j=0 k=max{0,j+m—n}

Notice that b is independent of z and is of the form required. |

Definition 3.5 Let
a min{j,m}
m\[{n—m
F(a,n,m)zz Z (k)( '—k>(_1)k'
j=0 k=max{0,j+m—n} J

The following lemma will be used in this section to obtain a lower bound when a = O(y/n), and
in Section 5 to obtain a lower bound for general a.

Lemma 3.6
1. D(HAM#L)) > lg Zm:F(a,n,m);ﬁO (::L) .

2. Q*(HAMéa)) > %lg Zm:F(a,n,m)#O (77717,)



3. C*(HAM;LG)) > lg Zm:F(a,n,m)#O (::L)

Proof: By Lemma 3.4, the eigenvector v, has a nonzero eigenvalue if v, has m 1’s and
F(a,n,m) # 0. The rank of M, is the number of nonzero eigenvalues that correspond to lin-
early independent eigenvectors. This is 3, p(4n,m)=0 (™). The theorem follows from Lemmas 2.2
and 2.3. 1

Lemma 3.7 The number of values of m for which F(a,n,m) =0 is < a.

Proof:  View the double summation F(a,n,m) as a polynomial in m. The jth summand has
degree k + (j — k) = j. Since j < a the entire sum can be written as a polynomial in m of degree
a. This has at most a roots. I

Theorem 3.8 There is a constant ¢ > 0 such that if a < ¢y/n then the following hold.
1. D(HAM) > n.
2. Q*(HAM®) > n/2.
3. C*(HAM™) > n.

Proof: By Lemma 3.6 D(f)’ Q" (f) > lg(Zm:F(a,n,m);éO (T?L)) and C* (f) > % lg(Zm:F(a,n,m);éO (77;))

Note that
= ( , ) " (n ) .
m m
m:F(a,n,m)#0 m:F(a,n,m)=0

By Lemma 3.7 [{m : F(a,n,m) = 0}| < a. Hence,

> ~ (Z) < |{m : F(a,n,m) =0}/ - max (;1) < (n72) < %

m:F(a,n,m

So, if a < i\/ﬁ, then
n
m Vn

lg ( Z (n)) > 1g(2" — 2"7?); e, [lg ( Z (n))“ > n.
m:F(a,n,m)#0 m m:F(a,n,m)#0 m

Hence,



4 The Complexity of HAM= for a < O(y/n)

We again start by deducing results for general a, and then specialize to the case where a < ¢y/n.

)

Definition 4.1 Let M—, be MHA the 2" x 2" matrix representing HAM, .

M,s:a) ?

The vectors v, are the same ones defined in Definition 3.3. We show that v, is an eigenvector
of M. Once that is done we let eig(z) be the eigenvalue of M associated to z.

The lemmas needed, and the final theorem, are very similar (in fact easier) to those in the prior
section. Hence we just state the needed lemmas and final theorem.

Lemma 4.2
1. For all z € {0,1}" v, is an eigenvector of M—,.

2. If z has exactly m 1’s in it then

min{a,m} m\ (n—m
o ()

k=max{0,a+m—n}

Definition 4.3

min{a,m} m n—m
f(aan’m): Z <k><a—k>(_1)k

k=max{0,a+m—n}
Note, from our convention that “if z < y, then (;) is taken to be zero”, that we can also write

Flanm) =y (Z) <Zj’}j)<—1)’“.

k=0

The following lemma will be used in this section to obtain a lower bound when a = O(y/n), and
in Section 5 to obtain a lower bound for general a.

Lemma 4.4

1. D(HAMéza)) > lg Em:f(a,n,m);éo (77:;,)
2. Q* (HAMéza)) > lg Zm:f(a,n,m)#o (:1)

3. C*(HAMTSZG)) > % ) lg Em:f(a,n,m);éﬂ (::L)
Lemma 4.5 The number of values of m for which f(a,n,m) =0 is < a.

Theorem 4.6 There is a constant ¢ > 0 such that if a < cy/n then the following hold.
1. D(HAMS®™) > n.
2. Q*(HAMS™) > n/2.

3. C*(HAMS ) > n.



5 The Complexity of HAM® and HAM{~ for General a

We now consider the case of general a. As above, we will show that F'(a,m,n) and f(a,m,n) are
nonzero for many values of m. This will imply that the matrices M, and M_, have high rank, hence
HAM® and HAMS™ have high communication complexity. We will use general generating-
function methods to derive facts about these sums. A good source on generating functions is [13].

One of our main results will be Lemma 5.11, which states that if 0 < a < m < n, then
“f(a,m,n) = 0” implies “f(a,m+1,n) # 0”. The idea behind our proof of Lemma 5.11 will be the
following: we will show a relationship between the sum f(a,m,n) and a certain new sum h(a,m,n).
Then we will derive generating functions for f and h, and translate this relationship into a relation
between their generating functions. Finally, we will show that this relation cannot hold under the
assumption that f(a,m,n) = f(a,m + 1,n) = 0, thus reaching a contradiction. Some auxiliary
results needed for this are now developed in Section 5.1.

5.1 Auxiliary Notation and Results

Notation 5.1 [z°]g(z) is the coefficient of z° in the power series expansion of g(x) around zg = 0.

Notation 5.2 t()(z) is the 7’th derivative of #(z).
We will make use of the following lemma, which follows by an easy induction on i:

Lemma 5.3 Let t(x) be an infinitely differentiable function. Let Ti(z) = (z — 1)t(z), and
To(z) = (x + 1)t(z). Then for any i > 1:

T (2) = (z — )t +i -0 (2)

13 (2) = (@ + )t +i- 107D (a)

For the rest of Section 5.1, the integers a,m,n are arbitrary subject to the constraint 0 < a <
m < n, unless specified otherwise.

Definition 5.4
1. h(a,m,n) = S () () 00

m—itl-
2. g(z) = % (z+1)Pm
We will show an interesting connection between h and f.
Claim 5.5 Suppose f(a,m,n) =0. Then f(a,m + 1,n) =0 iff h(a,m,n) = 0.
Proof:

fla,m+1m) = S8 (") (") (=

2 a

) (<1)i |
m+1 Zz O( )(n m)( 1)i . n—m—a+t

m—i+1

P (1 a) S (7) () Amt) - g () () (1))
m"'l((n—l— 1—a)h(a,m,n) — f(a,m,n))

Thus, if f(a,m,n) =0, then f(a,m + 1,n) =0 iff h(a,m,n) =0. 1



We next show a connection between g(z) and h.

Claim 5.6 h(a,m,n) = (—1)" - [z%]g(x).

Proof:
m=+1__(,nn_1\ym+1
gla) = =g @
$m+1_ ‘Wi m;i—l mi(_l)m+1—i _
— 27,_0 Sn—l—l). . . (IE+ l)n m
= (D)"Y, (Pl - (1)

= ()" S (Detazis - S5 (05
Therefore, h(a,m,n) = (—1)™ - [z%]g(z). |

Next, define an auxiliary function ¢(u, v, w) as the w’th derivative of the function (z+1)*(z—1)"
evaluated at x = 0. We now relate ¢ and h.

Claim 5.7 h(a,m,n) =0 iff p(n —m,m + 1,a) = 0.

Proof:
By Claim 5.6

h(a,m,n) = (=1)™ - [z%]g(z)

T (@™ @+ 1)) = (@ = )™ @ 1)),

But [z?](z™T! - (z 4+ 1)" ™) =0, since a < m + 1. So

ha,myn) = CXE[20)(z — 1)+ (2 4 1)mm)
(=)™t g(n—m,m+1,a)
- m+1 a! .

Thus, h(a,m,n) =0 iff p(n —m,m+1,a) =0. |

Now we can relate the zeroes of f with those of ¢:
Claim 5.8 f(a,m,n) =0 iff $(n —m, m,a) = 0.

Proof:

(0= D@+ 17 = Sy (Tl (- S (el
(=)™ X (P2t (-1)" - Zi=g" (™)«
(D)™ po Sh—o (D) (M) (—1)ka?

= (_1)m EIT)L:O f(b’m’n) -zl

So f(a,m,n) = =™ ¢(n —m,m,a), thus f(a,m,n) =0 iff (n —m,m,a) =0. |

a!

Claim 5.9 Suppose m < n and ¢(n —m,m,a) = 0. Then

dn—m—1,m+1,a) =0 iff p(n —m,m+ 1,a) = 0.



Proof:  This claim follows from Claims 5.5, 5.7, and 5.8. |

We are now able to prove a recursive relation between values of ¢:

Claim 5.10 Ifk >0, a > 0, and ¢(k,m,a) = ¢(k,m,a — 1) = 0, then
ok —1,m,a) =dp(k—1,m,a—1)=0.

Proof:  Suppose ¢(k,m,a) = ¢(k,m,a — 1) = 0. By Lemma 5.3,
d(k,m+1,a) = —¢(k,m,a) +a-d(k,m,a—1)=0. (2)
By Claim 5.9, since ¢(k, m,a) = 0, we know that
¢(k —1,m+1,a) = 0 iff $(k,m + 1,a) = 0.
Now, (2) yields ¢(k — 1,m + 1,a) = 0. Applying Lemma 5.3 again, we obtain:

0= ¢(k—1,m+1,a) = —¢(k—1,m,a)+a-¢(k—1,m,a—1);
0= ¢(k,m,a) =d(k—1,m,a)+a-¢p(k—1,m,a—1)

Solving the equations, we get
¢k —1,m,a) =¢(k —1,m,a — 1) =0.

Thus the claim is proved. |

5.2 The main results

We are now ready to prove our main lemma.
Lemma 5.11 Let 0 < a <m < n, and suppose f(a,m,n) =0. Then f(a,m+ 1,n) # 0.

Proof:  The lemma holds trivially for a = 0, since both f(a,m,n) and f(a, m+1,n) are nonzero
if a = 0. So suppose a > 1. Suppose f(a,m,n) = f(a,m + 1,n) = 0. Then by Claims 5.8 and 5.9,
we know that

d(n—m,m,a) =d(n —m—1,m+1,a) = ¢(n —m,m +1,a) = 0.
By Lemma 5.3,
¢(n_m’m+1aa) = _¢(n_mamaa)+a"¢(n_mamaa_1)a

ie., ¢(n —m,m,a — 1) = 0. Hence ¢(n — m,m,a — 1) = ¢(n — m, m,a) = 0. Now, an iterative
application of Claim 5.10 eventually yields ¢(0, m,a) = ¢(0,m,a—1) = 0. By definition, ¢(0,m, a)

is the a’th derivative of .
(CL' — 1)m = Z <m> :I:i(—l)mii

i=0 \*

evaluated at x = 0. But m > a, so this is clearly not zero. Thus we have reached a contradiction,
and Lemma 5.11 is proved. |
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Theorem 5.12 For large enough n and all 0 < a < n the following hold.
1. DHAMSY) > n—2.
2. Q*HAMT™) > —1.
3. C*HAMSY) > n - 2.

Proof: By Lemma 4.4,

D(f),C(H 2 3 (”))
m:f(a,m,n)#0

and
1 n
coste w2
2 m: f(a,m,n)#0 m

First suppose a < n/2. We have

n n
3 > > ( ) (3)
m: f(a,m,n)#0 <m> m>n/2: f(a,m,n)#£0 m

Let us lower-bound the r.h.s. of (3). First of all, since the r.h.s. of (3) works in the regime where
m > n/2 > a, Lemma 5.11 shows that no two consecutive values of m in this range satisfy the
condition “f(a,m,n) = 0”. Also, for m > n/2, () is a non-increasing function of m. Thus, if we
imagine an adversary whose task is to keep the r.h.s. of (3) as small as possible, the adversary’s
best strategy, in our regime where m > n/2, is to make f(a,m,n) = 0 exactly when m € S, where

S ={[n/2],[n/2] +2,[n/2] +4,...}. (4)
Now,

e Y (”) <214 0" /). (5)
m
m>n/2

(We need the second inequality to handle the case where n is even.) Also, recall that an (1 —o(1))
fraction of the sum }_,,~,, /9 () is obtained from the range n/2 < m < n/2++/nlogn, for instance.
(Here and in what follows, “o(1)” denotes a function of n that goes to zero as n increases.) In this
range, the values of (") for any two consecutive values of m are within (14 o(1)) of each other. In
conjunction with (5), this shows that

s () x (2)suneanm
)#0

m>n/2:f(a,m,n m>n/2:megS

m>n/2: f(a,m,n)#0

completing the proof for the case where a < n/2.

Now we apply symmetry to the case a > n/2: note that Alice can reduce the problem with
parameter g to the problem with parameter n — a, simply by complementing each bit of her input
z. Thus, the same communication complexity results hold for the case a > n/2. |

Thus,
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Lemma 5.13 Let 0 < a < m < n, and suppose F(a,m,n) =0. Then F(a,m + 1,n) # 0.
Proof: We have f(j,m,n) = (—1)™[z/]((z — 1)™(z + 1)"~™). By definition,

F(a,m,n) = 5o f(j,m,n)
Yi=ole’l((z —1)™(z +1)"™™)

(=)™
= (=" ((z =)™ (w+1)" " Ewow’)
(D)™ ((z — )™z + )" 27)
= (=)™ (= —1)m’1($+1)" m)=f(a,m—1,n—1)-

So F(a,m,n) = F(a,m + 1,n) =0 iff f(a,m —1,n — 1) = f(a,m,n — 1) = 0. But the latter is
impossible by Lemma 5.11, thus the lemma is proved. |
Theorem 5.14 For large enough n and all 0 < a < n — 1, the following hold.

1. D(HAM) > n —2.

2. Q"HAM®) > —1.

3. C*HAM) > n —2.

Proof:  The proof is identical to that of Theorem 5.12 except for one point. In that proof we
obtained the a > n/2 case easily from the a < n/2 case. Here it is also easy but needs a different
proof. Let a > n/2 and, for all z € {0,1}", let T be obtained from z by flipping every single bit.
Note that

HAMY (z,y) = 1 if HAM(z,y) < o iff HAM(Z,y) > n — a if NOT(HAM(Z,y) < (n—a) — 1
ifft HAM,,_,_1(z,y) = 1.

Since n —a — 1 < n/2 we have that a lower bound for the a < n/2 case implies a lower bound
for the a > n/2 case. |

6 Open Problems
We make the following conjectures.
1. For all m, for all a, 0 < a < n — 1, D(HAM"), C*(HAM"), Q*(HAM™) > n + 1.

2. For all n, for all a, 0 < a < n, D(HAM™), C*(HAMS™), Q*(HAMS™) > n + 1.
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