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Abstract

Based on experimental results N. Duffield, C. Lund and M. Thorup [DLT2] conjectured that
the variance of their highly successful priority sampling procedure is not larger than the variance
of the threshold sampling procedure with sample size one smaller. The conjecture’s significance
is that the latter procedure is provably optimal among all off-line sampling procedures. Here we
prove this conjecture. In particular, our result gives an affirmative answer to the conjecture of
N. Alon, N. Duffield, C. Lund and M. Thorup [ADLT], which states that the standard deviation
for the subset sum estimator obtained from k priority samples is upper bounded by W/

√
k − 1.

(W is the actual subset sum.)

1 Notations

Let w1 ≥ w2 ≥ . . . ≤ wn be nonnegative weights. Let w1 > 0. We define the polynomial

P (β) = (1 − w1β)(1 − w2β) · · · (1 − wnβ) =

n
∏

i=1

(1 − wiβ).

For every integer 0 ≤ l ≤ n we also define the polynomial

Pl(β) = (1 − wl+1β)(1 − wl+2β) · · · (1 − wnβ) =
n
∏

i=l+1

(1 − wiβ).

Thus P0 = P . For a function f and a non-negative integer t we denote the tth derivative of f by
f (t). For t = 1 we also use the usual f ′ notation. Let

Nl = {l + 1, l + 2, . . . , n}.

We have:

P
(t)
l = (−1)tt!

∑

S⊆Nl; |S|=t

∏

i∈S

wi

∏

i∈Nl\S

(1 − wiβi) (1)

A sum with higher upper index than lower index, such as
∑0

1 exp is considered an empty sum
with value 0.

∗This work was supported by NSF grant 0105692.
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2 The Priority Sampling

Fix a sample size k < n. The priority sampling scheme of N. Duffield, C. Lund and M. Thorup is
as follows: Select α1, . . . , αn independently, randomly and uniformly from (0, 1]. For 1 ≤ i ≤ n we
define priority qi = wiα

−1
i . Let q be the (k+1)st largest priority (a probability variable, depending

on the αis) and define probability variables ŵi = max{wi, q}χwiαi>q, where χwiαi>q is the indicator
function of the event that wiαi > q. This scheme finds its ancestors in [C, AGPR, AFT, DLT1,
GM, HHW, OR, PKC]. For a complete hystory see [DLT2]. N. Duffield, C. Lund and M. Thorup
have proved that

1. E(ŵi) = wi;

2. ŵi and ŵj are independent.

N. Alon, N. Duffield, C. Lund and M. Thorup in [ADLT] show that the variance of
∑n

i=1 ŵi

is O(W 2/k) and state as a major challenge to replace the big order with W 2/(k − 1). Our first
theorem verifies this conjecture:

Theorem 1. V ar (
∑n

i=1 ŵi) ≤W 2/(k − 1), where W =
∑n

i=1wi.

3 The threshold sampling

Threshold sampling is a simple sampling procedure that estimates
∑n

i=1wi and has the least vari-
ance among all sampling procedures for which the expected sample size is the same.

Fix a threshold, τ and define w̃i = wi if wi > τ . Otherwise select αi ∈ (0, 1] randomly and
uniformly and independently from other αis, and set w̃i = τ if wiα

−1
i > τ , else set w̃i = 0. Like

in the case of the priority sampling wi is considered to be in the sample if w̃i > 0. Since w̃is are
independent random variables with

w̃i =

{

τ with probability wi/τ ;
0 with probability 1 − wi/τ ;

(for i : wi ≤ τ),

it follows that the expected sample size is

|{i|wi > τ}| + 1

τ

∑

i:wi≤τ

wi.

In order to compare threshold sampling with priority sampling we need to set the expected
sample size (nearly) the same. First observe that for a fixed k > 0 there is a unique threshold
τk such that the expected sample size, when the threshold is set to τ is exactly k. Indeed, it is
not hard to show that as τ descends from infinity to wn the expected sample size monotonly and
continuously increases from zero to n, and that the increase is strict. In particular, we have:

Lemma 1. For 1 ≤ l ≤ n let sl =
∑n

i=l wi

wl
+ l − 1. Then for 1 ≤ l ≤ n− 1 it holds that sl ≤ sl+1.

This lemma can be shown by direct calculation or by simply alluding to the fact that s l is the
expected sample size when the threshold is set to wl.

N. Duffield, C. Lund and M. Thorup have conjectured that the variance of the k-sample priority
sampling procedure is smaller or equal than the variance of the threshold sampling procedure with
expected sample size k − 1. Our main result is to prove this conjecture:
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Theorem 2. V ar(
∑n

i=1 ŵi) ≤ V ar(
∑n

i=1 w̃i), where sample size for the priority sampling is k,
and the threshold for threshold sampling is τk−1.

As a result the priority sampling procedure is almost optimal for sample size k while having
many advantageous properties the threshold sampling does not have.

Definition 1. For the rest of the paper let ` be the smallest index for which τk−1 ≥ w`. Alterna-
tively, ` is the smallest integer for which s` of Lemma 1 is greater or equal than k − 1.

From now on we shall be concerned with the case when τ = τk−1. Let us denote
∑n

i=`wi by
W ′. From

k − 1 = expected sample size = `− 1 +
n
∑

i=`

wi/τk−1 = `− 1 +W ′/τk−1,

we obtain:

τk−1 =
W ′

k − `
, (2)

V ar

(

n
∑

i=1

w̃i

)

= V ar

(

n
∑

i=`

w̃i

)

=

n
∑

i=`

wi(τk−1 − wi) =
(W ′)2

k − `
−

n
∑

i=`

w2
i . (3)

4 The Variance of the priority sampling

Because of 1. and 2. of section 2 we have that

V ar

(

n
∑

i=1

ŵi

)

=

n
∑

i=1

E
(

ŵi
2
)

−
n
∑

i=1

w2
i . (4)

Our efforts will mainly go to express
∑n

i=1 E
(

ŵi
2
)

. For the sake of convenience we introduce
the convention w0 = ∞, w−1

0 = 0. For 0 ≤ l ≤ k let χl be the indicator function of the event

that wl > q ≥ wl+1. Since q is always at least wk+1, we have 1 =
∑k

l=0 χl (here 1 means the
characteristic function of the entire event space, i.e. the identically 1 function). For 0 ≤ l ≤ k
define:

Al = E

(

χl

n
∑

i=1

ŵi
2

)

.

The first term in (4) is exactly
∑k

l=0Al. To express Al we further decompose the event wl > q ≥
wl+1. Let l < j ≤ n be an index and let S ⊆ Nl be a set of size k − l that does not contain j.
Define χl,j,S as the characteristic function of the event

(q = wjα
−1
j ) ∧ (wl > q ≥ wl+1) ∧

∧

i∈S

(wiα
−1
i ≥ q).

For the above event the sampled elements are exactly those that have indices from S ∪ {1, . . . , l}.
For i ∈ S we have ŵi = q. For i ∈ {1, . . . , l} we have ŵi = wi. For the other elements ŵi = 0,
hence they are not in the sample. The probability that wiα

−1
i ≥ wjα

−1
j (for fixed αj) is wiw

−1
j αj .

The probability for wiα
−1
i < wjα

−1
j is 1 − wiw

−1
j αj . Therefore
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E

(

χl,j,S

n
∑

i=1

ŵi
2

)

=

∫

wjw−1

l
≤αj<wjw−1

l+1





∑

1≤s≤l

w2
s + (k − l)(wjα

−1
j )2





∏

i∈S

(wiw
−1
j αj)

∏

i∈Nl\S;i6=j

(1 − wiw
−1
j αj) dαj

Replace parameter αj in the integral with β = w−1
j αj and rewrite the above integral as

wj

∫

w−1

l
≤β<w−1

l+1





∑

1≤s≤l

w2
s + (k − l)β−2





∏

i∈S

wiβ
∏

i∈Nl\(S∪{j})

(1 − wiβ) dβ =

∫

w−1

l
≤β<w−1

l+1





∑

1≤s≤l

w2
s + (k − l)β−2



βk−l
∏

i∈S∪{j}

wi

∏

i∈Nl\(S∪{j})

(1 − wiβ) dβ

Since χl =
∑n

j=l+1

∑

S⊆Nl; |S|=l; j 6∈S χl,j,S, we can write:

Al =
∑

S⊆Nl; |S|=k−l; j 6∈S

E

(

χl,j,S

n
∑

i=1

ŵi
2

)

=
∑

S⊆Nl; |S|=k−l; j 6∈S

∫ w−1

l+1

w−1

l





∑

1≤s≤l

w2
s + (k − l)β−2



βk−l
∏

i∈S∪{j}

wi

∏

i∈Nl\(S∪{j})

(1 −wiβ) dβ

=
(−1)k−l+1

(k − l)!

∫ w−1

l+1

w−1

l





∑

1≤s≤l

w2
s + (k − l)β−2



βk−lP
(k−l+1)
l dβ.

For 0 ≤ l ≤ k we can write Al = Bl + Cl, where B0 = Ck = 0 and

Bl =
(−1)k−l+1

(k − l)!

∑

1≤s≤l

w2
s

∫ w−1

l+1

w−1

l

βk−lP
(k−l+1)
l dβ (l 6= 0);

Cl =
(−1)k−l+1

(k − l − 1)!

∫ w−1

l+1

w−1

l

βk−l−2P
(k−l+1)
l dβ. (l 6= k).

5 Integration

In this section we compute the primitive functions of the integrals of the previous section. By
repeated integration by part we get:

Lemma 2. Let t and s be non-negative integers, s ≥ t + 1. Let f be a function such that f (1) =
f ′, f (2), . . . , f (s) exist. Then

∫

xtf (s) =

t
∑

r=0

(−1)t+r t!

r!
βrf (s−1−t+r).
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From Lemma 2 we obtain:

∫

βk−lP
(k−l+1)
l dβ =

k−l
∑

r=0

(−1)k+l+r (k − l)!

r!
βrP

(r)
l ; (5)

∫

βk−l−2P
(k−l+1)
l dβ =

k−l−2
∑

r=0

(−1)k+l+r (k − l − 2)!

r!
βrP

(r+2)
l (for l ≤ k − 2). (6)

We are left to compute the integral associated with Ck−1. Notice that this is the only integral
among the Cls in which β has a negative exponent. We use the estimate:

Lemma 3.

Ck−1 ≤ wk−1

∫ w−1

k

w−1

k−1

P
(2)
k−1dβ = wk−1

(

P ′
k−1(w

−1
k ) − P ′

k−1(w
−1
k−1)

)

.

6 Properties of Pl and its derivatives

Let 0 ≤ l ≤ k, 1 ≤ r fixed.

Lemma 4. Pl and its higher derivatives are continuous. Moreover, (−1)rPl(β)(r) > 0 on (0, w−1
l+1).

The lemma easily follows from (1). From (1) we also obtain:

Lemma 5. For 0 ≤ l ≤ k and 1 ≤ r we have:

P
(0)
l (w−1

l+1) = 0 (7)

P
(r)
l (w−1

l+1) = −rwl+1P
(r−1)
l+1 (w−1

l+1) (8)

Definition 2. For 0 ≤ l ≤ k and 0 ≤ r we define the constants:

pl,r =
(−1)r

r!
w−r

l P
(r)
l (w−1

l ).

By Lemma 5 we have:

(−1)r

r!
w−r

l+1P
(r)
l (w−1

l+1) = pl+1,r−1. (9)

7 An interpretation of pl,r

Fix l. In this section we reinterpret pl,0, pl,1, pl,2, . . . as a probability distribution related to an inde-
pendent sequence of Bernouli trials with different biases. Indeed, let Xl+1, . . . , Xn be independent
zero-one valued random variables such that Prob(Xi = 1) = wi/wl and Prob(Xi = 0) = 1−wi/wl.
Then

Prob(

n
∑

i=l+1

Xi = r) =
∑

|S|=r

∏

i∈S

wi

wl

∏

i6∈S

(1 − wiw
−1
l ) =

(−1)r

r!
w−r

l P
(r)
l (w−1

l ).
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The generator function for
∑n

i=l+1Xi is

G(λ) =
n
∏

i=l+1

(1 − wi

wl

+ λ
wi

wl

) (= Pl(
1 − λ

wl

)).

Also, G(λ) =
∑∞

r=0 p(l, r)λ
r. Thus we have:

Lemma 6.

∞
∑

r=1

rpl,r = G′(1) =

n
∑

i=l+1

wi

wl

;

∞
∑

r=2

r(r − 1)pl,r = G′′(1) =
∑

l+1≤i6=j≤n

wiwj

w2
l

;

8 Summing it up

Recall that for 0 ≤ l ≤ k − 1:

Cl =
(−1)k−l+1

(k − l − 1)!

∫ w−1

l+1

w−1

l

βk−l−2P
(k−l+1)
l dβ. (l 6= k).

and Ck = 0. Let l ≤ k − 2. From (2) we can express

Cl =
(−1)k−l+1

(k − l − 1)!

[

k−l−2
∑

r=0

(−1)r+1 (k − l − 2)!

r!
βrP

(r+2)
l

]w−1

l+1

w−1

l

We simplify the above expression as

Cl = −
[

1

(k − l − 1)

k−l−2
∑

r=0

(−1)r

r!
βrP

(r+2)
l

]w−1

l+1

w−1

l

.

Thus Cl = Dl −El, where

Dl =
1

k − l − 1

k−l−2
∑

r=0

(−1)r

r!
w−r

l P
(r+2)
l (w−1

l ) = w2
l

k−l−2
∑

r=0

(r + 1)(r + 2)

k − l − 1
pl,r+2;

El =
1

k − l − 1

k−l−2
∑

r=0

(−1)r

r!
w−r

l+1P
(r+2)
l (w−1

l+1) = w2
l+1

k−l−2
∑

r=0

(r + 1)(r + 2)

k − l − 1
pl+1,r+1.

By renaming the running indices in the above expressions we can write:

Dl = w2
l

k−l
∑

r=2

(r − 1)r

k − l − 1
pl,r = w2

l

k−l
∑

r=0

(r − 1)r

k − l − 1
pl,r; (10)

El = w2
l+1

k−l−1
∑

r=1

r(r + 1)

k − l − 1
pl+1,r = w2

l+1

k−(l+1)
∑

r=0

r(r + 1)

k − (l + 1)
pl+1,r (11)
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Similarly, for Bl (1 ≤ l ≤ k) we have:

Bl =
(−1)k−l+1

(k − l)!

∑

1≤s≤l

w2
s

∫ w−1

l+1

w−1

l

βk−lP
(k−l+1)
l dβ; =

−





∑

1≤s≤l

w2
s

k−l
∑

r=0

(−1)r

r!
βrP

(r)
l





w−1

l+1

w−1

l

=

∑

1≤s≤l

w2
s

k−l
∑

r=0

(−1)r

r!
w−r

l P
(r)
l (w−1

l ) −
∑

1≤s≤l

w2
s

k−l
∑

r=0

(−1)r

r!
w−r

l+1P
(r)
l (w−1

l+1) =

∑

1≤s≤l

w2
s

k−l
∑

r=0

pl,r −
∑

1≤s≤l

w2
s

k−l−1
∑

r=0

pl+1,r

How about Ck−1? From Lemma 3 we estimate

Ck−1 ≤ wk−1

(

P ′
k−1(w

−1
k ) − P ′

k−1(w
−1
k−1)

)

=

−wk−1P
′
k−1(w

−1
k−1) − wk−1wkPk(w

−1
k ) ≤

−wk−1P
′
k−1(w

−1
k−1) −w2

kPk(w
−1
k ) = w2

k−1pk−1,1 − w2
kpk,0. (12)

We denote the right hand side by C ′
k−1. Now we start to compute the total. A comparison of the

negative terms of Bl and the positive terms of Bl+1 shows that

k
∑

l=0

Bl =

k
∑

l=1

Bl =

k
∑

l=1

w2
l

k−l
∑

r=0

pl,r. (13)

Let us pay attention to the form of our expressions for Dl, El, C
′
k−1 and

∑k
l=0Bl. We find that

k
∑

l=0

(Bl +Cl) ≤
k
∑

l=0

Bl +
k−2
∑

l=0

Dl −
k−2
∑

l=0

El + C ′
k−1 =

k
∑

l=0

w2
l

k−l
∑

r=0

θl(r)pl,r

for some coefficients θl(r) (0 ≤ l ≤ k, 0 ≤ r ≤ k − l), where θl(r) does not depend on the weights,
only on k, l and r. First we compute these coefficients in the typical case, i.e. when l does not
equal to 0, k − 1 or k. For 1 ≤ l ≤ k − 2 from (10), (11) and (13) we get:

θl(r) = 1 − r(r + 1)

k − l
+
r(r − 1)

k − l − 1
. (14)

The above is a second degree polynomial in r, which is equal to 1, when r = 0 and has roots at
k − l and k − l − 1. Hence for 1 ≤ l ≤ k − 1 we have:

θl(r) =
(k − l − r)(k − l − r − 1)

(k − l)(k − l − 1)
. (15)

Next we compute D0 outright instead of computing the θ0(r)s. Keeping in mind that in our
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shorthand notation w−1
0 stands for 0, we have:

D0 =
1

k − 1

k−2
∑

r=0

(−1)r

r!
w−r

0 P
(r+2)
0 (w−1

0 ) =
1

k − 1
P

(2)
0 (0) =

1

k − 1

∑

1≤i,i′≤n

wiwi′ =

W 2 −∑n
i=1w

2
i

k − 1
.

Finally, we compute the missing special cases:

θk−1(0) = 1 − 0 + 0 = 1;

θk−1(1) = 1 − 1 × 2

1
+ 1 = 0;

θk(0) = 1 − 1 = 0.

Note that in (10), (11), (12) and (13) r never exceeds k − l. Summing up everything we get:

V ar(
n
∑

i=1

ŵi) ≤
W 2 −∑n

i=1 w
2
i

k − 1
+ w2

k−1pk−1,0 +
k−2
∑

l=1

w2
l

k−l
∑

r=0

θl(r)pl,r −
n
∑

i=1

w2
i , (16)

where θl(r) is as in (14). From this expression we can easily prove:

Theorem 3.

V ar

(

n
∑

i=1

ŵi

)

≤ W 2 −∑n
i=1w

2
i

k − 1
−

n
∑

i=k

w2
i .

Proof: From (15) it follows that θl(r) ≤ 1 for 1 ≤ l ≤ k − 2, 0 ≤ r ≤ k − l. Since pl,r (r ≥ 0)

is a probability distribution for a fixed l, it follows that
∑k−l

r=0 θl(r)pl,r ≤ 1. Also, pk−1,0 ≤ 1. Thus

the sum of the second and third terms of (16) is upper bounded by
∑k−1

i=1 w
2
i , and the theorem

follows. As a consequence of Theorem 3 we get Theorem 1.

9 The φ and ψ functions

Although for general 0 ≤ l ≤ k we defined θl(r) only for 0 ≤ r ≤ k − l, by Expression (14) in the
special case when 1 ≤ l ≤ k−2, we can extend θl(r) to the case, when r is an arbitrary non-negative
integer. Towards proving Theorem 2 from 16 we define:

ϕ(wl, . . . , wn) = w2
l

k−l
∑

r=0

θl(r)pl,r;

ψ(wl, . . . , wn) = w2
l

∞
∑

r=0

θl(r)pl,r.
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Remark 1. We did not index ϕ and ψ with l. Syntactically, l can be deduced from the number
of arguments, since k and n are considered fixed. In our view ϕ and ψ are functions of a variable
length argument list of positive numbers x, x1, x2, . . . , xm with the requirement that x ≥ xi for
1 ≤ i ≤ m. We define pr as the probability of having r ones in the sum of m independent Bernouli
trials, where the ith trial has bias xi/x towards 1. Then

ϕ(x, x1 . . . , xm) = x2
K
∑

r=0

(K − r)(K − r − 1)

K(K − 1)
pr,

ψ(x, x1 . . . , xm) = x2
∞
∑

r=0

(K − r)(K − r − 1)

K(K − 1)
pr

for some fixed K given in advance. In our case K = k − l.

In order to show that ψ is an upper bound on φ, it is sufficient:

Lemma 7. Let 1 ≤ l ≤ k − 2. For every integer r ≥ 0 it holds that θl(r) ≥ 0

Indeed, this is straightforward from (15).

Consequence 1. For 1 ≤ l ≤ k − 2 we have ϕ(wl, . . . , wn) ≤ ψ(wl, . . . , wn).

While we can only estimate ϕ, we can compute ψ exactly:

ψ(wl, . . . , wn) = w2
l +

∑

l+1≤i6=j≤nwiwj

(k − l)(k − l − 1)
−

2wl

∑n
i=l+1 wi

k − l
. (17)

Indeed, using (14) we get:

θl(r) = 1 − r(r + 1)

k − l
+
r(r − 1)

k − l − 1
= 1 − r(r − 1)

k − l
+
r(r − 1)

k − l − 1
− 2r

k − l
=

1 +
r(r − 1)

(k − l)(k − l − 1)
− 2r

k − l
.

Then Equation (17) follows from Lemma 6.

10 The monotonicity of ϕ

Before making our variance estimates we need one more lemma that concerns the monotone de-
creasing property of ϕ in its second, third, etc. variables.

Lemma 8. Let 1 ≤ l ≤ k − 2 and let i > l. As wi decreases (but stays greater or equal than 0),
ϕ(wl, . . . , wn) does not decrease. Above we assume all other arguments stay the same.

Proof: Recall how we got pl,r from n − l independent Bernouli trials. Consider the set of
n− l − 1 Bernouli trials, which leaves out the one associated with wi, and denote the probability
that in this set of trials we obtain r ones by p−r . Define p = wi/wl and q = 1 − wi/wn. As wi

decreases, p decreases and q increases while their sum remains 1. Clearly,

pl,r = p× p−r−1 + q × p−r (18)
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for every 0 ≤ r. Above we have set p−−1 to 0. Define

ϑl(r) =

{

θl(r) if r ≤ k − l;
0 if r > k − l.

We have

ϕ(wl, . . . , wn) = w2
l

∞
∑

r=0

ϑl(r)pl,r.

We also have that ϑl(r) ≥ ϑl(r + 1) for every integer r ≥ 0. From (18) we obtain:

ϕ(wl, . . . , wn) = w2
l

∞
∑

r=0

ϑl(r)(p× p−r−1 + q × p−r ) =

w2
l

∞
∑

r=0

(ϑl(r + 1)p+ ϑl(r)q)p
−
r .

The lemma is now implied by the monotone non-decreasing property of ϑl(r + 1)p+ ϑl(r)q in q.

11 Proof of Theorem 2

First we outline the proof. Define ϕl = ϕ(wl, . . . , wn), ψl = ψ(wl, . . . , wn). Thus the right hand
side of (16) is

W 2 −∑n
i=1 w

2
i

k − 1
+ w2

k−1pk−1,0 +
k−2
∑

l=1

ϕl −
n
∑

i=1

w2
i ,

For 1 ≤ m ≤ k − 1 define

Vm =
(
∑n

i=m wi)
2 −∑n

i=m w2
i

k −m
+ w2

k−1pk−1,0 +

k−2
∑

l=m

ϕl −
n
∑

i=m

w2
i .

We shall prove:

Lemma 9. Vm+1 = Vm − ϕm + ψm for 1 ≤ m ≤ k − 2.

Consequence 2. Vm is non-decreasing in m.

Lemma 10. If for some 1 ≤ m ≤ k − 1 we have
∑n

i=m wi

k−m
≥ wm then it holds that

Vm ≤ (
∑n

i=mwi)
2

k −m
−

n
∑

i=m

w2
i .

These lemmas now imply Theorem 2, since if m is the first index for which
∑n

i=m wi

k−m
≥ wm then,

using Lemma 1 we have m = ` ≤ k − 1. Expressions (3), (16) and the above lemmas then imply

V ar

(

n
∑

i=1

w̃i

)

=
(W ′)2

k − `
−

n
∑

i=`

w2
i ≥ V` = Vm ≥ V1 ≥ V ar

(

n
∑

i=1

ŵi

)

.

10



Proof of Lemma 9: Using (17):

Vm − ϕm + ψm =
∑

m≤i6=j≤nwiwj

k −m
+ w2

k−1pk−1,0 +
k−2
∑

l=m+1

ϕl −
n
∑

i=m

w2
i + ψm =

∑

m+1≤i6=j≤nwiwj + 2wm

∑n
i=m+1wi

k −m
+ w2

k−1pk−1,0 +

k−2
∑

l=m+1

ϕl −
n
∑

i=m+1

w2
i +

+

∑

m+1≤i6=j≤nwiwj

(k −m)(k −m− 1)
−

2wm

∑n
i=m+1wi

k −m
=

∑

m+1≤i6=j≤nwiwj

k −m− 1
+ w2

k−1pk−1,0 +

k−2
∑

l=m+1

ϕl −
n
∑

i=m+1

w2
i = Vm+1.

Proof of Lemma 10: Let m be the (first) index for which
∑n

i=m wi

k−m
≥ wm. For the rest of the

section we fix this m. By Lemma 1 we have
∑n

i=t wi

k−t
≥ wt for m ≤ t ≤ k − 1. For m ≤ t ≤ k − 1

define

vt =
(
∑n

i=m wi)
2

k −m
−

n
∑

i=m

w2
i + w2

k−1pk−1,0 −
∑k−1

i=t w
2
i

k − t
+

k−2
∑

l=t

ϕl.

Clearly,

Vm ≤ vm;

vk−1 ≤ (
∑n

i=mwi)
2

k −m
−

n
∑

i=m

w2
i .

Hence we are done if we can prove that vm ≤ vm+1 ≤ . . . ≤ vk−1.

Lemma 11. Proof: For any m ≤ t ≤ k − 2 we have vt ≤ vt+1.

For m ≤ t ≤ k − 2 we have:

vt+1 − vt =

∑k−1
i=t w

2
i

k − t
−
∑k−1

i=t+1 w
2
i

k − t− 1
− ϕt =

wt

k − t
−

∑k−1
i=t+1 w

2
i

(k − t)(k − t− 1)
− ϕt. (19)

In order to upper bound ϕt we shall use the monotonicity property from Lemma 8. Recall that

wt ≤
∑n

i=t wi

k−t
holds. Hence:

wt + wt+1 + wt+2 + · · ·wk−1 ≤ (k − t)wt ≤
n
∑

i=t

wi.

Introduce 0 ≤ w′
i ≤ wi for k ≤ i ≤ n in any manner such that

∑k−1
i=t wi +

∑n
i=k w

′(i) = (k − t)wt

11



holds. Then from Lemma 8 and (16):

ϕl ≤ ϕ(wt, . . . , wk−1, w
′
k, . . . , wn) ≤ ψ(wt, . . . , wk−1, w

′
k, . . . , wn) =

w2
t +

(

∑k−1
i=t+1 wi +

∑n
i=k w

′
i

)2
−∑k−1

i=t+1 w
2
i +

∑n
i=k(w

′
i)

2

(k − t)(k − t− 1)
−

2wt

(

∑k−1
i=t+1 wi +

∑n
i=k w

′
i

)

k − t
=

w2
t +

(k − t− 1)2w2
t −

∑k−1
i=t+1w

2
i +

∑n
i=k(w

′
i)

2

(k − t)(k − t− 1)
− 2(k − t− 1)w2

t

k − t
≤

w2
t +

(k − t− 1)2w2
t −

∑k−1
i=t+1w

2
i

(k − t)(k − t− 1)
− 2(k − t− 1)w2

t

k − t
=

w2
t +

−∑k−1
i=t+1 w

2
i

(k − t)(k − t− 1)
− (k − t− 1)w2

t

k − t
=

w2
t

k − t
−

∑k−1
i=t+1 w

2
i

(k − t)(k − t− 1)
.

Replacing the above into (19) the right hand side cancels to 0.
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