
On Random High Density Subset Sums

Vadim Lyubashevsky

Department of Computer Science

University of California at San Diego

La Jolla, CA 92093

vlyubash@cs.ucsd.edu

December 14, 2004

Abstract

In the Subset Sum problem, we are given n integers a1, . . . , an and
a target number t, and are asked to find the subset of the ai’s such
that the sum is t. A version of the subset sum problem is the Random
Modular Subset Sum problem. In this version, the ai’s are generated
randomly in the range [0,M), and we are asked to produce a subset of
them such that the sum is t(modM). The hardness of RMSS depends
on the relationship between the parameters M and n. When M =
2O(n2), RMSS can be solved in polynomial time by a reduction to the
shortest vector problem. When M = 2O(log n), the problem can be
solved in polynomial time by dynamic programming, and recently an
algorithm was proposed that solves the problem in polynomial time
for M = 2O(log2

n). In this work, we present an algorithm that solves
the Random Modular Subset Sum problem for parameter M = 2n

ε

for

ε < 1 in time (and space) 2O(n
ε

log n
). As far as we know, this is the first

algorithm that performs in time better than 2Ω(nε) for arbitrary ε < 1.

1 Introduction

The Subset Sum (SS) problem is one of the original NP-hard problems. In
the standard SS problem, we are given n numbers and a target t, and we
are asked to find a subset of the n numbers whose sum is t. A variant of SS
is the Random Modular Subset Sum (RMSS). In this variant, we are given
a modulus M , a target t, and n numbers generated uniformly at random
between 0 and M , and are asked to find a subset of the n numbers whose sum
is t(mod M). The complexity of RMSS depends on the quantity n

log M , which

1

Electronic Colloquium on Computational Complexity, Report No. 7 (2005)

ISSN 1433-8092

is called the density of the instance. If M = 2cn for some c < 1, then for
almost every target in the range [0, M), some subset of the n given numbers
will add up to it. These are the high density instances. If M = 2cn for some
c > 1 then only a very low fraction of the numbers in the range [0, M) can
be written as a sum of some subset of the n numbers. These are the low
density instances. All RMSS instances can be solved in time O(M) using
dynamic programming, so when M = O(poly(n)), the problem can be solved
in polynomial time using dynamic programming or by other more efficient
methods [3]. When M = Ω(2n2

), the problem can be solved in polynomial
time by a reduction to the approximate shortest vector problem [5],[2]. In
[4], Impagliazzo and Naor show that the hardest instances of RMSS are the
ones where the density is 1 (i.e. M = 2n). In the same paper, the authors
show if that RMSS is a one-way function, then it is also a pseudo-random
generator (for low densities of RMSS) and a one-way hash function (for high
densities of RMSS). The assumption that RMSS is a one-way function for
values of M = O(2n) is very plausible since the best known algorithms take
time O(2

n
2) when M = 2n.

In this paper, we concentrate on high density instances of RMSS.

1.1 Our Contributions and Related Work

Formally, the Random Modular Subset Sum problem is the following:

Random Modular Subset Sum:
INSTANCE: M, t, a1, . . . an where the ai’s are independent uniformly dis-
tributed integers in the range [0, M) and t is any number.

SOLUTION: x1, . . . , xn, where xi ∈ {0, 1} and
n
∑

i=1
xiai = t(mod M).

In this paper we propose a randomized algorithm for solving Random Modu-
lar Subset Sum instances with the parameter M = 2nε

for ε < 1. It’s possible
that ε may be a function of n, but then we require that lim

n→∞

ε(n) < 1. The

algorithm runs in time (and space) 2
O(nε

log n
)

and has success probability at
least 1 − 2−Ω(nε).
Throughout the paper, we will assume that nε = ω(log n), because other-
wise dynamic programming solves the problem in polynomial time and we
are not striving to improve on that.

Our main tool is the algorithmic idea of Wagner[8]. Wagner considers the

following problem: given n lists each containing M
1

log n independent integers

2

uniformly distributed in the interval [0, M) and a target t, find one element
from each list such that the sum of the elements is t(mod M). Wagner shows

that there exists an algorithm that in time nM
O(1

log n
)
, returns a list of so-

lutions. The number of solutions that the algorithm returns is a random
variable with expected value 1. That is, we expect to find one solution. No-
tice that this does not imply that the algorithm finds a solution with high
probability because, for example, it can find 2n solutions with probability
2−n and find 0 solutions every other time. By inspecting Wagner’s algo-
rithm, there is no reason to assume such pathological behavior, and thus
the algorithm works well as a cryptanalytic tool (as was intended by the
author). In our work, we make some modifications to the parameters of the
algorithm and are able to obtain a proof that the algorithm indeed succeeds
with high probability in finding a solution. We believe that this proof may
be of independent interest since Wagner’s technique appears to have wide
applications. This proof combined with one other result allows us to obtain
an algorithm for subset sum.
Recently, Flaxman and Przydatek [1] proposed an algorithm that solves

instances of Random Modular Subset Sum with M = 2O(log2 n) in polyno-
mial time. Our result is a generalization of theirs. If we set nε = log2 n,
then we are able to solve Random Subset Sum with M = 2log2 n in time

2
O(log2 n

log n
)

= 2O(log n) = O(nc) for some constant c. One additional small

advantage is that in [1], M had to be less than 2
log2 n

16 , while there is no such
restriction in our algorithm. The algorithm will run in polynomial time for
M = 2c log2 n for any constant c.

1.2 Organization

To get the high level idea of the algorithm it’s probably best to skip directly
to Corollary 3.2 and then go on to Section 4, where the algorithm is pre-
sented. In Section 3, we prove that a modified version of Wagner’s algorithm
succeeds with high probability which then allows us to prove Corollary 3.2.
The proof uses a technical lemma which is proved in Section 2.

1.3 Preliminaries

Statistical distance is a measure of how far apart two probability distribu-
tions are. In this subsection, we review the definition and some of the basic
properties of statistical distance. The proofs may be found in [6].

Definition 1.1. Let X and Y be random variables over a countable set A.

3

The statistical distance between X and Y, denoted ∆(X, Y), is

∆(X, Y) =
1

2

∑

a∈A

|Pr[X = a] − Pr[Y = a]|

Proposition 1.2. Let X1, . . .Xk and Y1, . . . Yk be two lists of independent
random variables. Then

∆((X1, . . . , Xk), (Y1, . . . , Yk)) ≤

k
∑

i=1

∆(Xi, Yi)

Proposition 1.3. Let X,Y be two random variables over a set A. For any
predicate f : A → {0, 1},

|Pr[f(X) = 1] − Pr[f(Y) = 1]| ≤ ∆(X, Y)

Proposition 1.4. (Chernoff Bound) Let S1, . . . , Sm be a sequence of m
independent Bernoulli random variables, such that Pr[Si = 1] = p. Let
S = S1 + . . . + Sm. Then for 0 ≤ γ ≤ 1, Pr[S < (p − γ)m] ≤ e−2mγ2

.

2 List Merging Lemma

Imagine that we have two lists of integers which are independently, and
uniformly distributed in the range [−R, R) for some integer R. What we
are trying to do is to create a new list that also consists of independent,
uniformly distributed numbers in the range [−S, S) for some S < R, with
the requirement that every integer in the new list is a sum of one number
from the first list and one number from the second list. The following lemma
provides a relationship between how many numbers there are in the original
lists and how many numbers there are in the new list depending on the
relationship between R and S. Intuitively, the larger the difference between
R and S, the fewer numbers we will have in the new list.

Lemma 2.1. Let L1 and L2 be lists of numbers in the range
[

− R
2 , R

2

)

and

let p and c be positive reals such that e−
c
12 < p < 1

8 . Let L3 be a list of

numbers a1 +a2 such that a1 ∈ L1, a2 ∈ L2, and a1 +a2 ∈
[

− Rp
2 , Rp

2

)

. If L1

and L2 each contain at least c
p2 independent, uniformly distributed numbers

in
[

− R
2 , R

2

)

, then with probability greater than 1− e−
c
4 , L3 contains at least

c
4p2 independent, uniformly distributed numbers in the range

[

− Rp
2 , Rp

2

)

.

4

Proof. To prove the lemma, we will give an algorithm to construct the list
L3 that will consist entirely of independent, uniformly distributed numbers
in the range

[

− Rp
2 , Rp

2

)

. And with high probability, there will be at least
c

4p2 elements in this list. First, we will prove two simple lemmas about the

distribution of the numbers from lists L1 and L2 in the range
[

− R
2 , R

2

)

.

Lemma 2.2. With probability greater than 1 − e−
c
2 , any interval of length

Rp that is fully contained inside range
[

− R
2 , R

2

)

, has at least c
2p numbers

from L1 (similarly L2).

Proof. L1 (similarly L2) has c
p2 independent uniformly distributed numbers

in the range
[

− R
2 , R

2

)

. For each one, the probability that it falls into a
specified interval that has size Rp is p. Let S = S1 + . . . + S c

p2
where Si = 0

if the ith number does not fall in the interval and Si = 1 if the ith number
falls into the interval. By applying the Chernoff bound in Proposition 1.4
with γ = p

2 , m = c
p2 , we get Pr[S < c

2p] ≤ e−
c
2 .

Lemma 2.3. With probability greater than 1 − e−
c
3 , any interval of length

Rp
2 that is fully contained inside range

[

− R
2 , R

2

)

, has at least c
12p numbers

from L1 (similarly L2).

Proof. The proof is almost identical to the one for Lemma 2.2.

Now we continue with the proof of Lemma 2.1. Consider the intervals

Ik =

[

−
R

2
+

(1 + 3k)Rp

2
,−

R

2
+

(2 + 3k)Rp

2

)

for integers k where 0 ≤ k < 1
2p . Notice that the intervals are disjoint, have

size Rp
2 , and there is a distance of at least Rp between every two intervals.

From each interval Ik, select an ak from L1 that is in the interval. By Lemma
2.3, such an ak exists in each interval with probability greater than 1− e−

c
3

(There are actually c
12p numbers in the region with high probability, but we

only need one). So the probability that each of the 1
2p intervals contains an

element from L1 is greater than 1 − 1
2pe−

c
3 . We need to notice two things

about the ak’s. First, by our choice of the intervals, the distance between any
ai and aj is at least Rp. And second, since p < 1

8 , −R
2 + Rp

2 ≤ ak ≤ R
2 − Rp

2 .
Now, for each k, define Bk to be the list of numbers in L2 in the range
[

−ak −
Rp
2 ,−ak + Rp

2

)

. Now we notice that since all the ak are at a distance

5

of at least Rp from each other, the lists Bk are disjoint. By Lemma 2.2, with
probability greater than 1 − e−

c
2 each Bk contains at least c

2p numbers. So

the probability that each of the Bk contain more than Rp
2 elements is greater

than 1− 1
2pe−

c
2 . Since adding ak to any element in Bk produces an element

in the range
[

− Rp
2 , Rp

2

)

, we can create 1
2p · c

2p = c
4p2 such elements. They

are uniformly distributed in the range
[

− Rp
2 , Rp

2

)

because all the numbers

in Bk are uniformly distributed in the range
[

− ak − Rp
2 ,−ak + Rp

2

)

, and
they are independent because all the Bk are disjoint. By the union bound,
the probability of having c

4p2 elements is greater than

1 −
1

2p
e−

c
3 −

1

2p
e−

c
2 > 1 −

1

p
e−

c
3

> 1 − e−
c
4

The last inequality follows from the assumption that e−
c
12 < p.

Since we will be using the algorithm in the proof of Lemma 2.1 as a sub-
routine in the next section, it would be useful to know the running time of
constructing the list L3 from L1 and L2. The algorithm MergeLists(L1, L2)
takes two lists each containing c

p2 numbers and returns a list L3 with the
properties described in the statement of the lemma.

MergeLists(L1, L2)
Sort L1. Sort L2.
For k = 0 to 1

2p
Pick an ak from L1 that’s in the interval Ik (As defined in the proof).
Define list Bk to be elements from L2 in the range

[

−ak−
Rp
2 ,−ak + Rp

2

)

For every element b ∈ Bk

Add the element ak + b to the list L3.

The step that takes the longest time in the algorithm is the sorting of the
lists. Thus the algorithm performs O(c

p2 log c
p2) arithmetic operations.

3 Proof of the Modified Wagner’s Algorithm

In this section, we use the results from Section 2 in order to obtain a proof
that a modified version of Wagner’s algorithm [8] succeeds with high proba-

bility. Our algorithm takes as input b lists each containing kM
2

log b numbers

6

uniformly and independently distributed in the range [−M
2 , M

2), and returns
b numbers (one from each list) whose sum is zero. The probability of success
depends on the parameters b and k.

Theorem 3.1. Given b independent lists each consisting of kM
2

log b indepen-
dent uniformly distributed elements in the range [−M

2 , M
2), there exists an

algorithm that with probability at least 1 − be
−

k

4b2 returns one element from
each of the b lists such that the sum of the b elements is 0. The running

time of this algorithm is O(b · kM
2

log b · log (kM
2

log b)) arithmetic operations.

Proof. The algorithm will be building a tree whose nodes are lists of num-
bers. The initial b lists will make up level 0 of the tree. Define intervals

Ii =

[

−
M

1− i
log b

2
,
M

1− i
log b

2

)

for integers 0 ≤ i ≤ log b. (All the logarithms are base 2). Notice that all
the numbers in the lists at level 0 are in the range I0. Level 1 of the tree
will be formed by pairing up the lists on level 0 in any arbitrary way, and
for each pair of lists, L1 and L2 (there are b

2 such pairs), create a new list L3

whose elements are in the range I1 and of the form a1 + a2 where a1 ∈ L1

and a2 ∈ L2. So level 1 will have half the number of lists as level 0, but
the numbers in the lists will be in a smaller range. We construct level 2
in the same way; that is, we pair up the lists in level 1 and for each pair
of lists L1 and L2, create a new list L3 whose elements are in the range
I2 and of the form a1 + a2 where a1 ∈ L1 and a2 ∈ L2. Notice that if we
continue in this way, then level log b will have one list of numbers in the
interval Ilog b where each number is the sum of b numbers, one from each of
the original b lists at level 0. And since the only possible integer in Ilog b

is 0, if the list at level log b is not empty, then we are done. So what we
need to prove is that the list at level log b is not empty with high probability.

Claim: With probability at least 1 − be
−

k

4b2 , for 0 ≤ i ≤ log b, level i con-

sists of b
2i lists each containing k

4i ·M
2

log b independent, uniformly distributed
numbers in the range Ii.
Notice that proving this claim immediately proves the theorem. The claim
will be proved by induction. It’s true for level 0. Assume that it is true for
some level i where 0 ≤ i < log b. We want to show that it is true for level
i + 1. We pair up the b

2i lists at level i and from each pair, create one list

7

in the range Ii+1. So we have b
2i+1 lists with numbers in the range Ii+1. To

prove that each list contains k
4i · M

2
log b independent, uniformly distributed

elements in the range Ii+1, we will invoke Lemma 2.1. We use the lemma
with the following parameters:

R = M
1− i

log b , c =
k

4i
, p = M

−
1

log b

Thus if we take two lists, L1 and L2, at level i, by the inductive hypothesis
they each have c

p2 independent uniformly distributed elements in the range

[−R
2 , R

2). By Lemma 2.1, we can create a new list, L3, with c
4p2 = k

4i+1 ·M
2

log b

independent, uniformly distributed elements in the range

[

−Rp

2
,
Rp

2

)

=

[

−
M

1− i+1
log b

2
,
M

1− i+1
log b

2

)

= Ii+1

where each element is the sum of a number from L1 and a number from L2.
The probability of success is at least 1−e−

c
4 . Since c = k

4i and i < log b, c >

k
b2

and so the probability of success for each list merge is at least 1− e
−

k

4b2 .
The total number of times that we combine lists during the whole algorithm

is b−1, so the probability that everything is successful is at least 1−be
−

k

4b2 .

Since we are combining lists of at most kM
2

log b elements, the running time, as

stated in the previous section, is O(kM
2

log b · log (kM
2

log b)), and since we are

doing b−1 list combines, the total running time is O(b·kM
2

log b ·log (kM
2

log b)).

Corollary 3.2. Given b independent lists each consisting of kM
2

log b inde-
pendent uniformly distributed elements in the range [0, M), and a target t,

there exists an algorithm that with probability at least 1 − be
−

k

4b2 returns
one element from each of the b lists such that the sum of the b elements is

t(mod M). The running time of this algorithm is O(b·kM
2

log b ·log (kM
2

log b)).

Proof. First, we subtract the target t from every element in the first list.
Then we transform every number (in every list) in the interval [0, M) into
an equivalent number modulo M in the interval [−M

2 , M
2). We do this by

simply subtracting M from every number greater or equal to M
2 . Now we

apply Theorem 3.1. Since exactly one number from every list got used, it
means that −t got used once. And since the sum is 0, we found an element
from each list such that their sum is t(mod M).

8

4 Subset Sum Algorithm

In this section, we present the algorithm that will solve Random Modular
Subset Sum for parameter M = 2nε

. The correctness of the algorithm will
rely on Corollary 3.2 from the previous section as well as a proposition which
is proved in [4].
Consider the following function X which defines a distribution on the range
[0, M):
X {

pick n random xi ∈ {0, 1}

output
n
∑

i=1
xiai(mod M)

}
We want to know when the distribution of the above function is statistically
close to the uniform distribution (U) in the range [0, M). This of course
depends on the ai’s, M , and n. If, for example, all the ai are 0, then X will
always be 0, and thus ∆(X, U) ≈ 1. What is proved in [4] is that if M = 2cn

where c < 1, then for almost all choices of ai, ∆(X, U) is small. Formally,

Proposition 4.1. (Impagliazzo, Naor [4])For a given modulus M = 2cn

where c < 1, for all but a 2−
(1−c)n

4 fraction of the possible choices for

(a1, . . . , an), ∆(X, U) < 2−
(1−c)n

4 ; where X is the distribution described above
and U is the uniform distribution on the range [0, M).

We will say that, for a given M , the list (a1, . . . , an) is “well-distributed”

if using these ai’s in the function X, we get ∆(X, U) < 2−
(1−c)n

4 . The
above proposition says that if we pick the ai randomly, then with probability

greater than 1 − 2−
(1−c)n

4 , the list of ai’s we end up with will be “well-
distributed”.
The next lemma says that if we have a “well-distributed” list of ai, then
we can create another (potentially bigger) list by taking random subsets of
the ai, and the statistical distance of this new list from a list of uniformly
distributed numbers will be small.

Lemma 4.2. For a given n “well-distributed” numbers a1, . . . , an mod-
ulo M = 2cn for some c < 1, the statistical distance between the lists
(X1, . . . , Xm) and (U1, . . . , Um), where the Xi are random variables distrib-
uted according to function X above and Ui are random variables distributed

uniformly in the range [0, M), is at most m2−
(1−c)n

4 .

9

Proof. All the Xi are independent since we just sum up a random subset of
the ai’s, and the Ui are independent since we are choosing them indepen-
dently from the uniform distribution. So we just apply Proposition 1.2.

The above proposition and lemma basically say that if we have “many”
random numbers and a “small” modulus M, then taking random subsets
of these numbers is, with high probability, essentially equivalent to picking
random numbers modulo M. Now we are ready to describe the algorithm.

The idea for our algorithm will be to first take the n given numbers modulo

M = 2nε

and construct 1
2n1−ε lists each containing n2M

2

log 1
2 n1−ε

numbers
that are almost independent and uniformly distributed in [0, M). Of course,
we can’t do that directly because we don’t have enough numbers. So what
we will do is break up the n numbers into 1

2n1−ε groups each containing

2nε numbers, and then for each group, we generate a list of n2M
2

log 1
2 n1−ε

numbers by taking sums of random subsets of the elements in the group.
By Proposition 4.1 and Lemma 4.2, we can say that with high probability
the lists are not too far from being uniformly distributed. Now that we have
lists that are big enough, we can apply Corollary 3.2 which states that we
can find one number from each list such that the sum of the numbers is the
target. And since every number in the list is some subset of the numbers in
the group from which the list was generated, we have found a subset of the
original n numbers which sums to the target.

Theorem 4.3. Given n numbers, a1, . . . , an, that are independent and uni-
formly distributed in the range [0, M) where M = 2nε

for some function
ε(n) < 1 that is bounded away from 1, and a target t, there exists an al-

gohrithm that in time 2
O
(

nε

log n

)

and with probability at least 1 − 2−Ω(nε) will

find x1, . . . , xn ∈ {0, 1} such that
n
∑

i=1
aixi = t(mod M).

Proof. We will show that the below SubsetSum algorithm satisfies the claim
in the theorem.

SubsetSum(a1, . . . , an, t, M) /** Here M = 2nε

(1) Break up the n numbers into 1
2n1−ε groups each containing 2nε numbers.

(2) For group i = 1 to 1
2n1−ε do

(3) List Li = GenerateListFromGroup({aj |aj ∈ group i}, M)
(4) Apply the algorithm from Corollary 3.2 to L1, . . . , L.5n1−ε , t, M .

10

GenerateListFromGroup({a1, . . . , am}, M)
(5) Initialize list L to be an empty list.

(6) For i = 1 to n22
2nε

log .5n1−ε do /** Notice that n22
2nε

log .5n1−ε = n2M
2

log 1
2 n1−ε

(7) Generate m random xj ∈ {0, 1}

(8) Add the number
m
∑

j=1
ajxj(mod M) to list L.

(9) Return L.

If we assume for a second that the lists L1, . . . L.5n1−ε in line (4) consist of
independent, uniformly distributed numbers, then we are applying the algo-
rithm from Corollary 3.2 with parameters b = 1

2n1−ε and k = n2. So with
probability

1 − be
−

k

4b2 = 1 −
1

2
n1−εe

−
n2

4(.5n1−ε)2 = 1 − e−Ω(n2ε)

the algorithm will return one element from each list such that the sum of
the elements is t(mod M). And this gives us the solution to the subset sum
instance. The running time of the algorithm is

O(b · kM
2

log b · log (kM
2

log b)) = O((b · kM
2

log b)2)

= O
((1

2
n1−εn2M

2
log .5n1−ε

)2)

= O
((1

2
n1−εn22

2nε

log .5n1−ε

)2)

= 2
O
(

nε

(1−ε) log n

)

= 2
O
(

nε

log n

)

The problem is that each list is not generated uniformly and independently
from the interval [0, M). But we will show that with high probability, they
are close enough to being uniform. We will first observe that with high
probability, the ai’s in every group are “well-distributed”. Since each group
consists of 2nε numbers, and the modulus is 2nε

, Proposition 4.1 implies
that with probability at least

1 − 2−
(1−.5)2nε

4 = 1 − 2−
nε

4

the numbers in any one group are “well-distributed”, and since there are
1
2n1−ε groups, the probability that all the groups are “well-distributed” is at

11

least

1 −
1

2
n1−ε2−

nε

4 = 1 − 2−Ω(nε)

Now, assuming that the numbers in each group are “well-distributed”, we can
apply Lemma 4.2 which tells us that the statistical distance between each list
that we created and lists of independent, uniformly distributed numbers in

the range [0, M), is at most m2−
(1−c)2nε

4 where c = 1
2 and m = n22

2nε

log .5n1−ε .
Since there are a total of 1

2n1−ε lists, the statistical distance between the

1
2n1−εn22

2nε

log .5n1−ε numbers generated by our algorithm and numbers gener-
ated from the uniform distribution is at most

1

2
n1−εn22

2nε

log .5n1−ε 2−
2nε

8 = 2−Ω(nε)

for all ε < 1. So the statistical distance between the input that we give to
Corollary 3.2 and uniformly generated input is 2−Ω(nε). Thus, by Proposition
1.3, the probability that the algorithm from Corollary 3.2 succeeds on this
input is at most 2−Ω(nε) less than the probability that it succeeds on the
uniformly generated input. Thus the probability of success is at least

1 − e−Ω(n2ε) − 2−Ω(nε) = 1 − 2−Ω(nε)

So to summarize, the probability that every group is “well-distributed” is
1 − 2−Ω(nε) and the probability that the algorithm succeeds given that all
the groups are “well-distributed” is also 1 − 2−Ω(nε). Thus the probability
that our algorithm succeeds is at least

1 − 2 · 2Ω(nε) = 1 − 2−Ω(nε)

5 Conclusion and Open Problems

In this work, we showed that Random Modular Subset Sum with n numbers
and modulus 2nε

, for ε < 1, can be solved with high probability in time

2
O(nε

log n
)
.

Besides the obvious open problem of improving the running time of the algo-
rithm, the other open problem (which we believe to be easier than improving
the running time) is what happens when ε = 1. For example, if the modulus
is M = 2.5n, there still, with very high probability, exists a solution to the
subset sum problem, but we cannot apply the algorithm in this paper to

12

this problem since we cannot break the n numbers into enough groups that
are adequately large.

6 Acknowledgements

I am very grateful to Russell Impagliazzo and Daniele Micciancio for their
help and advice with this paper.

References

[1] Abraham Flaxman, Bartosz Przydatek. “Solving Medium-Density Sub-
set Sum Problems in Expected Polynomial Time” STACS 2005.

[2] Alan Frieze. “On the Lagarias-Odlyzko Algorithm for the Subset Sum
Problem” SIAM J. Comput., vol. 15 1986 pp. 536-539

[3] Zvi Galil, Oded Margalit. “An Almost Linear Time Algorithm for the
Dense Subset Sum Problem”, SIAM J. Comput., vol 20 1991, pp. 1157-
1189

[4] Russell Impagliazzo, Moni Naor. “Efficient Cryptographic Schemes
Provably as Secure as Subset Sum” Journal of Cryptology Volume 9,
Number 4, 1996, pp. 199-216

[5] Jeffrey C. Lagarias, Andrew M. Odlyzko. “Solving Low Density Subset
Sum Problems”, J. of the ACM, Volume 32, 1985 pp. 229-246

[6] Daniele Micciancio, Shafi Goldwasser. Complexity of Lattice Problems:
A Cryptographic Perspective. Kluwer Academic Publishers, Boston,
Massachussetts, 2002.

[7] Richard Schroeppel, Adi Shamir. “A T = O(2(n/2)), S = O(2(n/4))
Algorithm for Certain NP-Complete Problems.” SIAM J. Comput. vol.
10 1981 pp. 456-464

[8] David Wagner. “A Generalized Birthday Problem” CRYPTO 2002,
LNCS, Springer-Verlag, pp. 288-303

13

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

