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Abstract

Let Fq be a finite field and f(x) ∈ Fq(x) be a rational function over
Fq. The decision problem PermFunction consists of deciding whether
f(x) induces a permutation on the elements of Fq. That is, we want to
decide whether the corresponding map f : Fq 7→ Fq defined by a 7→ f(a)
is a bijective mapping or not. This problem was known to be in ZPP but
not known to be in P. We resolve the complexity of PermFunction by
giving a deterministic polynomial-time algorithm for this problem.

1 Introduction

1.1 The general problem statement

Let q be a prime-power and Fq a finite field with q elements. f(x) = g(x)/h(x) ∈
Fq(x) is an arbitary rational function with g(x), h(x) ∈ Fq [x] and gcd(g, h)=1.
Then f(x) induces a partial mapping Fq 7→ Fq via a 7→ f(a) for a ∈ Fq. If f(x)
is total and bijective then f(x) is called a permutation function over Fq. In the
special case that h = 1, so that f(x) = g(x) ∈ Fq [x], it is called a permutation
polynomial over Fq .

1.2 Previous work

Shparlinski [Shp92] has given a deterministic superpolynomial algorithm for this
problem. Ma and Gathen [MG94] show that this problem is in ZPP and have
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also devised a fast random polynomial time test for this problem [MG93] which
requires almost linear number of operations over Fq.

A survey of permutation functions and their potential applications in public-
key cryptography along with further references can be found in the articles by
Lidl and Mullen [LM88], [LM93] and Mullen [Mul93]. Being algebraic objects
having the nice combinatorial property of inducing a permutation on the set
of elements in Fq, they have been well studied in mathematics. The aim of
this research was to derive a necessary and sufficient criterion for a rational
function to be able to induce a permutation on Fq. MacCluer [Mac67] and
then Williams [Wil68] obtained a sufficient condition for polynomials over finite
fields. Davenport and Lewis [DL63], Bombieri and Davenport [BD66] and Hayes
[Hay67] obtained a necessary condition as well for polynomials. The general
version for rational functions over finite fields shown by Cohen [Coh70] and Ma
and Gathen [MG94] can be summarized in the theorem given below. But first
we introduce the concept of an absolutely irreducible polynomial.

Definition 1.1. A bivariate polynomial h(x, y) ∈ F[x, y] is said to be absolutely
irreducible if it is irreducible over F and remains irreducible over the algebraic
closure F̄ of F.

For example (y2−x3) ∈ F7[x, y] is absolutely irreducible whereas (y2 +x2) ∈
F7[x, y] is irreducible over F7 but factors into (y +

√
−1x)(y −

√
−1x) over the

extension F72 = F7(
√
−1) and hence is not absolutely irreducible over F7.

Theorem 1.2. Let f(x) = g(x)
h(x) ∈ Fq(x) and n = deg(g) + deg(h). Also let

q ≥ 16n4. Then f is a permutation function if and only if f is total and

f∗(x, y) := g(x)h(y)−h(x)g(y)
x−y does not have any absolutely irreducible factors over

Fq.

We extend this line of work to show that permutation functions can be
recognized in polynomial time.

Theorem 1.3. There exists a deterministic polynomial-time algorithm that

given a rational function f(x) = g(x)
h(x) ∈ Fq(x) determines whether it is a per-

mutation function in time poly((deg(g) + deg(h)) log q).

In doing this, we build upon the work of Gao, Kaltofen and Lauder [GKL04]
and come up with an extension of their algorithm for distinct degree factoriza-
tion of multivariate polynomials over finite fields.

2 Reformulating our goal

By the degree of a bivariate polynomial h(x, y) ∈ F[x, y] we will mean the total
degree of h(x, y). Moreover h(x, y) has a unique factorization over the algebraic
closure F̄ of F. Now collect all the elements of F̄ that occur as the coefficient
of some term xiyj in some irreducible factor of h(x, y) over F̄. Since this is a
finite set, all these coefficients lie in some finite extension K of F. We will call
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the smallest such extension field K the splitting field of h(x, y). We will denote
by dimF(h(x, y)) the dimension of the splitting field of h(x, y) over F.

We will call a polynomial h(x, y) ∈ Fq [x, y] a uniform polynomial if all its
irreducible factors over Fq have the same degree and the same splitting field K.

Definition 2.1. Let h(x, y) ∈ Fq [x, y] with h(x, y) = h1(x, y)h2(x, y) · · ·hk(x, y)
where the hi(x, y)’s are irreducible polynomials over Fq. We will say that h(x, y)
is uniform iff

dimFq(hi(x, y)) = dimFq(h(x, y)) ∀ 1 ≤ i ≤ k

and
deg(hi(x, y)) = deg(hj(x, y)) ∀ 1 ≤ i, j ≤ k

We extend the distinct degree factorization algorithm of Gao, Kaltofen and
Lauder [GKL04] to split a given polynomial h(x, y) ∈ Fq[x, y] into a product of
uniform polynomials.

Theorem 2.2. [Uniform factoring] There exists a deterministic algorithm that
on input a polynomial h(x, y) ∈ Fq[x, y] outputs

〈(h1(x, y), n1, d1), (h2(x, y), n2, d2), · · · (hk(x, y), nk , dk)〉

such that
h(x, y) = h1(x, y)h2(x, y) · · ·hk(x, y)

where each hi(x, y) ∈ Fq[x, y] is a uniform polynomi-al consisting of irreducible
(over Fq) factors of degree ni and di = dimFq(hi(x, y)).

Moreover the algorithm runs in time poly(deg(h) log q).

Note that the output of the algorithm of Theorem 2.2 is a refinement of
the distinct degree factorization of h(x, y) over Fq . It also tells us about the
irreducibility and the absolute irreducibility of h(x, y) over Fq.

It is easy to see how we can use the algorithm of Theorem 2.2 together with
the criterion from Theorem 1.2 to get a deterministic polynomial time algorithm
for recognizing a permutation function. If the size of the underlying field is

small (≤ 16n4), we can decide whether f(x) = g(x)
h(x) is a permutation function

by just simple enumeration. For large fields, Theorem 1.2 implies that testing
the permutation property of a rational function is equivalent to testing whether
the related difference polynomial has any absolutely irreducible factors or not.
For such fields, we invoke our uniform factoring algorithm on the difference

polynomial f∗(x, y) := g(x)h(y)−h(x)g(y)
x−y and get back a list of uniform divisors

of f∗(x, y) and then check whether the dimension of the splitting field over Fq of
any such uniform factor of f∗(x, y) is 1 or not. Now f∗(x, y) has no absolutely
irreducible factor if and only if the dimension of each uniform divisor is greater
than 1.

The discussion above shows that Theorem 2.2 implies Theorem 1.3. The
rest of this article is devoted to a proof of Theorem 2.2.
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3 Nice bivariate polynomials

Definition 3.1. A bivariate polynomial f(x, y) ∈ Fq[x, y] of total degree n is
nice if f(x, 0) is squarefree and of degree n.

Note that the coefficient of xi of a nice polynomial f(x, y) as a polynomial
in y has degree no more than n−i, in particular the leading coefficient of f(x, y)
with respect to x is in Fq .

Also observe that a nice polynomial f(x, y) ∈ Fq [x, y] remains nice over any
extension field K of Fq and that any factor of a nice polynomial is also a nice
polynomial. We will see that the problem of general bivariate factoring can be
reduced to factoring a nice bivariate polynomial.

Let K be a field extension of the finite field Fq. Let φ ∈ GalK/Fq
be an

automorphism of K. We extend φ to K[x, y] as follows

Definition 3.2. Let φ ∈ GalK/Fq
be an automorphism of K. Define the map

φ : K[x, y] 7→ K[x, y] as

φ(f(x, y)) =
∑

1≤k,l≤n

φ(akl)x
kyl

where

f(x, y) =
∑

1≤k,l≤n

aklx
kyl

Observe that the map φ : K[x, y] 7→ K[x, y] is an automorphism of the ring
K[x, y] that fixes the subring Fq [x, y]. In particular,

• φ(f(x, y) + g(x, y)) = φ(f(x, y)) + φ(g(x, y))

• φ(f(x, y)g(x, y)) = φ(f(x, y))φ(g(x, y))

We now define an equivalence relation on K[x, y] induced by such automor-
phisms of K[x, y].

Definition 3.3. Let f(x, y) ∈ K[x, y] be any bivariate polynomial. Then
φ(f(x, y)) for any φ ∈ GalK/Fq

is said to be a conjugate of f(x, y) over Fq.
When the underlying field Fq is clear from context, we will simply say that
φ(f(x, y)) is a conjugate of f(x, y).

Observe that conjugacy is an equivalence relation on K[x, y].
Now consider a nice polynomial h(x, y) ∈ Fq[x, y] that is irreducible over

Fq. Let K ⊇ Fq be a finite field extension of Fq [x, y]. How does h(x, y) factor
over K? We claim that all the irreducible factors of h(x, y) in K are in fact
conjugates of each other. In particular, all the factors of h(x, y) in K[x, y] that
are irreducible over K are of equal degree.
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Claim 3.3.1. Let h(x, y) ∈ Fq[x, y] be a nice irreducible polynomial of total
degree n. Let K be any finite field extension of Fq. If f1(x, y) ∈ K[x, y] and
f2(x, y) ∈ K[x, y] are any two factors of h(x, y) that are irreducible over the
extension field K, then f1(x, y) and f2(x, y) are conjugates over the base field
Fq.

Proof. For a polynomial f(x, y) ∈ K[x, y], define Hf ≤ GalK/Fq
to be the sub-

group of GalK/Fq
consisting of automorphisms in GalK/Fq

that fix f(x, y). Since
the galois groups of finite extensions of finite fields are cyclic groups, Hf must
be a normal subgroup of GalK/Fq

.
Let f(x, y) ∈ K[x, y] be a factor of h(x, y) which is irreducible over K. Let

the set of distinct cosets of Hf in GalK/Fq
be

GalK/Fq
/Hf = {Hfφ1, Hfφ2, · · · , Hfφt}

Then φ1(f(x, y)), φ2(f(x, y)), · · · φt(f(x, y)) are all the distinct conjugates
of f(x, y). We claim that the unique factorization of h(x, y) into irreducible
polynomials over K is simply the product of all these distinct conjugates of
f(x, y). That is,

h(x, y) =
∏

Hf φ∈GalK/Fq /Hf

φ(f(x, y)) (1)

Let φ be any automorphism in GalK/Fq
. Now

f(x, y)|h(x, y) ⇒ ∃g(x, y) ∈ K[x, y] such that h(x, y) = f(x, y)g(x, y)

Applying φ to both sides, φ(h(x, y)) = φ(f(x, y))φ(g(x, y))

or, h(x, y) = φ(f(x, y))φ(g(x, y))

⇒ φ(f(x, y))|h(x, y)
By the same reasoning φ(f(x, y)) ∈ K[x, y] is irreducible over K for if

any g(x, y) ∈ K[x, y], deg(g(x, y)) < deg(φ(f(x, y)) = deg(f(x, y)) divides
φ(f(x, y)) then φ−1(g(x, y)) divides f(x, y), contradicting the irreducibility of
f(x, y) over K. Thus any conjugate of f(x, y) is also an irreducible factor of
h(x, y). Moreover, f(x, y) being irreducible over K, is coprime to all conjugates
distinct from itself. Thus the rhs of equation (1) divides h(x, y). Moreover the
rhs of equation (1) is fixed by all the automorphisms in GalK/Fq

. Since finite
extensions of finite fields are normal extensions, so any polynomial in K[x, y]
that is fixed by all the automorphisms in GalK/Fq

is in fact a polynomial in
Fq[x, y]. Hence the rhs of equation (1) is in fact a polynomial in Fq [x, y] that
divides h(x, y). By the irreducibility of h(x, y) over Fq , we deduce that equation
(1) is indeed the unique factorization of h(x, y). Thus all the irreducible factors
of h(x, y) over K are precisely all the distinct conjugates of f(x, y).
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Now consider an irreducible polynomial h(x, y) ∈ Fq[x, y] that factors in the
algebraic closure of Fq . What is the splitting field of h(x, y)? Can we put a
bound on the dimension of the splitting field over Fq? Assuming that h(x, y) is
a nice polynomial, the following proposition shows that if t(x) is an irreducible
factor of h(x, 0), then the splitting field of h(x, y) is a subfield of the finite field
Fq[z]/〈t(z)〉. In particular, if h(x, 0) has a root α ∈ Fq , then h(x, y) must be
absolutely irreducible.

Proposition 3.4. Let h(x, y) ∈ Fq[x, y] be a nice irreducible polynomial of total
degree n. Let dimFq(h(x, y)) = d. Also let t(z) ∈ Fq [z] be an irreducible factor
of h(z, 0). Then d|deg(t(z)) and h(x, y) breaks into absolutely irreducible factors
over K := Fq[z]/〈t(z)〉, each irreducible factor over K being of degree m = n

d .

Proof. Let f(x, y) ∈ K[x, y] be an irreducible factor of h(x, y) in K[x, y]. Sup-
pose if possible that f(x, y) is not absolutely irreducible but breaks further over
some finite extension L ⊃ K.

Let Hf be as in claim 3.3.1. By Claim 3.3.1

h(x, y) =
∏

Hf φ∈GalK/Fq /Hf

φ(f(x, y)) (2)

Let α ∈ K be a root of the polynomial t(z). Now

(x− α) | (h(x, 0) =
∏

Hf φ∈GalK/Fq /Hf

φ(f(x, 0)))

⇒ ∃φ ∈ GalK/Fq
such that (x− α)|φ(f(x, 0))

⇒ (x − β)|f(x, 0) where β = φ−1(α)

Note that β = φ−1(α) ∈ K is also a root of the polynomial t(z).
By Claim 3.3.1 the irreducible factors of f(x, y) over L are all conjugates.

Let f1(x, y) be an irreducible factor of f(x, y) over L such that (x− β) divides
f1(x, 0). Let ψ ∈ GalL/K be such that ψ(f1(x, y)) is another irreducible (over
L) factor of f(x, y) distinct from f1(x, y). Now since (x − β)|f1(x, 0), we must
also have (x − ψ(β)) = (x − β)|ψ(f1(x, 0)). This implies that (x − β)2 divides
f(x, 0) which is a contradiction since h(x, 0) and hence f(x, 0) are squarefree.

Thus the irreducible factors of h(x, y) over K are absolutely irreducible.
Hence there exists a subfield F ⊆ K which is the splitting field of h(x, y). There-
fore d = [F : Fq] divides deg(t(z)) = [K : Fq] = [K : F][F : Fq ].

By the definition of the splitting field of h(x, y), the coefficients occuring in
f(x, y) lie in the field F and do not all lie in some proper subfield of F. Hence F

is precisely the subfield of K which is fixed by every automorphism in Hf . So

d = [F : Fq ] = ord(GalK/Fq
/Hf )
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Further ord(GalK/Fq
/Hf ) is the number of distinct absolutely irreducible

factors of h(x, y). Since all the irreducible factors of h(x, y) are of the same
degree, say m, we have

m.ord(GalK/Fq
/Hf ) = deg(h(x, y))

⇒ m.d = n

⇒ m =
n

d

In summary, if h(x, y) ∈ Fq[x, y] is a nice polynomial that is irreducible over
Fq and t1(z), t2(z) ∈ Fq[z] are any two factors of h(z, 0) that are irreducible over
Fq, then the degree of an irreducible factor of h(x, y) over K1 := Fq[z]/〈t1(z)〉 is
the same as the degree of an irreducible factor of h(x, y) over K2 := Fq[z]/〈t2(z)〉.
This observation will be the key to our uniform-factoring algorithm.

4 Lifting roots of h(x, 0) to factors of h(x, y).

Let h(x, y) ∈ Fq [x, y] be a nice bivariate polynomial that we wish to factor. Let
α0 ∈ Fq be a root of h(x, 0). Then there exists a unique (upto scalar multiples)
irreducible (over Fq) factor h0(x, y) of h(x, y) such that α0 is a root of h0(x, 0).
The following proposition shows how to construct a linear system over Fq whose
solutions correspond to multiples of h0(x, y).

Proposition 4.1. Let h(x, y) ∈ K[x, y] be a nice polynomial of degree n. More-
over α0 ∈ K is a root of the squarefree univariate polynomial h(x, 0). Let
k = 2n(n − 1) and m ≤ n be an integer. Then there exists a unique α(y) =
α0 + α1y + · · ·αky

k such that

h(α(y), y) = 0 (mod yk+1)

Let h0(x, y) be the unique irreducible factor of h(x, y) such that h0(α0, 0) = 0.
Then the linear system

m∑

i=0

ui(y)α(y)i = 0 (mod yk+1) (3)

with unknowns
ui(y) ∈ K[y], deg(ui(y)) ≤ (m− i)

has a non-zero solution if and only if deg(h0(x, y)) ≤ m
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Proof. The uniqueness of α(y) follows from the squarefreenes of h(x, 0) and
the well-known Hensel Lifting lemma. Moreover since h0(α0, y) = 0, by hensel
lifting again there exists a unique ᾱ(y) = α0 + ᾱ1y + · · · + ᾱky

k such that
h0( ¯α(y), y) = 0.

If hi(x, y) ∈ K[x, y], i ≥ 1 is any irreducible factor of h(x, y) over K, then
since hi(α0, 0) ∈ K

∗, therefore hi(α(y), y) is a unit of the ring K[y]/〈yk+1〉.
Since h(α(y), y) = 0 in this ring, we must have h0(α(y), y) = 0 (mod yk+1).
Now sqauerfreeness of h(x, 0) implies squarefreeness of h0(x, 0) and hence by
uniqueness of Hensel lifting, we have α(y) = ¯α(y).

Let h0(x, y) = v0(y) + v1(y)x+ · · · vl(y)x
l. Now if l ≤ m then

(v0(y), v1(y), · · · , vl(y), 0, · · · , 0)

is clearly a non-zero solution of the linear system defined by equation (3).
Conversely suppose that the system 3 has a nontrivial solution. Let

g(x, y) :=

m∑

i=0

ui(y)x
i ∈ K[x, y]

Let
ρ(y) := Resultantx(h0(x, y), g(x, y)) ∈ K[y]

Then deg(ρ(y)) ≤ (2n− 1)n = k.
Then there exist polynomials a(x, y), b(x, y) ∈ K[x, y] such that

ρ(y) = a(x, y)h0(x, y) + b(x, y)g(x, y) (4)

Now substituting x := α(y) in equation (4), we have

ρ(y) = 0 (mod yk+1)

But deg(ρ(y)) ≤ k and hence we must have that ρ(y) is identically zero. Thus
gcdx(h0(x, y), g(x, y)) is nontrivial and whence by the irreducibility of h0(x, y)
we deduce that g(x, y) is a multiple of h0(x, y) and the degree of h0(x, y) must
be less than or equal to m.

5 Linear systems over a ring

Let w(z) ∈ Fq [z] be a squarefree polynomial of degree n with irreducible factors
wj(z) ∈ Fq [z], 1 ≤ j ≤ r. We consider homogeneous linear systems over the ring

Rw := Fq [z]/〈w(z)〉 ∼= ⊕r
j=1Fq[z]/〈wj(z)〉

We will denote by πwj the projection of Rw onto the jth component. Thus
for u(z) ∈ Rw,

πwj (u(z)) := u(z) (mod wj(z))
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Let L be a linear system over Rw given by

Lv = 0

where L is a matrix with entries in Rw and v is a vector of unknowns.

Proposition 5.1. Let L be any linear system over Rw. Let S ⊆ {1, 2, · · · r}
with the following properties: The dimension over Fq of the solution space of
the projected system Lwj is non-zero if and only if j ∈ S. Then the gcd of all
the entries of all the basis elements of the solution space of L, thought of as
polynomials in Fq [z] is exactly (

∏
j /∈S wj(z)).

Proof. See [GKL04].

6 The Algorithm and its proof of correctness.

We will use the preprocessing step described in [GKL04] to reduce the general
uniform factoring problem to factoring nice bivariate polynomials. Henceforth,
will assume that the input to our algorithm is a nice bivariate polynomial.

We can also use the distinct degree factoring algorithm of [GKL04] to obtain
factors h[1](x, y), h[2](x, y), · · ·h[n](x, y) of a given polynomial h(x, y) ∈ Fq [x, y]
such that

h(x, y) =
∏

1≤i≤n

h[i](x, y)

and h[i](x, y) has the property that every factor of h[i](x, y) that is irreducible
over Fq has degree i. We now iteratively factor each h[i](x, y) into a product of
uniform polynomials.

So now we can assume that the input to our algorithm is a nice bivariate
polynomial h(x, y) and an integer n, such that each irreducible factor of h(x, y)
has the same degree n. Let

1 = d0 ≤ d1 ≤ d2 ≤ · · · ≤ dm−1 ≤ dm = n

be the sequence of divisors of n. Let h[di](x, y) be the product of those ir-
reducible factors of h(x, y) that have dimension di. Using the subroutine de-
scribed below, our algorithm first extracts h[dm](x, y) then invokes the subrou-

tine on h(x,y)
h[dm](x,y)

to obtain h[dm−1](x, y) and then invokes the subroutine again

on h(x,y)

h[dm](x,y)h[dm−1](x,y)
to obtain h[dm−2](x, y) and so on until we obtain the

complete the uniform factorization of h(x, y).
So now our problem boils down to the following problem: given a nice bi-

variate polynomial h(x, y) ∈ Fq[x, y] and positive integers n and d such that
each factor of h(x, y) that is irreducible over Fq has degree n and dimension at
most d, compute in deterministic polynomial time h[d](x, y), h[d](x, y) being the
product of those irreducible (over Fq) factors of h(x, y) that have dimension d
over Fq.
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6.1 Outline of the algorithm

The key idea behind our algorithm is to work over the ring R := Fq[z]/〈h(z, 0)〉.
Now α0 = z ∈ R is a root of the polynomial h(x, 0) ∈ R[x]. We pretend that R
is a field and proceed as in Proposition 4.1, thereby constructing a linear system
over R whose solutions correspond to factors of h(x, y) of degree m = n

d in the
algebraic closure A of Fq. Unfortunately, we cannot recover these individual
factors without knowing a complete factorization of the ring R. But all is not
lost. By the discussion above, we can assume that every factor of h(x, y) that
is irreducible over Fq has dimension at most d and hence h(x, y) has no factor
of degree less than m over A. Now think of h(x, y) as a polynomial in A[x, y].
Then h[d](x, y) is the product of irreducible factors of degree m of h(x, y) in
A[x, y], irreduciblity being over the algebraic closure A. By Proposition 5.1,
we can recover h[d](x, 0) ∈ Fq[x] using the solutions to the linear system that
we had devised. Finally, knowing h[d](x, 0) ∈ Fq[x], we recover h[d](x, y) by
using the well-known algorithm that reduces bivariate factoring to univariate
factoring over a field.

6.2 Algorithm description

Algorithm. (Deterministic distinct dimension factoring) .

Input. A finite field Fq, a nice polynomial h(x, y) ∈ Fq . An integer n ≥ 1 such
that all the irreducible factors of h(x, y) over Fq have degree n. An integer
d|n such that the dimension of all irreducible factors of h(x, y) over Fq is
less than or equal to d.

Output. g(x, y) ∈ Fq[x, y] such that g(x, y) is the product of all irreducible
factors of h(x, y) which have dimension d, if such a g(x, y) exists.

Step 1. (Approximate a root of h(x, y)) Let k := (2n − 1)n. w(z) := h(z, 0).
m := n

d . Rw := Fq[z]/〈w(z)〉 and a0 := z ∈ Rw. By Newton iteration
compute a1, a2, · · · , ak ∈ Rw such that

f(a0 + a1y + a2y
2 + · · · + aky

k, y) ≡ 0 (mod yk+1)

Let

α := a0 + a1y + a2y
2 + · · · + aky

k ∈ Rw[y]/〈yk+1〉

For 1 ≤ i ≤ m, compute

αi := (a0 + a1y + · · · + aky
k)i (mod yk+1)

Step 2. (Try to find a polynomial of degree ≤ m one of whose approximate
roots is α.) Compute a basis over Fq of solutions over Rw of the homoge-
neous linear system L over Rw given by,
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m∑

i=0

ui(y)α
i ≡ 0 (mod yk+1) (5)

where ui(y) ∈ Rw[y], degy(ui) ≤ (m− i) are the unknowns. If the dimen-
sion is zero then output ”No such g(x, y) exists and halt.

Step 3. Compute the gcd of w(z) and the entries of all basis elements of the
solution space of L thought of as polynomials in Fq [z]. This gives a factor,

l0(z) of w(z) = h(z, 0). Let g0(z) := w(z)
l0(z) .

Using Hensel lifting compute a factorization h(x, y) = g(x, y).l(x, y) with
g(x, 0) = g0(x) and l(x, 0) = l0(x). Output g(x, y).

6.3 Proof of correctness

For each irreducible factor t(z) of w(z) = h(z, 0), the linear system in equation
(5) is the projection Lt of the linear system L defined by equation (5) under
the projection map πt. Moreover, by the squarefreeness of h(z, 0) there exists
a unique irreducible (over Fq) factor ht(x, y) of h(x, y) such that t(z) divides
ht(z, 0). Let Kt be the field defined as

Kt := Fq [z]/〈t(z)〉
Moreover z is a root of h(z, 0) in the field Kt. Thus we can apply Proposition

4.1 and deduce that the linear system Lt has a solution over Kt if and only if
h(x, y) has an irreducible factor of degree ≤ m over Kt.

Thus Lt has a solution iff ht(x, y) has a factor of degree ≤ m over Kt. By
the corollary to Proposition 3.4 this happens exactly when dimFq (ht(x, y)) ≥ d.
By the input assumption on h(x, y), ht(x, y) must have dimension exactly d.

Thus we are in the situation of Proposition 5.1 with w(z) = h(z, 0). Let
t1(z), t2(z) · · · tr(z) be all the irreducible factors of w(z) over Fq. Also let
h[d](x, y) be the product of all irreducible factors of h(x, y) of dimension d.
By Proposition 5.1 we can compute in deterministic polynomial time the factor
g0(z) = (

∏
j∈S tj(z)) where S is the set of all indices j such that the polynomial

tj(z) divides h[d](z, 0). Hence using Hensel lifting we may recover this factor
h[d](x, y) in deterministic polynomial time.
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