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Abstract

Constraint satisfaction on finite groups, with subgroups and their cosets described
by generators, has a polynomial time algorithm. For any given group, a single ad-
ditional constraint type that is not a coset of a near subgroup makes the problem
NP-complete. We consider constraint satisfaction on groups with subgroups, near
subgroups, and their cosets. We give two polynomial time algorithms for the case of
solvable groups. We then give a polynomial time algorithm for general groups with sub-
groups, near subgroups, and their cosets. Bulatov has shown that Mal’tsev constraints
have a polynomial time algorithm; we finally show that subgroups, near subgroups,
and their cosets are Mal’tsev constraints. Our results generalize the results of Bulatov
on Mal’tsev in the special case of near subgroups and some cases of twisted subgroups
by only requiring the subgroups and their cosets to be given by generators describ-
ing possibly a constraint of exponential size, and allowing different variables to have
different domains of varying size, with corresponding group operations.
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1 Introduction

Feder and Vardi [10] considered the class CSP of constraint satisfaction problems. The main
question addressed is: Which problems in CSP are polynomial and which are NP-complete?
The classification of the computational complexity of problems in Boolean CSP had been
settled earlier by Schaefer [17].

The first tool considered in [10] for showing that a problem in CSP is polynomial is the
language Datalog. It is shown that problems whose complement is expressible in Datalog
have width k for some constant k. A simple canonical program solves such problems, essen-
tially in time O(n*). The program depends only on k and not on the actual CSP problem.

The next step proposed in [10] is to determine which problems cannot be approached with
Datalog. A property of CSP problems called the ability to count is defined. It is shown that
problems with this property cannot even be solved by means of Datalog with successor. The
proof is an adaptation of Razborov’s super-polynomial lower bound on the size of monotone
circuits for graph matching [16], with the connection to Datalog with successor given by
Afrati, Cosmadakis, and Yannakakis [1].

The only problems in CSP known to have the ability to count acquire it by simulating
linear equations modulo p, which has a polynomial algorithm. In the context of the original
classification project, it is natural to ask which extensions of this problem are polynomial
and which are NP-complete.

Linear equations modulo p are essentially the same as the CSP problems whose con-
straints are defined by subgroups and their cosets in an abelian group. For such an abelian
group, it is shown in [10] that any additional constraint type that is not a coset of a subgroup
makes the problem NP-complete.

The problem with subgroups and their cosets remains polynomial even if the group is not
abelian, based on the approach of Furst, Hopcroft and Luks [12]. For groups that are not
abelian, additional constraints that are not cosets of subgroups resist attempts at showing
NP-completeness, with one exception. If for a constraint type, the group has an abelian
section where a coset of the constraint containing 1 does not define a subgroup, then the
problem is NP-complete by the result on abelian groups.

One of the definitions of a near subgroup of a group is a set containing 1 whose every coset
containing 1, when restricted to an abelian section, defines a subgroup. Thus sets that are
not cosets of near subgroups make the problem for a given group NP-complete. The proof
is a direct simulation of one-in-three SAT. On the other hand, problems whose constraints
are subgroups, near subgroups, and their cosets, cannot simulate one-in-three SAT directly,
provided that the intersection of near subgroups is a near subgroup [10]. This property of
near subgroups is later shown by Aschbacher [3].

This suggests that CSP problems with near subgroups may not be NP-complete, and
starts the project of finding polynomial time algorithms for these problems, of which this
paper is a continuation. It is shown in [10] that the problem with near subgroups is poly-
nomial for groups of odd order. For arbitrary groups, the problem decomposes into an odd
order problem, for elements of odd order, and a 2-element problem, for elements of order
a power of two. In [10], the odd order problem is shown polynomial, while the 2-element
problem reduces to the involution problem, where a certain element has order two.

The involution problem is polynomial when the near subgroups satisfy a certain 2-element



property. This property holds, for instance, for groups with a normal Sylow 2-subgroup,
which are solvable. Aschbacher shows that the 2-element property holds for groups without
elements of order four, which are not necessarily solvable, but fails for certain groups that are
not solvable. Eventually, he constructs examples of solvable groups for which the 2-element
property does not hold [3].

In this paper, we continue the project by attempting to solve the general case of groups
with subgroups, near subgroups, and their cosets. We consider a more general model where
subgroups and their cosets may not be explicitly described but given by generators, and
the problem may involve several groups which are given as part of the input, rather than
a single fixed group as in CSP. The effect of this is that some polynomial pre-processing
of the groups, to determine their structure in relation to the given near subgroups, may be
required.

The first aim is to handle the case of solvable groups which was left open in [10]. As-
chbacher [3] showed that solvable groups generated by the 2-elements in a near subgroup
have a very special structure. Since for the 2-element or involution problem we are only
interested in 2-elements, this characterization is of interest here. It lends itself to simple
algorithms for recognizing and handling such solvable groups. Two algorithms for the case
of solvable groups with near subgroups are given here. The first one depends only on the
basic structure of the solvable group, while the second one depends on a property of a certain
automorphism associated with near subgroups, which is known to hold in the case of solvable
groups, as suggested by Aschbacher [4].

We then give an algorithm for the case of general groups with near subgroups. The algo-
rithm reduces the involution problem on arbitrary groups to the problem for certain solvable
groups defined from the given groups. This result depends on a structural characterization
of groups generated by the 2-elements in a near subgroup obtained by Aschbacher [5].

Bulatov [7, 8] has shown that Mal’tsev constraints have a polynomial time algorithm; we
finally show that subgroups, near subgroups, and their cosets are Mal’tsev constraints.

In the light of the results presented here and related work, one may conjecture that the
following approach can lead to a full classification of the problems in CSP as polynomial or
NP-complete. (1) It is decidable whether a CSP problem simulates one-in-three SAT directly
or not; if it does, the problem is NP-complete. Otherwise, the following two-step approach
may constitute a polynomial time algorithm: (2) Perform the width % inference procedure for
some appropriate constant k, essentially in time O(nF); (3) If the constraints thus obtained
are nonempty, then interpret them for some appropriately chosen group G as describing
subgroups, near subgroups, and their cosets, in the direct product G™, or more generally
as Mal’tsev constraints; solve this problem. All currently known polynomial cases of CSP
yield to this approch: in brief, they are group theoretic or Mal’tsev problems underneath a
Datalog, bounded width layer.

While the work of Bulatov on Mal’tsev constraints superseeds the case of near subgroups
in what concerns CSP, the approach taken here has several advantages. First of all, the
proof presented here that near subgroups are Mal’tsev constraints is nontrivial. Furthermore,
near subgroups lead to a dichotomy result for extensions of problems with subgroups and
cosets, since for such problems we may only add near subgroups and their cosets to remain
polynomial, any other kind of subset of a group leads to NP-completeness.

A deeper advantage of the approach presented here is that we do not require each variable



to range over the same group, or that the subgroups and cosets be defined for a bounded
number of variables at the same time. This allows for subgroups and cosets that may be of
exponential size, and therefore must be described succintly by means of generators. Most
if not all the polynomial results for CSP depend on closure properties of the subsets used
as constraints. As far as we know, this is the first result that shows that if the subsets are
not described explicitly, but are given as the closure under a closure function of a smaller
set of elements, the problem remains polynomial. It would be in particular interesting to
know if Mal’tsev problems remain polynomial when a subset is defined as the closure under
a Mal’'tsev function, possibly with a different Mal’tsev function for each variable, of an
explicitly given set of elements. This is the case in this paper for subgroups and their cosets,
as they may be of exponential size but given by a small number of generatoes.

Near subgroups were defined by Feder and Vardi [10], and studied in greater depth by
Aschbacher [3, 5]. The theory of near subgroups acquires greater interest in the context of
the recent work of Feder [9] and of Aschbacher [6], were strong near subgroups are considered,
with important links both to the theory of loops via order dividing properties as studied by
Glauberman [13, 14], and to the theory of gyrogroups as studied by Foguel and Ungar [11,
18, 19]. The results presented here indicate that near subgroups have both mathematical
and computational interest.

2 Near subgroups of finite groups

The reader is directed to [2] for notation, terminology, and basic results on finite groups.

Let G be a finite group. A subset K of G is a near subgroup of G if 1 € K and for all
b € G such that 1 € bK, for all subgroups M of (G, and for all normal subgroups N of M
such that M* = M/N is abelian, the set (bK)" = {aN C M : bK NaN # (} is a subgroup
of M*. In brief, the intersection of K with the abelian sections of G forms subgroups.

Of course, ordinary subgroups are near subgroups. For the purpose of our study, a
different but equivalent definition is more useful. A subset K of G is a twisted subgroup of
G if it satisfies the following two conditions:

(1)1 eK.

(2) If z,y € K then zyz € K.

Define a twisted subgroup K of G to be a near subgroup of G if it also satisfies the
following condition:

(3) If N is a normal subgroup of M < G with M /N isomorphic to Fjy, then there is no
b € G such that bK N M meets exactly three of the four cosets of NV in M.

The following properties of twisted and near subgroups were known in [10] and appear
with proof in [3].

Lemma 1 (1) If K is a twisted subgroup of G, then (x) C K for each z € K.

(2) If H < G and K is a twisted subgroup (near subgroup) of G then H N K is a twisted
subgroup (resp. mear subgroup) of G.

(8) If a,b € G and K is a twisted subgroup (near subgroup) of G with 1 € aKb, then aKb
is a twisted subgroup (resp. mear subgroup) of G.

(4) If N is a normal subgroup of G and K is a twisted subgroup (near subgroup) of G
then K* is a twisted subgroup (resp. near subgroup) of G* = G/N.
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(5) If N is a normal subgroup of G with bBN C K for all b € K, and K* is a twisted
subgroup (near subgroup) of G* = G/N, then K is a twisted subgroup (resp. near subgroup)
of G.

(6) If K is a near subgroup of G = (K), and G is either abelian or a 2-group, then
G=K.

The following result is also shown in [10]. Let K be a twisted subgroup of G. In G x G,
consider the subgroup Hx = ({(z,z7!) : z € K}).

Lemma 2 (1) If (x,y™!) € Hg, then zy € K.
(2) If 2 € K has order 2l — 1, and we let x = y = 2!, then z = xy and (z,y™ ') € Hg.

Proof: We first prove (1). If (z,y™!) € Hg, then x = tity---t, and y~t =751 -1
with ¢; € K. Then zy = tity- - -t,t, - - - tot; € K follows from condition (2) in the definition
of a twisted subgroup.

For (2), x =y = 2! € K follows from (1) of Lemma 1, with zy = 2% = 2z, and (z,y !) is
a generator for Hy. [ |

The following is from [3]. Let K be a twisted subgroup of G such that G = (K). In
G x G, let Hx = {{(z,z7") : x € K}) as before, and let Nx = {x € G : (z,1) € Hg}.

l

Lemma 3 (1) Ni is a normal subgroup of G, and bNx C K for each b € K.
(2) If Nk = 1, then Hx = {(x,27) : © € G}, where 7 = Tk is an automorphism of G
with™ =1, and K CK(r)={z € G:2" =x7'}.

G is said to be K-reduced if N = 1. In general G = G/Nk is K-reduced.
Theorem 1 /3] If K and L are near subgroups of G, then K N L is a near subgroup of G.

Let S denote the set of 2-elements of G, and let O(G) denote the largest normal subgroup
of G of odd order. Suppose K is a near subgroup of G such that G is K-reduced and
G =(SNK).

Theorem 2 [3] If G is solvable, then G = O(G)T for some Sylow 2-subgroup T of G with
T abelian and T C K = K (7).

Let Z(G) denote the center of G.

Theorem 3 [5] Suppose K is a near subgroup of G = (SN K) and G is K-reduced with
corresponding automorphism T = 1¢. Let G* = G/O(G), and let G = G*/Z(G*). Then
(1) K = K(1).
(2) Z(G*) is an abelian 2-group and Z(G*) C K* = K(17*).
(3) G is a direct product G = G1Gs - - - G, where the G; are nonabelian simple groups.
(4) K = K\K,---K,, where each K; = K(7;) is a near subgroup of G;.

The proof in [5] essentially shows that the characterization whose proof was sketched
in [3] goes through. Aschbacher’s result further contains a complete list of the possible

Gi, Ki, ;.



3 Group constraint satisfaction

We now introduce the basic model for group constraint satisfaction. An instance of the
problem has groups Gi,Gs,...,G,. The candidate solutions to the problem are from G =
G1 X Gy X --- x Gy. For I C [n], let G; denote the direct product of the G; with i € I; in
particular, G = G[). An instance also has a collection of subsets A; C G called constraints.
The aim of the problem is to find an element x € G such that the projection z; if x into Gy
satisfies z; € A; for all given A; C G;. The usual model for the class CSP corresponds to
the case where all G; are the same and fixed independently of the instance of the problem,;
furthermore the possible A; C G are also fixed ahead of time, independently of the instance
of the problem.

If A; = a;B; with 1 € By, and By is not a subgroup of Gy, then we shall assume that
the instance has an additional G,,, = (By) with m > n. The set By can then be described by
some B,, C G,,, and the correspondence between G,, and each of the G; with ¢ € I needed
to describe A; = a; By C Gy is given by a coset in G,,, X G;. After this transformation, all
the A; that are not cosets of subgroups have |I| = 1, and we denote them by A;, where
I ={i}.

The following is from [10].

Lemma 4 Let Gy be a group and Ay C Gy be a subset that is not a coset of a near sub-
group. Consider the problem where each G; is isomorphic to Gy and has the constraint A;
corresponding to Ay; the remaining Ay C Gy are cosets of subgroups and have |I| < 3. This
problem is NP-complete.

From now on, we shall assume that all A; C G; are cosets of near subgroups. The
remaining constraints are cosets b;H; of subgroups H; < G. We generalize the model.
Instead of describing b;H; by a subset Ay C G, we are given generators for H; < G. If
|G| < m for each i € [n], then at most nm generators are needed to describe each H;.

If the intersection of the b;H; is nonempty, then it is given by bH = N;b;H; with H < G.
The following follows as in [10], based on the approach of [12]; see also Theorem I1.12 in [15].

Theorem 4 One can find b € bH and generators for H from the given b; and generators
for the H;, in polynomial time.

Proof: The main observation is that, given a group J with known generators and a chain
of subgroups J = Jy > J; > --- > J, = {1}, one can obtain distinct representatives from
each coset of each J; in J;_;, namely one element from each coset, as follows. Select two
elements x, 2’ among the generators of J, that belong to the same coset of Ji, say z' = zy
with y € Ji; then discard z' and add y to the list of generators. Iterate until there is only
one generator in each coset of each J; in J;_;, and carry out the process for products zy of
two current generators as well. The fact that only products of pairs of generators are needed
to obtain representatives for all cosets of each J; in J;_; requires proof; see Theorem II.8
in [15].

In our application, we are looking for a solution in G = G; X G5 X --- X G,,. We have
cosets b;H; for 1 < j <s. Let ; =GNH NHyN---NH;for 0 <j<s. From J, let
Js11 consist of those elements of J; whose projection into G; is 1, let J;, 5 consist of those
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elements of J;.; whose projection into G5 is 1, and so on until J, = Js,,, = 1 is obtained.
Now obtain representatives for all cosets of each J; in J;_; using the above algorithm.

To solve the constraint satisfaction problem that obtains an element b € bH, observe that
the first coset by H; is a coset of J; = H; in Jy = (G, so we may select a representative b for
this coset from the above representation, and then look for a solution of the form bz with b
fixed and z in J;. Having fixed b, a condition bz € b;H; now becomes z € b 'b;H; = ¢;H;.
Now we proceed with coHs and J; as we did before for by H; and J;. Here it might be that
no coset representative ¢ for Jy in Ji is in ¢y Hy, in which case the problem has no solution.
If such a representative c exists, we may again look for a solution of the form cy with y in
Jo. We proceed similarly to Jz, Jy, ..., Js. In the end, the element 1 will be a solution if a
solution exists, and all the solutions will be described by the subgroup H = J;.

This gives a polynomial time algorithm, provided we have a polynomial membership
test for each Hj, and we also have n, r, |G;|, and |J;|/|J;-1| all polynomially bounded. To
enforce this last condition, for each coset b;H;, we also include larger cosets b;H;;, where
H;; = G|jH; and Gp; consists of those elements of G' whose projection into G\ equals 1,
for 0 < i < n. Note that Hy; = H;, H,; = G, and |H;;|/|H(;i_1);| is polynomially bounded.
A membership test for H; can be obtained from the generators of H; by considering a chain
of subgroups Hj; as before, where Hy; = H; and H,; consists of the elements of Hfi_nj whose
projection into GG; equals 1.

From now on, we assume that we are given A; C G; that are cosets of near subgroups,
and a single constraint defined by a coset bH with a subgroup H < G given by generators. In
fact, we can also assume b = 1 so that this constraint is a subgroup H < (; this is achieved
by replacing each A; with b; ' A;.

Consider an instance given by a subgroup H < G and cosets of near subgroups 4; C Gj;.
Let k be such that 1 € A; for all + < k. Define the single element problem as follows. Replace
all A; for i > k with A, = G;. Replace Ay with {ay}, where a; € Ay.

Suppose we can solve the single element problem in polynomial time. Then we can try all
ar € Ay in succession for the single element problem. If a solution exists, we will succeed for
some such a;. Once a solution is found, we can transform the problem so that the solution is
1, as we did before when we replaced bH with H. We can then move on to the problem for
k'=k+1. If ¥ =n+1, then we are done. Thus the problem with cosets of near subgroups
is polynomially reducible to the single element problem.

Let the odd order problem be the single element problem for a; of odd order. Let the
2-element problem be the single element problem for a; of order a power of two. Let the

involution problem be the single element problem for a; of order two. The following is as
in [10].

Theorem 5 (1) The group constraint satifaction problem with subgroups, twisted subgroups,
and their cosets reduces to the odd order problem and the involution problem.

(2) If the odd order problem has a solution, then it has a solution of odd order.

(3) If the involution problem has a solution, then it has a solution of order a power of
two.

(4) The odd order problem is polynomial even for twisted subgroups (that are not neces-
sarily near subgroups).



Proof: We start with the single element problem for a; of order (2 — 1)2", and reduce
it to the odd order problem for a7 and the 2-element problem for i . If x is a solution
for ay, then 22" is a solution for ¢} and 227! is a solution for a? . For the converse, note
that 1 is a solution for aj = 1. Furthermore, if z is a solution for af and y is a solution for
a;™, then yr~'y is a solution for a; ™, by the definition of twisted subgroups and (1) from
Lemma 1. This process gives solutions for all of {(ay).

We then reduce the 2-element problem for a; to the involution problem for some b with
b> = 1. Let G,;1 = (b), and introduce a new subgroup H' < G}, X G, with H' = ((ay, b)).
A solution z to the involution problem for b is a solution to the 2-element problem for some
a2, and (1) follows from the fact that (a2 ') = (ay).

For (2), note that if a; is of order 2/ — 1, then a?' = ay, so we can repeatedly replace a
solution z with 2’ = 2% until a solution of odd order is obtained. For (3), if z is a solution
to the involution problem for b, with z of order (2] — 1)27, then we can just take z’ = z?~!
since b?'~! = b.

We finally prove (4). We use Lemma 2 and define a problem in G x G where H x H is the
subgroup constraint corresponding to the single subgroup H < G. For a twisted subgroup
A; of G, we use the subgroup Hy, < G; x G;. For the element a; of order 2/ — 1, we use
(al, a,;l) € Gi X Gg. We solve the problem in G x G with subgroups and a single coset
by Theorem 4; the fact that this solves the original problem with twisted subgroups follows

from (2) of this theorem and Lemma 2. |

Corollary 1 The problem with a subgroup H < G given by generators and cosets of twisted
subgroups, for a group of odd order, can be solved in polynomial time.

Corollary 2 The problem with a subgroup H < G given by generators and cosets of near
subgroups reduces to the involution problem.

4 Solvable groups

We begin by describing the basic approach that is common to all algorithms, whether the
groups (; are solvable or not. By Corollary 2, it is sufficient to give an algorithm for the
involution problem.

An instance of the involution problem consists of G = G X -+ X Gy, where G, = (b)
with b? = 1, a subgroup H < G given by generators, and near subgroups A; C G; for all i.
The aim is to find x € H such that z; € A; for i < n, and z,, = b.

If A; is a near subgroup of G;, then B; = A; X G|, is a near subgroup of G, by (5) of
Lemma 1. Let K be the intersection of all B;. Then K = A; x --- X A, is a near subgroup
of G by Theorem 1. The aim in the involution problem is to find x € K N H with x,, = b.

By (3) of Theorem 5, it is sufficient to look for solutions in the set S of 2-elements. Say
that an instance of the involution problem is in proper form if G; = (SN A;) for all i < n,
and the projection of H into each G; is G;.

It is easy to put an instance in proper form. If G} = (S N A4;) is smaller than G;, then
replace G; with G} and restrict H accordingly by intersecting it with G} x G, using
Theorem 4. The generators for H give generators for the projection H; of H into G;, and



we can use these generators to find all elements of H;. If H; is smaller than G, then again
replace G; with H; and repeat the process.

Suppose the involution problem is in proper form. Obtain the normal subgroup Ny, of
G, so that G; = Gi/Ny, is A;-reduced. Let G = G/N = Gy x -+ x G,. We can the consider
the image subgroup H of the subgroup H, and thus we have reduced the problem to an
instance in G, since a; N 4; C A, for each a; € A; by (1) of Lemma 3.

We assume from now on that the instance of the involution problem is in proper form
and each G; is A;-reduced.

We define G} = G;/O(G;) and let G* = G/O(G) = G} x --- x G},. We now show:

Theorem 6 The involution problem has a polynomaial time algorithm for solvable groups.

By Theorem 2, (K N H)" is an abelian 2-group, since A} = G} is an abelian 2-group.
We give two algorithms. The first one uses a direct approach but is more complicated. The
second one is simpler and uses the fact that K = K(7) for solvable groups from Theorem 2.

For the first algorithm, let K (k) denote the abelian 2-group obtain when A; is replaced by
G, for all i > k. We have H* = Ky > Koy > - > Ky = (KN H)*. We find generators
for the successive K(},. In the end we obtain (K N H )" and test whether the projection into
G} = (b) meets b, by testing each generator. If it does, we have an z* that corresponds to
a solution in zO(G). Such a solution can be found by solving the resulting problem for the
group of odd order O(G), using Corollary 1.

Suppose we have found generators up to stage k — 1, i.e., for kakq)- We can assume
that each element of G corresponds to an element of Kj_,,, by restricting G} accordingly.
Clearly K(*k) < K(*k_l). Let J* < G* be the elements of G* corresponding to 1 € Gj. For each
z* € J'NKG_y, the corresponding representative z € JNK(_1) can be taken to have z = 1,
by considering z' = z! for some appropriate odd I. Therefore Jy=J"N K(*k) =J'N K(*kq)a
and we can find generators for Ji,.

For each b* € Gy, there is an z* € K(j ;) such that 2} = b;. Such an z* can be found
from the generators of K(j_,). The cosets of Jix) in K, are then the corresponding =™ Jiy).
There are then two possibilities: either z* € K, in which case 2" Jy) < K{j, and we add
z* to the generators for K}, or z* ¢ K{;,, in which case z*Jy N Ky = 0.

This will give all the generators for K7,,. It remains to show how to determine whether
z* € K[, i.e., whether z*O(G) N Ky # 0. This is a problem with cosets of subgroups
and near subgroups on the group O(G) of odd order, and we can apply the algorithm from
Corollary 1 to this group. This completes the first algorithm.

For the second algorithm, as well as the algorithm of the next section, we introduce a new
notion. We say that an instance of the involution problem when the G; are A;-reduced is in
T-invariant proper form if it is in proper form and H™ = H, that is H is 7-invariant. Here 7
is the automorphism of G with 72 = 1 induced by the automorphisms 7; for the various G;,
from (2) of Lemma 3. We can always ensure that H is 7-invariant, otherwise replace H with
H N HT7, since 7 maps each element z; in the near subgroup A; to z!. The next lemma is
due to Aschbacher [4].

Lemma 5 If H is T-invariant, s* € H* is a 2-element inverted by 7%, and KNS = K(1)NS,
then there is a 2-element r € sSO(G)NSNHNK.
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Proof: Since s* € H* is a 2-element, there is a t € H N S such that s* = t*. Note that
(s*) is T*-invariant with s* inverted by 7*. Since H is 7 invariant, U = (¢t(H N O(QG))) is
T-invariant. By Sylow’s theorem, U has a 7-invariant 2-Sylow subgroup, which is of the form
(ry with r € t(H N O(@Q)). Since s* is inverted by 7%, we have that r is inverted by 7, so
re K(r)ynS=KnS§. [

From this lemma, it follows that H* = (K N H)", since H it 7-invariant and all elements
of H* are inverted by 7*. To finish the algorithm, we just need to test whether the projection
of H* into G} = (b) meets b, and once an appropriate element s* € H* is found, obtain a
corresponding r € sO(G) N H N K by solving a problem in the odd order group O(G) using
Corollary 1.

5 (General groups

As for the second algorithm of the last section, we assume that G; = (SN A4;) is A;-reduced,
and the involution problem is in 7-invariant proper form.

Theorem 7 There is a polynomial time algorithm that solves the involution problem for
general groups.

Proof: Recall that G,, = (b) with > = 1. If there is no z € H with z,, = b, then the
involution problem does not have a solution. Otherwise, we find a solution as follows. Note
that the subgroup R of H of elements x with x,, = 1 has index two in H.

Let G* = G/O(G) = G% x --- x GF, where G = G;/O(G;). Let G = G*/Z(G*) =
Gi X -+ x Gp, where G; = G*/Z(G*). It is easy to find these groups in polynomial time,
since z € O(G,) if and only if ({2 =t"12t: t € G;}) is of odd order.

Consider H and R. We shall show that H does not have two normal subgroups N, M
with N < M < H such that N has index two in M. In particular, H does not have a
subgroup of index two, and therefore R = H.

It follows that R*NZ(G*) has index two in H*NZ(G*). Find any element s* € H*NZ(G*)
with s¥ = b. Let K = A; x --- x A,. By (2) of Theorem 3 applied to the A;, we have
s* € K* = K(7*). By (1) of Theorem 3 applied to the A;, we have K = K (7). Therefore,
by Lemma 5, there is an element r € sO(G) N SN H N K. Obtain such an r by solving a
problem on the odd order group O(G), using Corollary 1. This completes the algorithm.

We show that H < H; x- - -x H,, does not have normal subgroups N, M with N < M < H
and N of index two in M. The proof is by induction. The base case for H; = G; follows from
(3) of Theorem 3. For the inductive step, we take H < H, x H', where H' is the projection
of H into Hy X --- x H,. Suppose H has such N, M. If the prOJectlon N has index two
in M; inside H1 then we are done by the base case above. Otherwise N; = M, and we
consider 1 € N; = Mj; the subgroup of elements (1,z') € N is then a subgoup of index two
in the subgroup of elements (1,z') € M, thus giving a normal N’ of index two in a normal
M’ inside H', completing the inductive step and the proof. |



6 Near subgroups are Mal’tsev

Let G be a finite domain. A ternary function f on G is said to be Mal’tsev if it satisfies
f(z,y,y) = f(y,y,2) = . A subset R C G* is f-closed if for all x = (x1,...,2), ¥y =
(Y1y---5Yk), 2 = (21,...,2) in R, the tuple (f(z1,y1,21),- .-, f(Tk, Yk, 2x)) is also in R. In
particular, cosets of subgroups have the Mal’tsev operation f(z,y,2) = zy 'z

Bulatov has recently shown that constraint satisfaction problems on a finite domain G,
whose constraints are f-closed for a Mal’tsev function f on G, have a polynomial time
algorithm [7, 8]. The following shows that this should yield alternative polynomial time
algorithms for the problems solved in this paper, provided that the results of Bulatov can
be extended to the cases of possibly different domains of arbitrary sizes with corresponding
closure functions for different variables, and constraints of possibly exponential size involving
all variables given by a smaller set of generators, which remains open in cases other than
those studied in this paper. The two problems here that are special cases of the result on
Malt’sev functions, when the domain is fixed and has a single closure function, are the case
of near subgroups and their cosets (shown in Theorem 7 in the more general context), and
the case of twisted subgroups plus constants of odd order (the odd order problem of Theorem
5(2), 5(4) in the more general context).

Theorem 8 (1) Every finite group G has a Mal’tsev function f such that subgroups, near
subgroups, and their cosets in G* are f-closed.

(2) There ezists a Mal’tsev function f such that the odd order elements of any twisted
subgroup of G* for the odd order problem form an f-closed subset.

Proof: We first define a binary function g on G. Let r be the order of G, and consider
the direct product G” =G x Gy x -+ X GG,2, where each G is isomorphic to GG. Choose
two elements x = (21, %9, ...,%x2), ¥ = (Y1, Y2y - - -, Yp2) Of G" such that each pair of elements
from G occurs as a pair (z;,y;) in one of the G;.

Let K be the smallest near subgroup of G’ containing both z and y, which we know
exists since the intersection of near subgroups is a near subgroup. By the definition of near
subgroup, there exists an element z in the commutator group /N of the group generated by
x,y such that zyz is in K, since {x,y)/N is abelian.

We define g(z;,y;) = x;yiz;. Note that g(z;, 1) = z; and g(1,y;) = y;, since all z in the
commutator group N have z; = 1 in these cases. We define now f(az;, a,ay;) = ag(z;, y;)-
We then have f(az;,a,a) = ax; and f(a,a,ay;) = ay;, so f is indeed Mal’tsev, proving part
(1).

For part (2), if z is of odd order, let \/z denote the element v € (x) with u? = 1. If
G has order ot with o odd and ¢ a power of 2, choose ¢,r such that go + rt = —1, and let
| = go+ 1 = rt. Define, for z,y,z of odd order, f(z,y,2) = (/7 y—lz\/F\/E)l of odd
order. Then f(z,v,y) = f(y,y,z) = 2' = x, so f is Mal’tsev. [
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