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Abstract

We constructively prove the existence of almost complete problems under logspace many-
one reduction for some small complexity classes by exhibiting a parametrizable construction
which yields, when appropriately setting the parameters, an almost complete problem for
PSPACE, the class of space efficiently decidable problems, and for SUBEXP, the class of prob-
lems decidable in subexponential time. Our construction also implies the existence of almost
complete problems under logspace manyone reductions for bigger classes, such as E or EXP.
We also investigate almost completeness for smaller time complexity classes, such as P and
QP, and clearly identify and explain the reasons (which are not the same for P and QP) why
our approach fails for these complexity classes.

Keywords: computational complexity, quantitative complexity, resource bounded measure, martingales,
logspace manyone reductions.

1 Introduction

In [Lut92], Lutz introduced Resourced Bounded Measure (RBM), which permits to give a size
(big or small) to the measurable subsets of typical deterministic time bounded big complexity
classes, such as E, the class of problems decidable in exponentially linear time. Lutz’s RBM not
only permits to describe the quantitative properties of some sets, it also enables the introduction
of new and important concepts, the most studied of them being perhaps weak completeness,
introduced in [Lut95]. Almost (and weakly) complete problems are a refinement of the well known
definition of complete problems. Intuitively, a problem is complete for a given complexity class if
it captures all the hardness in it, in the sense that any good solution (algorithm) to a complete
problem yields a good solution for any problem of the class. In comparison, a good solution to
an almost complete problem should yield a good solution not for every problem in the complexity
class, but for many of them. The meaning of many has to be made precise, and it is done by
using Lutz’s Resource Bounded Measure (RBM). Weakly complete problems are defined similarly
as almost complete problems, but by replacing many with a non negligible amount.

The fairly abundant literature treating almost and weak completeness ([LM94], [Lut95], [Jue95],
[JL95a], [JL95b], [LM96], [ASMZ96], [ASTZ97], [AS00], [ASMRT03], [Pow03]) is a testimony of
the interest raised by these notions in the structural/quantitative complexity theory community.
The main interests have been in understanding the different notions of almost and weak complete-
ness with respect to different notions of reductions, such as length-increasing, manyone, bounded
truth-table, truth-table, and Turing reductions, and full classification is close (c.f. the end of
[ASMRT03] for a state of the art on that subject).

We follow the standard convention of calling a complexity class big if it contains E (problems
decidable in exponentially linear time), and small if it is not known to contain E. Whereas
knowledge has grown a lot on the subjects of weak and almost completeness, this only remains
true when regarding big complexity classes: to our knowledge, there exist no other almost (or
weak) completeness results than the one from [Pow03] when it comes to small complexity classes.
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This state of affair holds despite the fact that typical representatives of small complexity classes
are P and PSPACE which, as their nick name of time (or space respectively) efficient decidable
problems suggests, are arguably those of highest interest. The reason for this is not the lack
of intrinsic interest in studying almost and weak completeness in small complexity classes, but
probably rather the fact that Lutz’s RBM does not work well in small complexity classes (c.f.
[Pow04] for a discussion on this issue).

This paper investigates the matter of almost completeness in small complexity classes, and
partially fills the gap by proving the existence of almost complete problems under logspace manyone
reductions for PSPACE and SUBEXP. The construction we make is parametrizable, so as a corollary,
we also prove that there exist almost complete problems for E and EXP under logspace manyone
reductions. This last result differs from a previous similar results from [ASMRT03], which shows
the existence of almost complete problems for E and EXP under polynomial time manyone reductions
(whereas we consider logspace manyone reductions). Our proof is inspired by the construction of
[ASMRT03], and to overcome the fact that Lutz’s RBM is not known to work for small complexity
classes we use a modernized version of the construction of [AS94], in which a definition of an RBM

à la Lutz is defined for P (and other small complexity classes), by taking to our advantage the
insight given by the maturity that general RBM theory has gained in a decade.

We have taken special care in letting our results be as general as possible by keeping them
parametrizable. For example, we prove in theorem 4.35 that any complexity class satisfying some
minimal conditions admits an almost complete set under logspace manyone reductions. Then,
setting appropriately the parameters gives almost complete sets for some well known complexity
classes. As we emphasised, our main objective has been to obtain almost complete problems for
small complexity classes: the smaller the class the better, with an ideal objective of reaching the
level of P. This we could not do, but the fact that we kept our proofs as general as possible permits
to clearly identify where the construction fails for P, thus hopefully helping further researches which
would investigate the matter of almost completeness in P. While P stays out of reach at present,
results concerning QP would perhaps temporarily spare the impatient a hopefully not too long
wait. What we said here above about P is also true for QP: we clearly identify the reasons why
our construction fails for this complexity class, but perhaps surprisingly, the reasons are not the
same as those for P .

2 Conventions

We follow standard definitions of complexity theory, see for example [Pap94] or [BDG94a] and
[BDG94b]. The set {Mi}i∈N is an effective enumeration of Turing machines. {0, 1}∞ is the set of
(infinite binary) sequences. {0, 1}∗ is the set of finite (binary) words. For x ∈ {0, 1}∗∪{0, 1}∞, |x|
is the the length of x. For N ∈ N, {0, 1}N is the set of words of length N and {0, 1}≤N the set of
words of length at most N . λ is the empty word, of length 0. When it is obvious what is the word
x considered, we sometimes implicitly use the capital letter N instead of |x|. We put the canonical
(length-lex increasing) ordering on words and the symbol si is used for the ith word under that
ordering. Therefore, we have: s1 < s2 < s3 < s4 < . . ., with s1 = λ, s2 = 0, s3 = 1, s4 = 00,
s5 = 01, etc... If x is a word or a sequence and for 1 ≤ i ≤ j ≤ |x|, x[i, j] is the word consisting
of the ith through jth bits of x. We use the two following shortcut notations: x[i] := x[1, i] and
x(i) := x[i, i]. If x is a word and y is either a word or sequence such that x = y[1, |x|], we say that
x is a prefix of y, which we write x v y. For x ∈ {0, 1}n and y ∈ {0, 1}m with m ≤ n, we say that
y is a suffix of x, which we note x w y, if x[n−m+1, n] = y If C is a set, we write 2C for the power
set of C, and thus 2{0,1}∗

is the power set of {0, 1}∗. A language is a set of words, and thus a point
of 2{0,1}∗

. Problem and language are synonyms. The characteristic sequence χL of a language
L is the sequence defined by χL(i) = 1 if si ∈ L and χL(i) = 0 if si 6∈ L. The mapping from
2{0,1}∗

to {0, 1}∞ which maps a language L to its characteristic sequence is one-to-one and onto.
Because of this bijection, we take the liberty to see languages as sets of words, points of 2{0,1}∗

or points of {0, 1}∞, and we freely skip from one point of view to another. We use the standard
definition of manyone reductions from a language to another. Unless explicitly stated otherwise,
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a reduction is always a logspace manyone reduction. We use the notation A ≤ B to say that the
language A reduces to B. The (lower) span of a language A is P≤

m(A) := {B | B ≤ A}. We use
standard complexity classes, except for SUBEXP, the class of problems decidable in sub-exponential
time which is probably less common.

Definition 2.1 Fix i, j ∈ N, the jth slice of SUBEXP is Ej =
⋃

i∈N
DTIME(2O(N

i−1
ij )), and SUBEXP =

⋂

j∈N
Ej.

3 Resource Bounded Measure

A Central tool of Lutz’s RBM is martingales, which are mappings from words to integers that have
the property, informally stated, that they describe the cash amount of a gambler while playing the
so called casino game. We give in the beginning of section 3.2 a short and informal description
of the casino game. For more detailed explanations, see [Lut97] or [ASMRT03]. Informally,
Lutz’s definition requires that, in order to obtain an RBM in a complexity class C of somehow
efficiently decidable problems, one considers logarithmically faster computable martingales. This
logarithmic requirement implies that, for small complexity classes, martingales should become
computable in sublinear time, and this brings technical difficulties. For more explanations, and
different propositions to overcome them, see [May94], [AS94], [AS95], [Str97], [Mos02] or [Pow04].
To obtain our results, we need to have RBM’s for small complexity classes. We shall use a revised
and modernized version of the RBM for P proposed in [AS94], which we describe in subsection
3.3. Our job has been simplified by [Mos02] which has previously adapted the work from [AS94]
to obtain notions of RBM for probabbilistic classes. To do so, we need to describe, in subsection
3.2, the type of martingales which we will need to consider, which we call good (or Γ) martingales.
As suggested, these martingales will have, amongst other things, to be computable in sublinear
time and we therefore specify in the next subsection some details about the computational model
we shall use.

3.1 Computational Model

We need to consider Turing machines (TM) computing in sublinear time. With the usual model,
such a TM never has access to the rightmost bits of its input band: moving the read head to this
point already takes linear time. This motivates the use of a random access memory (RAM) Turing
machine.

Definition 3.1 A TM M has RAM access to its input if it has a special query tape and a special
query sate. When M writes si, the ith word of {0, 1}∗ on its query tape and enters the query
state, it gains knowledge of the content of the ith position of the input tape in unit time. When
this happens, we say that si has been queried by M .

Convention 3.2 When about the space complexity of a RAM TM, we do not take into account
the input tape(s), the output tape, nor the query tape.

From now on, any TM is considered to be a RAM TM. Given a TM M and an input x, we can
consider the set of the words M queries during its computation on input x. We define a notion of
good TM’s (c.f. definition 3.5 below), based on the property of not querying too many different
words, even when we let the input range over all words of a given size. This is done by asking the
good TM’s to query words only inside a (small) set called a dependency set.

Definition 3.3 A dependency set Q = {Qi}i∈N is a chain Q0 ⊆ Q1 ⊆ Q2 ⊆ . . . of finite languages
with QN ⊆ {si}1≤i≤N for all N ∈ N.
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Definition 3.4 Let Q = {QN}N∈N be a dependency set, and M be a TM. M is said to query its
input in Q if for every N ∈ N it holds that:

⋃

x∈{0,1}N

{ω ∈ {0, 1}∗ | T (x) queries ω at some point during its computation} ⊆ QN

We can now define what a good or Γ TM is: a TM which computes quickly, and queries little,
even when the input ranges over every possible input of bounded size.

Definition 3.5 Let f be a time (or space 1) bound function. A TM M is a Γ(f) TM if M computes
in time (or space respectively) f(N), and M queries its input in a dependency set Q = {QN}N∈N

with |QN | ≤ f(N).

By extension, if F is a family of time or space bounds, we say that a TM M is a Γ(F) TM if
∃f ∈ F such that M is a Γ(f) TM. The purpose of introducing Γ computations may not be clear
yet, but we shall comment on this again in subsection 3.3. The idea, which comes from [AS94], is
to restrict the computational power allowed to compute martingales by asking for Γ computations.
This will enable to construct the RBM for small complexity classes. More on this later.

Sometimes it will be crucial for us that a TM is able to compute the length of its input. More
precisely, it will be crucial for us that a TM M , on input x, is capable of computing s|x| (which
is almost equivalent to computing |x|, but we leave these details to the reader). It is fairly easy
to see that a TM can compute very efficiently (in time O(log N)) the length of its input (c.f.
[Bus87]). However, this is not so for Γ(O(log N)) TM’s. Indeed: if we consider QN to be the
words queried by a TM M computing the length of its input, (for any input in {0, 1}N), we do
not have the property that QN ⊆ QN+1, i.e. the family {Qi}i∈N is not a dependency set. So
to consider the smallest dependency set in which M queries, we have to consider Q′

0 = Q0 and
Q′

N+1 = QN+1 ∪ Q′
N . {Q′

N}N∈N is a dependency set, but it is not small. Therefore M , although
computing in O(log N) time is not a Γ(f(N)) TM for a reasonable f . For this reason, we will
sometimes consider TM’s with an auxiliary input tape, having the property that on input x the
auxiliary input tape is automatically initialised with the binary encoding of s|x|.

Convention 3.6 When we want to explicitly show that a TM M has an auxiliary input tape
which, on input x, automatically gets initialised to s|x|, we replace the symbol M with M |x|. We

say that a function d is a Γ|x|(f) function if there exists a Γ(f) TM M |x| computing d.

For completeness, let us specify how TM’s output rational numbers.

Definition 3.7 A TM M : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ is said to compute a rational function
f : {0, 1}∗ → Q if ∀x ∈ {0, 1}∗, the output (a, b) of M , interpreted as (the binary encoding of) a
pair of integers satisfies f(x) = a

b
.

It was shown in [Pow03] that this convention permits to efficiently compute easy arithmetics
on Q.

Lemma 3.8 ([Pow03]) ∃c a constant such that for any family of rational functions {fi}1≤i≤m

such that ∀i fi is computable in g(N) space, simple arithmetics on the fi’s (sums, subtractions,
multiplications and divisions) can be carried out in c[g(N) + log(m)] space.

3.2 Martingales

To make the story short, a classical result from [Vil39] shows that Lebesgue measure can be
described in terms of martingales. From this observation, Lutz developed Lutz’s Resource Bounded
Measure (RBM). The idea is the following: if instead of allowing martingales to be any “purely

1When we want to explicitly show whether we are talking about a space or time bound Γ-function, we use the
notation Γs or Γt respectively.
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mathematical” function, we require them to be computable, we obtain a zoomed version of the
Lebesgue measure. The higher we want the zoom factor to be, the more efficiently we have to
require the martingales to be computable. This zooming process is limited, and we cannot zoom
above a certain factor2. Informally, the reason is that when the computational power given to
martingales becomes sublinear, martingales do not have the time to read the whole of their input,
which gives rise to technical difficulties notably preventing us in the present state of the art, from
proving that the 3rd measure axiom3 holds. Intuitively, the problem when defining an RBM in
a small complexity class C, is that martingales still look too powerful: we cannot prove that C

itself is not small. To bypass this limit, different variations of Lutz’s RBM have been developed
([May94], [AS94], [AS95] and [Str97]). We give in this section the definitions which will permit to
describe an RBM powerful enough (in terms of zooming factor) for measuring in small complexity
classes such as P or PSPACE. This measure is the one defined in [AS94], but we revisit it and
modernize it, taking advantage of the improvements general RBM has enjoyed since [AS94] was
published. As we may have hinted previously, the main idea of [AS94] is to further restrict the
power of martingales by asking them to be not only efficiently computable, but by machines not
querying their input too much, i.e. by Γ machines.

We start by reminding the reader of the definition of martingales. Martingales can be thought
of intuitively as describing the course of the so called casino game. Informally, the casino secretly
chooses a language L which it does not reveal to the gambler, and the gambler has an initial
cash amount of one dollar. The casino and the gambler play the following infinite fair game: at
each round, (say the Nth round for example), the player is allowed to wager a stake σ which
may not exceed his total current capital (the casino makes no credit...), gambling on whether the
Nth word sN belongs to the language L or not. The casino then reveals the value of χL[N ], and
if the prediction of the gambler was right the casino pays the gambler σ dollars (the casino is
supposed to have access to an infinite capital, so it never goes bankrupted), and the gambler has
thus doubled its stake σ. Otherwise, the gambler loses his stake. It may be pointed out that this
game is not “memoryless”: at the Nth stage of the game, the gambler recalls the past history of
the game, i.e. he has access to χL[1, N − 1]. A martingale is a function which describes the total
cash amount of the gambler while playing the casino game. The informal description here above
mathematically translates to the following definition.

Definition 3.9 A super-martingale is a function d : {0, 1}∗ → R+ such that d(ω) ≥ d(ω0)+d(ω1)
2 ,

and a strict martingale is a special case of a super-martingale where the inequality above holds
with equality.

Intuitively, a super-martingale corresponds to a modification of the casino game where the
player is allowed to throw away part of his capital at each round of the game. This may seem
to be nonsense, but it becomes interesting when the martingale needs to be efficiently computed:
informally, keeping count of “every single penny” may be computationally too expensive, so it may
be more effective to throw away a bit of money... Usually the word martingale is used for strict
martingales. Since in this paper we shall be dealing mainly with super-martingales, we separate
ourselves from standard terminology by taking the following convention.

Convention 3.10 A martingale is a super-martingale, and not a strict martingale.

We say that a martingale d covers a language L if it is unbounded on the prefixes of (the
characteristic sequence of) L, or equivalently, we say that L belongs to the success set of d. This
notion is important: intuitively, a set is of null measure if it is a subset of the success set of a
martingale (more on this in section 3.3).

Definition 3.11 The success set S∞[d] of a martingale d is defined by

S∞[d] = {L ⊆ {0, 1}∗ | lim sup
N→∞

d(L[N ]) = ∞}

2More precisely, it is unknown if Lutz’s RBM works for small complexity classes, i.e. classes which do not (or
are not known to) contain E.

3c.f. section 3.3
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Perhaps it is time to explain why we use super-martingales only, and not strict martingales.
We do not want to say too much about this problem yet, since it will be discussed thoroughly
in the next subsection, but in order to ensure that the measure we shall define has the property
that “reasonable” unions of null sets are null sets too, we shall need the version of the exact
computation lemma given below. Now if we were to have considered “strict” martingales instead
of super-martingales, we could not have this lemma to hold: if, in the statement of the lemma,
d was a strict martingale, d̂ would still be a super-martingale, thus we could not ensure that
any “approximate”martingale can be replaced by an “efficiently computable” martingale with a
success set at least as large. The curious reader may wonder why the somehow usual trick used to
transform a super-martingale into a strict martingale, which consists of replacing d̂ by a function
ď, defined by ď(ω[1, N ]) = ď(ω[1, N − 1]) + 1

2 (d̂(ω[1, N − 1]w[N ] − d̂(ω[1, N − 1](1− w[N ]))) does
not work in this case. The reason is that the O(N) terms summation which is not a problem for
RBM in big complexity classes is not acceptable for small complexity classes. Next we give the
exact computation lemma which says, intuitively, that when a martingale can be approximated,
we can replace it by a martingale which is exactly computable.

Lemma 3.12 (Exact computation) Let d be a martingale such that there exists d̃ a Γ|x|(f)

function approximating d in the following sense: |d(ω) − d̃(ω)| ≤ 1
|ω|2 , then there exists d̂ a

Γ|x|(O(f)) martingale such that S∞[d] ⊆ S∞[d̂].

Proof. Let d̄(ω) := d̃(ω)+ 4
|ω| . d̄ is a super-martingale and S∞[d] ⊆ S∞[d̄], indeed: it is immediate

that if d̄ is a super-martingale, then its success set contains the success set of d, since d̄(ω) =
d̃(ω) + 4

|ω| ≥ d(ω) − 1
|ω|2 + 4

|ω| > d(ω). To see that d̄ is a super-martingale, consider the following

inequations, where N = |ω| : d̄(ω0)+d̄(ω1)
2 = d̃(ω0)+d̃(ω1)

2 + 4
N+1 ≤ d(ω0)+d(ω1)

2 + 1
(N+1)2 + 4

N+1 ≤

d(ω) + 1
(N+1)2 + 4

N+1 ≤ d̃(ω) + 1
N2 + 1

(N+1)2 + 4
N+1 = d̄(ω) − 4

N
+ 1

N2 + 1
(N+1)2 + 4

N+1 ≤ d̄(ω) −
4

N(N+1) + 2
N2 ≤ d̄(ω). To finish the proof, we only need to notice that d̄ ∈ Γ(O(f)) follows from

the fact that d̃ ∈ Γ(f). ut

3.3 Resource Bounded Measure

A RBM µ on a complexity class C is a partial function from 2C , the power set of C, to {0, 1}. I t
defines a notion of small and large sets in C: a subset of C is called small or null if it is mapped to
0, large if it is mapped to 1, and non-measurable otherwise. In order for an RBM to be interesting,
it should probably also be that some intuitively small sets are indeed of null measure, but most
of all, in order to justify the fact of calling µ a measure, it should satisfy the following measure
axioms :

M1 Easy unions of null sets are null sets.4

M2 Singleton sets are null sets.

M3 The whole space C is not a null set.

In [AS94], an RBM for P is defined. This construction is parametrizable, and it also yields
RBM’s for other classes such as PSPACE and SUBEXP. Also, it yields a measure for E and other
big complexity classes, which coincides with Lutz’s RBM. This justifies calling the RBM of
[AS94] a generalisation of Lutz’s RBM to small complexity classes, although their construction
contains some arbitrary choices, (the definition of Γ computation), and thus cannot claim to be
the generalization of Lutz’s RBM. Indeed , subsequent definitions of RBM’s for small complexity
classes attempts can be found in the papers [AS95] and [Str97]. Also, [May94] defines an RBM

for PSPACE, which is incomparable to the ones defined in the series of papers [AS94], [AS95] and

4The meaning of easy unions is informal, but it should definitely include finite unions. In our case, it will be
made precise in lemma 3.17 and corollary 3.21.

6



[Str97]. Finally, [Pow04] discusses the existence of what could be seen as a “perfect” generalization
of Lutz’s RBM, by introducing the concept of a random based RBM. For our purposes, the
constructions of [AS94] will be sufficient. Rewritten in our notations it can be thus summarized:

Lemma 3.13 (A measure for PSPACE) Let F =
⋃

i∈N
logi(N)+i be the unions of polylogarith-

mic functions. The partial function µPSPACE : 2PSPACE 99K {0, 1} defined hereunder is a well defined
partial function satisfying the measure axioms, it thus defines an RBM measure on PSPACE.

µPSPACE(A) =

{

0 if ∃d ∈ Γ
|x|
s (F) a super-martingale such that A ⊆ S∞[d];

1 if µ(PSPACE \ A) = 0.

Lemma 3.14 (A measure for SUBEXP) Fix j ∈ N and let F =
⋃

i∈N
2O(log(N)εi,j ) (where εi,j =

i−1
ij

). The partial function µEj
: 2Ej

99K {0, 1} defined hereunder is a well defined partial function
satisfying the measure axioms, it thus defines a RBM measure on Ej.

µEj
(A) =

{

0 if ∃d ∈ Γ
|x|
t (F) a super-martingale such that A ⊆ S∞[d];

1 if µ(Ej \ A) = 0.

In order to prove that these lemmas hold, we need to show that the three measure axioms
hold. We prove in lemma 3.17 that M1 holds. As explained, the RBM’s here above are not new:
they are a modernized version of the RBM from [AS94]. This is why we do not prove M2 and
M3, which are easy, although we discuss these two points briefly and informally hereunder. M2 is
merely a consequence of the fact that the martingales are powerful enough to beat any singleton
set. As an example, to beat a language L ∈ PSPACE, a martingale could play a double or quit
strategy on words of {0}∗ only, thus keeping the queried set small. It is here that it is important
that algorithms computing martingales should have access, on an input of length N , to sN on
an auxiliary tape (convention 3.6). We leave the details to the reader. Roughly speaking, M3 is
proved by taking advantage of the fact that martingales query their input in a small dependency
set. This enables, for any fixed martingale d, to construct a language L which is not in the success
set of d, and which is easy to decide (i.e which is in PSPACE or Ej receptively). For example,

suppose that we have d ∈ Γ
|x|
t (F). We want to show that there is a language in L ∈ PSPACE which

is not in S∞[d]. What we do is that we construct L a language that diagonalises against d, i.e. a
language which defeats d every time d wagers on a word. We leave once again the details to the

reader, but the fact that d ∈ Γ
|x|
t (F) guarantees that L is in PSPACE too, which is proved similarly

as in the case of “classical” Lutz’s RBM theory, adding that we can bound the recursive calls to
the algorithm computing d using the fact that this algorithm queries its input in a dependency
set. It remains to define (definition 3.16) what an easy union is, and to show (lemma 3.17) that
an easy union of null sets is a null set too. First, let us take the following simplifying convention.

Convention 3.15 When it is clear from the context whether we are talking about µPSPACE or µEj

(for some j ∈ N), we omit suffixes, and write µ instead of µPSPACE or µEj
.

Intuitively, a family of null sets is easy if there is a family of uniformly computable martingales
covering it, and each of these computations should query in a single common small dependency set.
In order to make our results general enough so that they can be applied to different complexity
classes we need to let the parameters free, and only fix them when later when we want to consider
some particular RBM.

Definition 3.16 A family {Xi}i∈N is a Γ(f) time or space family of null sets (respectively), if
there is a family {di}i∈N of martingales such that there exists M |x| a TM such that for any fixed
i ∈ N and ∀ω ∈ {0, 1}∗ M |x|(i, ω) computes di(ω) in f(i, N) time or space (respectively), querying
its input in a dependency set Gi = {Gi,N}N∈N with Gi,N of size f(i, N).

With this definition, we can state the fact that easy unions of null sets are null sets too as a
corollary of the following parametrized lemma.
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Lemma 3.17 If f : N × N → N is a non-decreasing space or time bound function computable
in space or time (respectively) r(a, b) ≤ f(a, b) and such that f(a, b) ≥ log(a) log(b), then for
{Xi}i∈N a Γ(f) space or time (respectively) family of null sets there exists a single martingale

d̂ ∈ Γ(poly(f(log N, N))) such that
⋃

i Xi ⊂ S∞[d̂].

Proof. Let {di}i∈N be the family of martingales witnessing the fact that {Xi}i∈N is a Γ(f) family
of null sets. Consider d(ω) =

∑∞ cidi(ω) with ci = k

24i+f(i,2i)
for some k ≤ 6

Π2 . Notice that for

all i, it holds that di(ω) ≤ 2f(i,N), where N = |ω|. (This is so because any di may at most double
its value when betting on a word, and it may only wager on words of the dependency set which is
of size at most f(i, N)). It is easily verified that d is a martingale, and that

⋃

i S∞[di] ⊆ S∞[d].

Now consider d̃ the following approximation to d: d̃(ω) :=
∑log N

i=0 cidi(ω).

Claim 3.18 d̃ is a Γ(poly(f(log N, N))) function.

To compute d̃, we need to compute the ci’s and di’s, (for i from 0 to log N), multiply them
and sum them all. Since {di}i∈N is a witness of {Xi}i∈N being a Γ(f) family of null sets, each of
the elements of {di}0≤i≤log N is (uniformly) computable in time or space (respectively) f(i, N) ≤
f(log N, N) (since i ≤ log N and since f is by hypothesis non-decreasing). To compute ci, we

need to compute 1/24i and 1/2f(i,2i) (with i ≤ log N ): 1/24i is computable in O(log N) time and

O(log log N) space, 2f(i,2i) is computable in O((f+r)(log N, N)) time and O(log((f+r)(log N, N)))
space, thus ci is computable in O(log(N) + (f + r)(log N, N)) time and O(log(f(log N, N)) +
r(log N, N)) space. Thus the cidi(ω)’s (for 1 ≤ i ≤ log N) are (uniformly) computable in O((f +
r)(log N, N)) time and space. Finally, to compute d̃, we need to sum the cidi’s. Since these are
rational numbers q represented as pairs of integers (a, b) with q = a

b
, this will require simple

arithmetics: additions and multiplications. Simple arithmetics (sums) of m rational functions
computable in space or time g(N) can be computed in poly(mg(N)) space or time. (In fact, this
can be done even more efficiently in the case of space computations, c.f. lemma 3.8). In the case

of computing d(ω) =
∑log N

i=0 cidi(ω), we have m = log N and g(N) = O((f +r)(log N, N)). Thus d̃
is computable in poly((f + r)(log N, N)) = poly(f(log N, N)) time or space respectively, by a TM

querying its input in a dependency set of size log(N)f(log(N, N) (since the {di}i∈N’s all query in
a dependency set of size f(log N, N) by assumption), thus the claim is substantiated.

Claim 3.19 |d(ω) − d̃(ω)| ≤ 1
N2

We easily verify this claim by developing the series for d(ω) and d̃(ω) and recalling that
di(ω)

2f(i,2i)
≤ 1 for i > log N , since as previously pointed out d may at most have wagered (and

doubled its capital) f(log N, N) times at the Nth round of the casino game: |d(ω) − d̃(ω)| =
∑∞

log(N)+1 cidi(ω) ≤
∑∞

log N
k

N42f(log N,N) di(ω) ≤ k
N2

∑∞
log N

1
N2 ≤ k

N2
Π2

6 ≤ 1
N2 .

The exact computation lemma 3.12 and the two claims 3.18 and 3.19 above ensure that there
exists d̂ a martingale as announced in the statement of the lemma. ut

For the cases of the RBM’s on PSPACE or (a slice of) SUBEXP from lemmas 3.13 and 3.14, we
thus define “easy unions”:

Definition 3.20 A PSPACE easy union is a Γ(f) family of null sets, with f a polynomial function
of its first argument and a polylog function of its second argument. An Ei easy union is a Γ(f)

family of null sets, with f(k, N) a function in 2O(k
i−1
ij +log(N)

i−1
ij )).

This definition is such that it holds as a corollary to lemma 3.17 that finite unions of null sets
are null sets too.

Corollary 3.21 When considering PSPACE and µPSPACE, or alternatively Ei and µEi
, it holds that

easy unions of nulls sets are null sets too, i.e. M1, the first measure axiom holds.

Remark 3.22 It follows from definition 3.16 that finite unions (of null sets) are easy unions.
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4 Abstract Construction of an Almost Complete Problem

In this section, we give ourselves all the tools that permit the construction of an almost complete
problem for different complexity classes. We keep to the line of making statements (definitions,
lemmas, theorems, etc...) general enough to let them be applied to different complexity classes
by making results parametrizable. For the sake of comprehensiveness, let us sketch the way this
section is organised. Subsection 4.1 is where we give the technical definitions we need so as to
construct, in subsection 4.2, an almost complete language. The formal definition of an almost
complete set is the following.

Definition 4.1 Let C be a complexity class and µ be an RBM on C. A problem A is almost
complete for C if A ∈ C, A is not complete for C (i.e. ∃B ∈ C such that B 6≤ A) but the span of
A is large, i.e. µ(P≤

m(A)) = 1.

Sticking close to this definition, we construct, in section 4.2 and on parameter C a complexity
class, two sets AC and BC such that BC 6≤ AC , and we prove that, under reasonable conditions,
these two sets belong to C. Finally, in section 4.3, we state and prove the main theorem, which
states some conditions under which AC is an almost complete set foxr C.

4.1 Setting the Context

As explained previously, we want to construct two sets B and A such that B 6≤ A, and the
construction is made by diagonalization. So what do we diagonalize against? We diagonalize
against an effective enumeration of reductions

Convention 4.2 {Ri}i∈N is an effective enumeration of reductions, and Ri is computable in
i log(N) + i space.

The existence of such an enumeration is standard. It can be proved by using a universal
transducer together with a “yardstick” gadget (which is the space bounded computation equivalent
of the “alarm-clock” gadget for time bounded computations), and we refer the reader to standard
complexity books from the literature for further details. Let us start by sketching the main line
of the construction. To start with, we partition {0, 1}∗ in intervals {Ii}i∈N of words of increasing
size.

Definition 4.3 Let f : N → N be defined by f(0) = 0 and f(i + 1) = 2if(i)i + 1.
{Ii}i∈N is defined by Ii = {ω ∈ {0, 1}∗ s.t. f(i) ≤ |ω| < f(i + 1)}.

The construction will then be made so as to force the fact that for any i ∈ N there exists an
element in Ii witnessing the fact that B 6≤ A via Ri. Of course, this will imply that B 6≤ A, since
the Ri’s are an enumeration of reductions. For reasons which will become clear later we need to
define a subset of distinguished words Di inside each one of the intervals Ii.

Definition 4.4 For every i ∈ N, Di is defined as the first i2 words of Ii (under the canonical
ordering of {0, 1}∗). Di is called the set of distinguished words of Ii.

The whole point of the diagonalization construction we are about to describe is to produce
almost complete sets for as many complexity classes as possible. In fact, the construction actually
takes, as its main parameter, a complexity class C, but not any complexity class C: in order to have
any chance of success, it should be that the complexity class considered fits into a diagonalizable
triplet, which definition follows.

Definition 4.5 A diagonalizable triplet is a triplet (C, C, {R̃e}e∈N) such that C =
⋃

e∈N
{Le} is a

complexity class, C is a complete language for C (under logspace manyone) reductions and {R̃e}e∈N

is a uniform family of reductions such that:
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1. ∀e ∈ N it either holds that Le ≤ C via R̃e or that ∃d ∈ N such that Le = Ld and Ld ≤ C via
R̃d.

2. Each R̃e is size increasing: ∀e ∈ N ∀x, y ∈ {0, 1}∗, |x| ≤ |y| ⇒ |R̃e(x)| ≤ |R̃e(y)|

3. ∀i 6= j Im(R̃i) ∩ Im(R̃j) = ∅.

4. ∀e R̃e is one-to-one and there exists an algorithm computing in O(log(N)) space which on
input y ∈ Im(R̃e) for some e ∈ N, computes the preimage of y.

5. ∃R̃ a transducer such that R̃(e, x) computes R̃e(x) in e log(N) + e space.

6. There is a universal algorithm Check which on input (z, j) ∈ {0, 1}∗ × N checks whether
z ∈ Im(R̃j) in poly(j · log(|z|)) space.

Convention 4.6 From now on, we suppose that (C, C, {R̃e}e∈N) is a diagonalizable triplet.

We also need to define a function g : N → N, depending on a condition on the distinguished
words. Again, we do not try to explain yet the purpose of this function, since we find it easier to
do it when it is actually used, in the next subsection.

Definition 4.7 The function g : N → N is defined by g(i) = 1 if ∃x ∈ Di such that Ri(x) 6∈ Ii,
g(i) = 2 if ∃x1, x2 ∈ Di such that x1 6= x2 and Ri(x1) = Ri(x2), g(i) = 3 if ∃x ∈ Di such that
Ri(x) 6∈

⋃

j≤i Im(R̃j) and g(i) = 4 otherwise.

These definitions set the context in which the construction will take place, in subsection 4.2.
Before going onto the next stage, we would like to get comfortable with these definitions by proving
a few algorithmic facts about them. More precisely, we would like to know that we can efficiently
compute the function f of definition 4.3. We would also like to be able to compute, when given a
word x, the index i of the interval such that x ∈ Ii and we would also like to be able to compute
the function g. Addressing these questions is what we do next, starting with the following remark
which is essentially trivial (and even redundant), but writing these facts down now will avoid us
having to justify ourselves later, in the middle or a reasoning where these trivialities may not
spring to mind anymore...

Remark 4.8 Let x ∈ {0, 1}N , and let i be the index such that x ∈ Ii. Then:

1. 22i

≤ f(i) ≤ N ≤ f(i + 1)

2. If |x| = f(i), then Ri(x) ∈
⋃

j≤i Ij .

3. If x is a distinguished word of Ii, then |x| = f(i), therefore Ri(Di) ⊆
⋃

j≤i Ij .

Point 1 holds by solving the first order linear recurrence relation f(i + 1) > f(i)i with initial
condition f(2) > 2. Point 2 holds because of convention 4.2 and because f was chosen precisely
for it to hold while making w.l.o.g. the assumption that the following space-time tradeoff holds:
DSPACE(f(n)) ⊆ DTIME(2f(n))), 3 is trivial. We now start to investigate the definitions given above
from an algorithmic point of view, starting by showing that f is easy to compute.

Lemma 4.9 There exists an algorithm F which on input i ∈ N (encoded in binary) computes f(i)
in polylog(N) time, where N = f(i).

Proof. Recall that f(i) = 2i−1f(i− 1)i−1 +1. Therefore, F needs to output BIN(f(i− 1)i−1)0i−21,
where BIN is the function mapping a number to its binary encoding. Outputting the 0i−21 first
bits is easily achieved in polyloglog(N) time, (remembering from remark 4.8 that i ≤ loglog(N)).
It remains to look how to compute BIN(f(i − 1)i−1). Let Ti be the run time of F on input i.
First, F makes a recursive call to itself on input i − 1, and stores the output, BIN(f(i − 1)),
which takes time Ti−1. After this, F still has to compute f(i − 1)i−1, which is easily seen to be
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computable in polylog(N) time. Thus the following first order linear recursion relation on the
Ti’s: Ti = polylog(N) + Ti−1. Since i ≤ polylog(N) (remark 4.8), solving (or at least bounding)
the equation yields Ti ≤ polylog(N). ut

The next step in our description of algorithmic facts about the definitions given at the beginning
of the section is to make ours an algorithm Index which computes, on input x, the index i such
that x ∈ Ii. Not surprisingly, the main ingredient is the algorithm F of the previous lemma.

Lemma 4.10 There exists an algorithm Index which on input x ∈ {0, 1}N computes the binary
encoding of the index i such that x ∈ Ii, in polylog(N) time.

Proof. Let x ∈ {0, 1}N be the input to Index. First, Index computes N the length of its input,
which can be done in logarithmic time (by a RAM TM), c.f. [Bus87]. Then, Index repeats:

pseudo-code comments

1. i := 0; # Initialize counter

2. LOOP: repeat { #

3. compute f(i + 1); # Using algorithm F from lemma 4.9

4. if ( f(i + 1) > N ){ # Test is true if x ∈ Ii

5. return i # Terminate program and return i

6. }
7. else {
8. i := i+1; # Increment i

9. next LOOP; # restart the loop

10. }
11. }

Clearly this algorithm computes the expected index i such that x ∈ Ii. The only non obvious
thing to verify is that the value of f(i + 1) in the conditional “if” statement can be computed in
polylog(N) time, but this follows from lemma 4.9 which says that f(i + 1) is computable in time
polylog(f(i + 1)) = polylog(2if(i)i) ≤ polylog(N loglog(N)) = polylog(N) (using remark 4.8). ut

Next, we show that we also have an efficient algorithm computing g. While doing so, we shall
need the following fact.

Claim 4.11 Let φ and γ be two polylogarithmic space computable functions, then γ ◦φ is polylog-
arithmic space computable too.

To substantiate this claim, the idea is to avoid storing the output of φ, which could be too
large to fit within the announced space bound, but to feed it bitwise to (the algorithm computing)
γ. Details are left to the reader.

Lemma 4.12 There exists an algorithm G which on input i ∈ N computes g(i) in polylog(N)
space, where N := f(i).

Proof. We exhibit an algorithm computing g within the announced space bounds. Let i be the
input. First use the algorithm F of lemma 4.9 to compute and store the (binary encoding of)
f(i) = N . Next, we would like to construct and store (in a list) the set Di = {xj}1≤j≤i2 . This
cannot be done straightforwardly, since x ∈ Di ⇒ |x| = f(i), which is not polylogarithmic in
N . Therefore, instead of storing Di we store D̄i, a compressed version of Di which holds on only
polylogarithmic5 in N space: D̄i = {x̄j}1≤j≤i2 , where x̄j is the word formed by taking the log(i2)
rightmost bits of xj

6. The whole compressed list D̄i is thus stored on O(i2 log(i2)) bits, which is
polylogarithmic in N (remembering remark 4.8).

5In fact, D̄i even hold on polyloglog(N) space, c.f. below.
6Recall the Di are the first i2 words of length f(i), therefore only the log(i2) rightmost bits of an element of Di

can be non zero.
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Remark 4.13 The non compressed version of an element x ∈ D can be computed in polylog(N)
space from its compressed version x̄ ∈ D̄i, since x = 0f(i)−|x̄|x̄.

Next, the algorithm tests whether g(i) = 1, that is, tests whether ∃x ∈ Di such that |Ri(x)| ≤ f(i).
To do so we compute and compare f(i) (using algorithm F of lemma 4.9) and |Ri(x)|, with x
ranging in Di. To compute the |Ri(x)|’s, with x ranging in Di, we compute Ri(Dec(x̄)), with x̄
ranging in D̄i, where Dec is a decompression algorithm running in polylog(N) space (c.f. remark
4.13), and count the number of bits outputted (thus avoiding storing the possibly too numerous
bits of Ri(x)). Claim 4.11 insures that Ri ◦ Dec is polylog(N) space computable.

Next, unless g(i) is already known to be equal to 1, test whether g(i) = 2. That is, test whether
∃x1 6= x2 ∈ Di such that Ri(x1) = Ri(x2). We already now that for x ∈ Di, Ri(x) = Ri(Dec(x̄))
can be computed in polylog(N) space (without storing the output). In the previous test, while
testing if g(i) = 1, we needed to count the length of Ri(x). This time, we need to check whether
there exists two distinct elements x1, x2 ∈ Di with Ri(x1) = Ri(x2). To avoid storing the outputs,
we make both computations in parallel, and compare the outputs bitwise.

Next, unless g(i)’s value is already known, test whether g(i) = 3. That is, test whether there
exists y ∈ Di such that Ri(y) ∈

⋃

j≤i Im(R̃j). To be convinced that this step can be carried space
efficiently, let us look at one of the tests that have to be made (all of which can be carried out
one at a time, after having cleared the memory space previously used). Let j ≤ i and y ∈ Di be
fixed, and suppose it needs to be decided whether z := Ri(y) ∈ Im(R̃j). Through trivial space-

time tradeoffs, |z| ≤ 2i log(|y|)+i < 2O(log2(N)). Thus, by point 6 of definition 4.5 there exists an
algorithm Check checking whether z ∈ Im(R̃j) in poly(j · log(|z|)) = poly(j log(N)) = polylog(N)
space (since j ≤ i ≤ log(N). Notice that once again, z may be too long to be stored in memory,
so it is fed bitwise (by restarting the whole computation of Ri(y) = z as many times as needed)
to Check. ut

4.2 A Diagonal Construction

In this section, we construct an almost complete set AC . In fact, our construction is parametrizable,
once again, so the set constructed will be almost complete only for certain choices of parameters.
The main parameter to choose is (C, C, {R̃e}e∈N), a diagonalizable triplet. Here is the main line
along which we construct AC : we start by setting AC = C, i.e. we start with a complete set. Then
we modify AC to break the completeness property, but not too much, so that it remains almost
complete. For the time being, we invite the reader to accept the intuitive idea that AC will be
almost complete because we started from a complete problem, and we have only slightly modified
it. The detailed and rigorous explanation of the reasons why completeness is almost preserved are
delayed until the next section. In this section, we will merely concentrate on the diagonalization
process which will braek the completeness of AC . Remember from definition 4.1 that a problem
is not complete if there is another problem not reducing to it. We will thus actually construct a
problem BC which does not reduce to AC . The whole difficulty will be to ensure that AC and BC

are easy to compute, i.e. that they belong to C. To summarize our discussion, here are the three
points we have to fulfill. The third one being discussed only in the next section: 1) AC and BC

should be easy to decide, i.e. it should be that if C ∈ C, (for some suitable complexity class C),
then AC and BC are in C too. 2) AC should not be complete, (enforced by the fact that BC 6≤ AC).
3) AC should be almost complete, i.e. most of the languages reducing to C should reduce to AC

too.
As we mentioned before, the construction is done by diagonalizing against {Ri}i∈N, the effective

enumeration of reductions from convention 4.2. We start with AC := C a complete language, and
BC := ∅ the empty language. Then, at step i for i ∈ N we modify AC ∩ Ii or BC ∩ Ii to ensure
that there is an element of Ii witnessing the fact that BC 6≤ AC via Ri, i.e. we ensure that there
exists x ∈ Ii such that x ∈ BC ⇐⇒ Ri(x) 6∈ AC . The exact definition is as follows.

Definition 4.14 Let C be a language. The languages AC and BC are defined recursively on the
intervals of the partition I (from definition 4.3). For the initial step: AC ∩ I0 = C ∩ I0 and
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BC ∩ I0 = ∅. Then by induction, if AC ∩ Ij and BC ∩ Ij are defined ∀j < i, AC ∩ Ii and BC ∩ Ii

are defined according to one of the four following cases, depending on the value of the function g
of definition 4.7:

(1) If g(i) = 1. In this case, we leave AC unchanged, AC ∩ Ii := C ∩ Ii. By case assumption, there
exists ξ := min{x ∈ Di|Ri(x) 6∈ Ii} and we use this fact to insure that BC 6≤ AC via Ri, by letting
x be such that Ri(x) = ξ and by setting BC ∩ Ii = ∅ in the case where ξ ∈ AC, and by setting
BC ∩ Ii = {x} if ξ 6∈ AC. (Notice that since g(i) = 1 and ξ = Ri(x) with x ∈ Di, then ξ ∈

⋃

j<i Ij

(c.f. point 3 of remark 4.8), and thus the question whether ξ ∈ AC or not is answered in a previous
stage of the construction).

(2) If g(i) = 2. AC is left unchanged again, AC ∩ Ii := C ∩ Ii. Let ξ1 < ξ2 be the two smallest
elements (which exist by case assumption) of Di such that Ri(ξ1) = Ri(ξ2). We set BC ∩ Ii = ξ1,
which insures that BC 6≤ AC via Ri since either ξ1 ∈ BC and Ri(ξ1) 6∈ AC or ξ2 6∈ BC and
Ri(ξ2) ∈ AC .

(3) If g(i) = 3. Let ξ := min{x ∈ Di|Ri(x) 6∈
⋃

j≤i Im(R̃j)}. This time we have to modify AC, by
setting AC ∩ Ii = C ∩ Ii ∪ {Ri(ξ)}. We let BC ∩ Ii = ∅ so that it holds that BC 6≤ AC via Ri since
ξ 6∈ BC but Ri(ξ) ∈ AC .

(4) If g(i) = 4. By case assumption, Ri(Di) ⊆
⋃

j≤i Im(R̃i) ∩ Ii, and Ri|Di
is one-to-one, since

otherwise g(i) ≤ 2. Since |Di| = i2, the pigeon hole principle implies that there exists ei :=
min{1 ≤ l ≤ i : |Ri(Di) ∩ Im(R̃l)| ≥ i}. Let Ji be the first i elements of Di that are mapped
by Ri to Im(R̃ei

), and let Fi := Ri(Ji). If C ∩ Fi = ∅, then let ξ := maxFi. We change AC by
setting AC ∩ Ii = C ∩ Ii ∪ {ξ} while BC(x) ∩ Ii = ∅. Notice that if C ∩ Fi 6= ∅, then BC 6≤ AC via
Ri, (and BC 6≤ C via Ri either) since ∃x ∈ Ji such that Ri(x) ∈ AC ∩ C but x 6∈ BC. In the case
where C ∩ Fi 6= ∅, ξ ensures that BC 6≤ AC via Ri.

As emphasised throughout the previous discussion, this definition guarantees that the following
lemma holds

Lemma 4.15 ∀i ∈ N BC 6≤ AC via Ri, and thus BC 6≤ AC.

The proof of it is the fact that by construction the following holds: ∀i ∈ N ∃x ∈ Ii such that
[x ∈ BC ⇐⇒ Ri(x) 6∈ AC ]. The next step for us is now to prove that AC and BC are efficiently
decidable if C is. Thus AC and BC will be in C, at least for some settings of the parameters. Before
we accomplish this, there is another technical result we need. This technical result is similar to
the ones from the previous section in spirit, which gave us knowledge on the algorithmic structure
of the intervals {Ii}i∈N, only this time, the results will concern not the Ii’s, but the sets Di, Ji

and Fi. (The former two having been defined only in definition 4.14, so it would not have been
possible to include these results in the previous section). Roughly speaking, what we would like
to prove is that it is possible to compute and store these sets, and that the computation space
required plus the space required to store the output is small. Actually, this is not the case, since
the sets themselves are large (so is said informally). Nevertheless, the information content of these
sets is in some sense small, so we show that it is possible to pretend that these sets are computed
and stored in such a way that a subroutine needing to access them could do so transparently,
without noticing any difference with the situation in which they would effectively be stored. The
idea in order to do so is standard: store a space efficiently computable compressed form of these
sets, and make use of a space efficient decompression algorithm to serve them transparently to
any subroutine needing to access them. This sums up to the following definitions.

Definition 4.16 Let X = {xi}1≤i≤m be a set of m words. The storage size of X is defined as
X] =

∑m
i=1 |xi|.

Definition 4.17 (Compressed forms) Let {Xi}i∈N be a family (of finite languages) with Xi =
{xi,j}1≤j≤ki

a finite set of words. We say that {Xi}i∈N can be compressed on s(i) bits if there
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exists a family {X̄i}i∈N with X̄i = {x̄i,j}1≤j≤ki
a finite set of words and a uniform family of

decompression algorithms {Deci}i∈N such that Deci(x̄i,j) computes xi,j in s′(i) space, with s(i) =

X]
i + s′(i). We call X̄i the compressed form of Xi and x̄i,j the compressed representative of xi,j .

The idea is that if a set X needs to be stored it is possible to store X̄ instead, and through the
use of Dec, grant a subroutine access to X in a transparent way. It may be noticed that this may
not be time efficient, since Dec may be called many times, but it is space efficient whenever X can
be compressed on far less bits then would be required to store X uncompressed. The attentive
reader may also have noticed that in our previous discussion, we addressed the problem of not only
storing and decompressing space efficiently a set, but we also said that it would be reasonable to
be able to space efficiently compute the compressed forms of the set we want to store, and that no
reflexion of this fact appears in definition 4.17. This is a deliberate choice, motivated by the will
to enhance comprehensiveness in giving later the definition 4.20 of effective compressions which
tackles this issue. We take the following convention.

Convention 4.18 When we say that “Xi can be compressed on s(i) bits and decompressed via
the algorithm Dec” , it is implicit that we are in fact considering a family of finite languages
{Xi}i∈N and a uniform family of algorithms {Deci}i∈N, as in the previous definition.

We start by giving the following compression result on the set of distinguished words Di and
the related sets Ji and Fi.

Lemma 4.19 Di, Ji and Fi can be compressed on polylog(f(i)) bits.

Proof. By definition Di = {xj}1≤j≤i2 is the set of i2 first words of Ii. Therefore x1 = 0f(i),

x2 = 0f(i)−11, x3 = 0f(i)−210, x4 = 0f(i)−211, etc..., Since |Di| = i2, each of the xj ’s in Di have
all their bits equal to 0, except for (some of) their log(i2) rightmost bits. For each 1 ≤ j ≤ i2, we
consider x̄j the compressed representative of xj , which is defined as the i2 rightmost bits of xi, and

D̄i := {x̄j}1≤j≤i2 the compressed form of Di, with storage size D̄]
i = i2 log(i2). The decompression

algorithm Dec(x̄j) only needs to pad f(i)− log(i2) leading 0’s on the left of x̄j . The computational
space required by Dec is essentially the space required to compute f(i). By lemma 4.9, f(i) is
computable in polylog(f(i)) time and space. We have thus shown that Di can be compressed on

D̄]
i +polylog(f(i)) = polylog(f(i)) bits. It is now trivial that Ji can be compressed on polylog(f(i))

bits, since by definition Ji ⊆ Di, we have J̄i ⊆ D̄i and the decompression algorithm is the same.
(Notice that we have made no claim on how to compute J̄i, but only that this set exists). Since
Fi = Ri(Ji), we take F̄i = J̄i, but if Dec is the decompression algorithm for Ji (and Di), the
decompression algorithm for Fi is Ri ◦ Dec. The space required to compute Ri ◦ Dec is the space
to compute Dec, which we have already seen to be polylog(f(i)), plus the space to compute Ri

on elements of Di, which is i log(f(i)) + i = polylog(f(i)) as follows from the definition of Ri and
since Di ⊆ {0, 1}f(i), claim 4.11 permits to finish the proof. ut

This result in its current state is not yet useful: as previously suggested, we would like the
same result, but with the fact that the compressed forms are space efficiently computable too,
thus the motivation of the next definition and lemma.

Definition 4.20 We say that a set Xi can be effectively compressed on s(i) bits if it can be
compressed on s(i) bits and if, on input i, its compressed form X̄i can be constructed using s′(i)

working space with s(i) = X̄]
i + s′(i).

Lemma 4.21 Di, Ji and Fi can be effectively compressed on polylog(f(i)) bits.

Proof. From lemma 4.19, we already know that these sets can be compressed within the announced
space. It only remains to show that their compressed forms, D̄i, J̄i and F̄i can be constructed
in polylog(f(i)) space too. The case of D̄i is easy: compute x̄1 = 0log(i2), x̄2 = “x̄1 + 1′′, etc...
(Details are left to the reader). We now look at the case of Ji. First of all, recall from definition
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4.14 that Ji is only defined for i such that g(i) = 4. So we first compute g(i), and unless g(i) = 4
we have Ji = ∅. Computing g(i) takes polylog(f(i)) space (lemma 4.12). If Ji 6= ∅, i.e. if g(i) = 4,
we compute ei (as defined under point 4 of definition 4.14). To compute ei = min{l ∈ {1, ..., i} :
|Ri(Di) ∩ Im(R̃l)| ≥ i}, apart from simple counting, what has to be done is to check whether
Ri(y) ∈ Im(R̃j) for y’s in Di and j ≤ i. We already know from the proof of lemma 4.12 that
this check can be done in polylog(f(i)) space. We can suppose that we have at our disposal the
element of Di stored in memory, since we have already shown that Di can be effectively compressed
on poly(f(i)) space. In fact, we can also suppose that we have Ri(Di) stored in memory, since
it is easy to see that Ri(Di) can be effectively compressed on poly(f(i)) space: indeed, we set
Ri(Di) = D̄i, and the decompression algorithm is the same as the decompression algorithm for J̄i

(details are left to the reader). Now to enumerate the elements of J̄i we only need to check, for
each element xi ∈ Ri(Di) if it belongs to Im(R̃ei

). If this is so, the representative x̄i of xi belongsx
to J̄i, otherwise it does not. The check is done via the algorithm Check which exists by point
6 of definition 4.5, which runs in poly(ei log(|Ri(Di)|)) ≤ poly(i log(2i log(f(i))+i)) = poly(f(i))
space. ut

We are now, at last, equipped with the adequate tools to prove that AC and BC are efficiently
decidable when C is. Since AC and BC are defined on each interval, applying a different rule
depending on the value of g on the index of this interval, the first step in constructing an algorithm
deciding AC (or BC) is to have a subroutine capable, on input x ∈ {0, 1}∗, of finding the index i
such that x ∈ Ii, and another computing the value of g(i). These subroutines are already available
through the algorithms Index and G (lemmas 4.10 and 4.12). To decide AC or BC , it only remains
to consider the computations naturally arising from definition 4.14.

Theorem 4.22 If C is decidable in s(N) space and t(N) time, then AC and BC are decidable in
O(max{s(N)}, polylog(N)) space and O(log(N)t(N) + 2polylog(N)) time.

Proof. We give an algorithm deciding AC within desired space bounds. Let x ∈ {0, 1}N . We need
to output AC(x). First, compute i, g(i) and f(i) such that x ∈ Ii, (from lemmas 4.9, 4.10 and
4.12, this can be done in polylog(N) space).

If g(i) = 1 or g(i) = 2, then output C(x) which can by hypothesis be either computed in t(N)
time or in s(N) space.

Else, if g(i) = 3, find ξ the smallest element of Di such that Ri(ξ) 6∈
⋃

j≤i Im(R̃j). This can
be done in polylog(N) space. The arguments needed to substantiate this assertion are identical
to the ones from lemma 4.12 or 4.21, and left to the reader7 . If Ri(ξ) = x, (this test must once
again be done bitwise in order to avoid storing all the output), output 1, else output C(x).

Finally, if g(i) = 4, then compute ei in polylog(N) space (as in lemma 4.19). Since Di,
Ji and Fi can be effectively compressed (lemma 4.21) , we can w.l.o.g. suppose that they are
constructed, stored and available for access, and that all this requires polylog(N) space. We can
thus w.l.o.g. suppose that Di, Ji and Fi are stored and available in memory, at an “additional”
cost of polylog(N) space,

Next, find ȳ the compressed representative of y := maxFi. This can be done by (a sorting
algorithm) comparing the elements of Ji bitwise, thus never needing to actually store in memory
a decompressed representative of an element of Fi. If x 6= y, we output C(x). If x = y, it depends:
if C ∩ Fi = ∅, we output 1, else we output C(x). This implies we need to test whether C ∩ Fi = ∅.
The elements of Fi are accessible via their compressed enumeration F̄i, and each member of Fi is
of size at most N , since N = |x| and x = max(Fi) by case assumption. Thus for each of the at
most log(N) y’s in Fi, we can check if y ∈ Fi in t(N) time and s(N) space.

From the definition of AC , it is clear that this algorithm decides AC , and putting together the
complexity analysis from above, one sees that the computation requires O(max{polylog(N), s(N)})
space and O(log(N)t(N)+2polylog(N)) time. A similar proof shows that the same holds for BC . ut

7Fortunately, ξ does not need to be stored. We can take advantage of lemma 4.21 to store the compressed
representative of ξ on polylog(N) space.
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4.3 Almost Completeness

In the previous section, we constructed the language AC , which we propose as a candidate almost
complete problem. Roughly summarizing, we already know that AC is easy to decide, in the
sense that for a suitable complexity class C, lemma 4.22 implies that AC ∈ C, and that AC is not
complete, since BC 6≤ AC , (lemma 4.15). We have not given any idea of why AC should be almost
complete, besides the intuitive idea that it is a language which is constructed by starting from a
complete problem C, and since we modified it only a bit, probably something of this completeness
remains, and it seems plausible that AC would be almost complete. To prove formally that AC

is almost complete, we have to prove that many languages of C reduce to AC . This means that
we need to prove that the lower span of AC is large, or equivalently, that the complementary
of the span is small, in terms of an RBM. Of course this will not be true for any RBM, but
we would like it to be true for the type of RBM’s such as the ones we defined in section 3.3
in terms of martingales. Therefore, we shall exhibit a martingale which covers every language
of C not reducing to AC , (thus intuitively showing that the complementary of the span of AC is
small) and which is computable using little computing resource. This potentially implies that
the span of AC is large for many complexity classes. We start by describing the martingale, the
coverage property will then be proved in theorem 4.27 and the efficient computation property in
theorem 4.34. The martingale we need to describe, having the here above cited properties is, not
surprisingly, constructed in close relation with the diagonalization construction of AC described in
the previous section. Therefore, let us start with the following convention.

Convention 4.23 ∀i ∈ N such that g(i) = 4, the integer ei ∈ N, the sets Ji and Fi are defined as
in the case 4 of definition 4.14. If g(i) 6= 4, we do not define ei nor Ji, and we let Fi := ∅.

The description of d, a martingale covering the complement in C of P≤
m(AC) will be, grosso

modo, split into three phases. First, we will describe d as a pure mathematical function, but in an
intuitive way, through the use of the casino game. In a second stage, we will describe the success
set S∞[d] of d, and finally, we will describe and analyse the complexity of an algorithm computing
d. We start with the formal description of the martingale d. We do not describe d directly, but
describe a family of martingales {βe}e∈N∗ instead, which can be assembled to form d by summing
up the βe’s. How this is done is explained later in this section. Actually, we do not really describe
any of the βe’s either. Instead, for each fixed e ∈ N, we describe a family {βe,i}i∈N∗ of martingales,
and define βe =

∑

i∈N
2−3iβe,i. This trick is standard, and we leave it to the reader to verify that

if each of the βe,i’s are martingales, then so is βe. Notice that computing βe will most probably
be very difficult since it implies an infinite sum. We shall address this problem later, and for the
time being, we are only interested in defining the somehow “purely mathematical” (as opposed to
computable) family of martingales βe. In our case, each of the martingales in {βe,i}i∈N∗ wagers
only a finite number of times, and no two different martingales in this family wager on a same
word. In some sense, the idea is that the set of words is partitioned into subsets of words, and
βe delegates the charge of wagering (while playing the casino game) on the ith subset to the ith
martingale βe,i. Since each of the βe,i only wagers a finite number of times, their total capital is
always necessarily bounded, so each of the βe,i will have an empty success set S∞[βe,i], but this
is not necessarily true for βe, since the infinite sum

∑

i∈N∗ 2−3iβe,i may of course not be bounded,
even if each term in the sum is.

Definition 4.24 ∀e ∈ N, let We,i = R̃−1
e (Fi), and W≤x

e,i = We,i ∩ {y ∈ {0, 1}∗|y ≤ x}.

Definition 4.25 Fix e ∈ N. Consider βe the following martingale to play the casino game.
The first step is to split the initial martingale βe in a family of martingales {βe,i}i∈N∗ by letting
βe =

∑

i∈N∗ 2−3iβe,i. The ith martingale βe,i is used to bet on words of We,i only, so each of the
βe,i’s wagers on a distinct subset of words than the other βe,i’s, since We,i ∩ We,j = ∅ if i 6= j.
Suppose the casino has chosen an initial language L. Let us describe the strategy of βe when it
comes to bet on the N th bit of χL. In other words, we need to describe the value of βe(ω[N ]), where
ω = χL. Since βe =

∑

i 2−3iβe,i, this is done by describing the family of martingales {βe,i}i∈N∗ :
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1. Unless ∃i such that sN ∈ We,i, do not wager: none of the βe,i changes, and so βe(ω[N ]) =
βe(ω[N − 1]).

2. Otherwise, if sN ∈ We,i (for some i ∈ N), only the ith martingale βe,i changes, playing
according to the following strategy: bet the whole capital βe,i(ω[N − 1]) on the fact that
sN 6∈ L, i.e. the wager is placed on ω(N) = 0, thus doubling it if ω(N) = 0 and loosing it
all if ω(N) = 1: βe,i(ω[N ]) = 2(1 − ω(N))βe,i(ω[N − 1]).

We leave it to the reader to verify that each of the βe,i is a martingale, which implies in turn
that βe is a martingale too.

Convention 4.26 The martingale βe described here above depends on e. The family {βe}e∈N

is the family of martingales obtained by letting e range over N, and we refer to βe as the eth
martingale.

Lemma 4.27 ([ASMRT03]) Let e ∈ N be an integer such that Le does not reduce to AC , then
there are infinitely many i’s in N such that g(i) = 4 and ei = e and Wi,e ∩ Le = ∅.

The fact that this lemma holds comes from the structure induced by the diagonalization process
of definition 4.14.
Proof. Suppose that Le 6≤ to AC . Then, necessarily, it does not reduce to AC via a finite variation
of R̃e. This implies that there are infinitely many words x such that R̃e(x) ∈ AC ⇐⇒ R̃e(x) 6∈ C,
since Le reduces to C (via R̃e), and not to AC . By analysing the construction of AC (definition
4.14), we see that this implies that [ g(i) = 4 and ei = e and C ∩ Fi = ∅] for infinitely many i’s in
N, (detailed explanation of this latter fact can be found in [ASMRT03]). We then notice that for
those infinitely many i’s, the following holds. C∩Fi = ∅ ⇒ R̃−1

ei
(C)∩R̃−1

ei
(Fi) = ∅ ⇒ Le∩Wi,e = ∅,

which finishes the proof. ut

With this lemma, we can state the following theorem.

Theorem 4.28 ([ASMRT03]) If Le does not reduce to AC , then Le ∈ S∞[βe].

Proof. Let e ∈ N be a fixed integer. Suppose that Le 6≤ AC . By theorem 4.27, there are thus
infinitely many i’s such that g(i) = 4, ei = e and We,i ∩ Le = ∅. Let us look at what happens
to the ith martingale βe,i for one of these infinitely many i’s, while playing against the language
Le. By definition, βe,i is used to wager on words of We,i, and sooner or later, it will have been
used to play on every word of We,i. The strategy is to always play the whole current capital, thus,
each time βe,i wagers, it either doubles or quits. In the end, βe,i will either have been doubled
|We,i| times, reaching the peak value of 2|We,i| (this happens if L ∩ We,i = ∅), or completely lost
(if L∩We,i 6= ∅). Since by assumption we are looking at an i such that Le ∩We,i = ∅, this means
that βe,i reaches the peak value of 2|We,i|.

Remark 4.29 |We,i| = i if e = ei and g(i) = 4, |We,i| = 0 otherwise.

This remark is seen to be true by remembering that by definition, Fi ⊆ Im(R̃ei
) (point 4 of

definition 4.14), that Im(R̃i) ∩ Im(R̃j) = ∅ if i 6= j (point 4 of convention 4.5), that |Fi| = i and

that the R̃i’s are one-to-one. We now turn back to βe: since βe =
∑

i∈N∗ 2−3iβe,i, it means that
in the end, each of the infinitely many indexes i such that g(i) = 4, ei = e and We,i ∩ Le = ∅ will
contribute to the value of βe =

∑

i∈N
by 2|We,i|/2i = 1, (as follows from remark 4.29). Therefore,

when N → ∞, there are infinitely many terms in the sum above reaching a peak value of 1. Thus
limN 7→∞ βe(L[N ]) = ∞, and thus, by definition, L ∈ S∞[βe]. ut

This last theorem gives an important covering property of the family of martingales {βe}e∈N∗ .
In order to make use of this property, we are to show that they can also be computed in an efficient
way. In fact, we will also need to show that the union of their success set is covered by a single
efficiently computable martingale. We start by describing a uniform algorithm computing the βe’s.
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Lemma 4.30 There exists a Γ(O(e log log N)) TM T |x| such that T |x|(e, i, ω[N ]) = βe,i(ω[N ]).

Proof. Suppose we want to compute βe,i(ω[N ]) for some ω ∈ {0, 1}∞ and some N ∈ N. Let sN

be the Nth word and n = log(N) ' |sN |. Let us define the following:

Claim 4.31 The algorithm below computes βe,i(w[N ]).

1. Compute sN;

2. Compute j := Index( z = R̃e(sN ) );

3. If ( j < i ) return 1;

4. Else{
5. Unless ((g(i) = 4) and (ei = e)) return 1;

6. Compute We,i and W≤sN

e,i ;

7. result := 1;

8. foreach ({k ∈ N | sk ∈ W≤sN

e,i }){
9. if (ω[k] 6= 0) return 0;
10. else result := result * 2;

11. }
12. return result;

13. }

First of all, we substantiate the claim. Remember that the martingale βe,i is only modified
when the strategy βe wagers on a word belonging to We,i. Point 3: First, notice that for βe,i to be
modified at the kth stage of the game, i.e. for βe,i(ω[k]) to be different from βe,i(ω[k − 1]), it has

to be that sk ∈ We,i, which implies that R̃e(sk) ∈ Ii. Next, notice that, since R̃e is size increasing

(c.f. point 2 of definition 4.5), if Index(R̃e(sN )) < i, then ∀k < N Index(R̃e(sk)) < i, and
therefore ∀k ≤ N sk 6∈ We,i. Having noticed these two points, we see that if Index(R̃e(sN )) < i,
then βe,i(ω[N ]) = βe,i(ω[0])) = 1, thus the correctness of point 3. Point 5: unless g(i) = 4 and
ei = e, we have We,i = ∅, (c.f. definitions 4.14 and 4.24), and the martingale βe,i thus never
wagers, so βe,i remains forever unchanged from its initial value of 1. Unless this easy case occurs,
βe,i wagers on the words of (the non-empty set) We,i, betting on the fact that ω[k] = 0 for every k
such that sk ∈ We,i, each time either doubling its capital or losing it all. The “for” loop of point

7 ensures that the algorithm outputs 2|W
≤sN
e,i

| if Lω ∩ W≤sN

e,i = ∅, and 0 otherwise.

Remark 4.32 If the points 2 and 3 where removed in the above algorithm, the output would
remain the same, because if Index(R̃e(sN )) < i, then W≤sN

e,i = ∅ and point 7 would return 1
anyway. The purpose of points 2 and 3 is to ensure that the complexity of the algorithm does not
depend on the value of i, by avoiding point 6 and the computation of We,i, when it does not hold
that i << N , (more on this below).

Next we analyse the space complexity required to run this algorithm. For point 1, remember
that sN is by convention already available on an auxiliary input tape, so it does not really need to
be computed, and although its storage size is O(log(N)), we do not count it in the space complexity
analysis of our algorithm, since we will never have to transfer it on a working tape. Point 2: by
definition 4.5, R̃e(sN ) is computable in e log(|sN |) + e = O(e log log(N)) space. Through trivial
space-time tradeoffs, it implies that |R̃e(sN )| ≤ 2O(e log log(N)) = poly(loge(N)) (note that R̃e(sN )
does not need to be stored, it only needs to be fed bitwise to Index; i.e. it suffices to store R̃e(sN )
in a compressed form, c.f. definition 4.19). By lemma 4.10 and (arguments similar to the ones
in) lemma 4.11, it thus holds that Index(R̃e(sN )) is computable in polylog(poly(loge(N))) =
poly(e log log(N)) time and space. Storing j is no problem, since by remark 4.8 it holds that
j ≤ log log(|R̃e(sN )|) ≤ log log polyloge(N). Summarizing the above steps, we see that points 2

and 3 are computable in poly(e log log(N)). Point 5: from lemma 4.12, we can test if g(i) = 4 in
polylog(f(i)) space, and as in theorem 4.22 and lemma 4.12, we can test if ei = e in polylog(f(i))
space too, with f(i) ≤ poly(loge(N)). This last inequality holds because (and it is now that points
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2 and 3 in the algorithm become important) we are guaranteed that Index(R̃e(sN )) ≥ i, and thus
R̃e(sN ) ∈ Ii, which implies, by definition of Ii, that f(i) ≤ |R̃e(sN )| ≤ poly(loge(N)). Therefore,
point 5 is computable in space polylog(f(i)) ≤ polylog(poly(loge(N))) = poly(e log log(N)). Point
6: we know from lemma 4.21 that Fi can be effectively compressed on polylog(f(i)) space. Since
We,i = R̃−1

e (Fi), this holds for We,i too (c.f. point 4 of definition 4.5). Since we also have access

to sN , W≤sN

e,i can thus trivially also be effectively compressed on polylog(f(i)) space. Thus point
6 is computable in polylog(f(i)) ≤ poly(e log log(N)) space. The bits of ω[N ] queried in the

“if” statement of the “for” loop are those with indexes corresponding to words of W ≤sN

e,i . To

query such a bit, words of W≤sN

e,i have to be decompressed and written on the query tape. These
decompressed words could be too large to fit in memory, if they were to be decompressed on
a work tape and then copied to the query tape. We avoid this problem by writing the output
of the decompressing algorithm directly to the query tape, which is not taken into account while
analyzing the space complexity of the algorithm (convention 3.2). Also, since the algorithm queries

its input in W≤sN

e,i we can be sure that it queries, for any input, in a set Ge,i := We,i, which is thus

of cardinality at most i, with 22i

< f(i) ≤ 2e log(|sN |)+e, and thus |Ge,i| < log(e)+ log log log(N) =
O(log(e log log(N))) . The size of the set of queried words is thus even logarithmically smaller
than what was announced in the statement of the lemma. ut

We can now combine the two previous results, theorem 4.28 and lemma 4.30, to show that
there is a unique martingale d which is easy to compute and which covers the union of the success
sets of the βe’s, thus it covers any language of C not reducing to AC .

Lemma 4.33 There exists d a Γ(polylog log(N)) martingale such that
⋃

e∈N
S∞[βe] ⊆ S∞[d].

Proof. By definition 4.25, the eth martingale βe is equal to
∑

i∈N∗ 2−3iβe,i. Let us start by

showing that each βe can be efficiently approximated. Let β̃e(ω[N ]) =
∑log(N)

i=1 2−3iβe,i(ω[N ]).

β̃e is an 1/N2 close approximation of βe: βe(ω[N ]) − β̃(ω[N ]) =
∑∞

i=log N+1 2−3iβe,i(ω[N ]) ≤
∑∞

i=log N+1 2−2i =
∑∞

i=1 2−2(i+log N) = 1
N2

∑∞
i=1 2−2i < 1

N2 . Lemmas 3.8 and 4.30 imply that β̃e is
computable in c[O(e log log(N)))+log log N ] = O(e log log(N)) space, by an algorithm querying its

input in a dependency set {Ĝe,N}N∈N, with Ĝe,N =
⋃log(N)

i=1 Ge,i with each Ge,i of size e log log(N)
(the Ge,i’s come from lemma 4.30). Thus |Ge,N | ≤ log(N)e log log(N) = poly(e log(N)). There-

fore, β̃e is a Γ(poly(e log(N)) function approximating β.
Having proved this fact, we can use the exact computation lemma 3.12 to be assured of the

existence of β̄e a Γ(poly(e log N) martingale such that S∞[βe] ⊆ S∞[β̄e]e∈N.
It is now easily checked that {S∞[β̄e]}e∈N is a Γ(f) family of null sets (definition 3.16), with

f(e, N) = poly(elogN). We can thus finish by invoking lemma 3.17 which implies the existence of
a Γ(poly(f(log N, N)) = Γ(polylog(N)) martingale d such that

⋃

e∈N
S∞[βe] ⊆ S∞[d]. ut

Corollary 4.34 There exists d a Γ(polylog log(N)) martingale such that if L ∈ C and L 6≤ AC ,
then L ∈ S∞[d].

Proof. Let d be a Γ(polylog(N)) martingale, such that
⋃

e∈N
S∞[βe] ⊆ S∞[d]. Such a martingale

exists by lemma 4.33. Let L ∈ C be a language such that L 6≤ AC . We have to show that
L ∈ S∞[d]. By convention 4.6, there exists e ∈ N such that L = Le. Thus L ∈ S∞[βe] (theorem
4.28), and thus, by definition of d, L ∈ S∞[d]. ut

We are now ready to give the main technical theorem of the paper. Intuitively it says that any
complexity class satisfying a few conditions admits an almost complete problem. Fundamentally,
the conditions to satisfy reduce to a lower bound on the size of complexity classes to which the
theorem can be applied. In particular, the fact that the complexity classes fitting in the scheme are
to satisfy at least one of two closure properties (c.f. below) forbids applying the theorem to “very”
small complexity classes such as P. The next section discusses the applications and limitations of
this theorem
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Theorem 4.35 Let (C, C, {R̃e}e∈N) be a diagonalizable triplet, where C satisfies at least one of the
following two closure properties: (1) for all space bound function s such that SPACE(s(N)) ⊆ C it
is also true that SPACE(O(max(s(N), polylog(N)))) ⊆ C, (2) for all time bound function t such
that DTIME(t(N)) ⊆ C it is also true that DTIME(O(log(N)t(N) + 2polylog(N))) ⊆ C. Suppose that
µC is an RBM for C such that if β is a Γs(polylog log(N)) BS, then µC(S∞[β] ∩ C) = 0. Then
there is an almost complete set for C.

Proof.
Since (C, C, {R̃e}e∈N) is a diagonalizable set, we can construct the language AC and BC of

definition 4.14. Theorem 4.22 and the fact that C satisfies at least one of the closure properties
from above imply that AC and BC are in C. Since by construction BC 6≤ AC it follows that AC is not
hard (and thus not complete) for C. It remains to show that µC(Pm(AC) ∩ C) = 1. Theorem 4.34
implies that there exists β a Γs(polylog(N)) BS such that L ∈ C\Pm(AC) ⇒ L ∈ S∞[β]. Together
with the second hypothesis in the statement of the theorem, this implies that µC(C\Pm(AC)) = 0.

ut

An interesting corollary is that any class for which the theorem can be applied sees its set of
complete problems be small in the following sense.

Corollary 4.36 Let C be a complexity class for which the theorem hereabove can be applied with
an RBM µC. Let CS be the set of complete problems for C, then µC(CS) = 0.

Proof. Let AC be an almost complete set. Since by definition AC is not complete, then not
complete set reduces to AC (since otherwise, by transitivity of reductions AC would be complete).
Therefore CS ∩ P≤

m(AC) = ∅, and since by definition of almost completeness µC(P≤
m(AC)) = 1, it

implies that µC(CS) = 0. ut

When applying theorem 4.35 to obtain almost complete problems for complexity classes such
as PSPACE, we will thus have as a corollary the knowledge that not many problems in PSPACE are
complete. We do not know if this result can be obtained in an easier way (i.e. without proving
that there exists an almost complete set), nor if this result was known at all. Looking at the case
of E (which has received much more attention from the quantitative complexity point of view), it
is known that complete sets under some type of reductions are null sets (e.g. under polynomial
time manyone and bounded truth table reductions), but on the other hand it is unknown whether
complete problems under truth table or Turing reductions are measure null sets. (Actually, a
positive answer to this question would imply a separation of the corresponding almost complete
and weakly complete problems in E, thus answering an open question, c.f. [ASMRT03] for more
details). Thus we suspect that for example, in the case of PSPACE, it was unknown whether the set
of complete problems (under logspace manyone reductions) was large or not. Anyway, our proof
of this fact is new, so it is worth mentioning, also because the generality of the statement makes
it true for a wide variety of complexity classes.

5 Applications

We can now turn our attention to discussing the implications of theorem 4.35. The theorem is
fairly general in the way it is stated, so it can be applied to a wide variety of complexity classes.
In section 5.1, we show that it implies the existence of almost complete problems for some small
complexity classes, such as PSPACE and SUBEXP. In some sense, this fulfills our expectations
in terms of space bounded computations: we have reached the granularity of space efficiently
computable problems. On the other hand, this is not so for time bounded computations, where
we have not reached P, the class of time efficiently decidable problems. In section 5.2, we discuss
the possibility of applying the theorem to other complexity classes, most interestingly, to smaller
classes than PSPACE and SUBEXP, but also to big complexity classes such as E. Naturally we shall
discuss the question of almost completeness in P, which is in some sense our ideal goal, at least
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when regarding time bounded computations. We shall also give a look at QP, problems decidable
in quasi-polynomial time. For different reasons in each case, both P and QP stay out of reach.
QP is interesting, in the sense that this class, as we shall explain, gives us the feeling that our
construction should be applicable to QP, but for reasons intrinsic to QP, which seem to us somehow
pathological, it stays out of reach. Finally, we also point out the fact that theorem 4.35 also implies
the existence of almost complete sets for bigger classes, such as EXP. This last result differs from
the one from [ASMRT03] only in the sense that they prove this fact for polynomial time manyone
reductions, whereas we state all our results for logspace manyone reductions.

5.1 Application to PSPACE and SUBEXP

In this section, we look at SUBEXP and PSPACE, and show how the results from the previous sections
can be used to prove that these two classes admit almost complete problems. We start by making
a remark on the class SUBEXP. In complexity theory, most complexity classes are defined as the
inductive union of size increasing subclasses. For example, P =

⋃

k∈N
DTIME(O(Nk)). It seems

that this way of defining complexity classes is somehow intrinsically related to the way we study
general computational complexity. From this point of view, SUBEXP differs greatly from the rest of
complexity classes, since it is not the union of size increasing subclasses, but rather the intersection
of size decreasing subclasses: SUBEXP =

⋂

i∈N
Ei, where Ei is once again the inductive union of size

increasing subclasses: Ei =
⋃

j∈N
DTIME(2O(N

i−1
ij )), so that it becomes possible to study each of

the Ei’s with a standard computational complexity theory approach, but not SUBEXP as a whole.
Therefore, we take the following usual convention, when working with SUBEXP, of saying that
something is true for SUBEXP if it is true for each of the slices Ei. In particular, the statement “
SUBEXP admits an almost complete problem” should be interpreted as meaning that “each of the
slices Ei of SUBEXP admit an almost complete problem”.

In order to make use of theorem 4.35 for PSPACE and SUBEXP, we need to see that the hypotheses
required in the statement of the theorem are fulfilled. Amongst these conditions is the fact that
the classes considered (PSPACE and SUBEXP) can be inserted inside of a diagonalizable triplet. We
show that this holds, and start by defining standard enumerations for PSPACE and (each of the
slices of) SUBEXP. The existence of these effective enumerations is standard and proved by adding
to the Turing machines a gadget, called a yardstick or an alarm clock in the case of space or time
bounded computations respectively.

Convention 5.1 For any fixed j ∈ N, we let {Li}i∈N be an effective enumeration of Ej and we
let {L′

i}i∈N be an effective enumeration of PSPACE.

Let us also define the two following:8

Definition 5.2 Let CEj
= {(1i, 1|x|

2 i−1
i , x) | Mi accepts x in 2|x|

i−1
ij

time}.

Let CPSPACE = {(1i, 1|x|
i+i, x) | Mi accepts x in |x|i + i space }.

Let R̃i(x) = (1i, 1|x|
2

i−1
i , x). and R̃′

i(x) = (1i, 1|x|
i+i, x)

Lemma 5.3 (PSPACE, CPSPACE, {R̃′
i}i∈N) and (Ej, CEj

, {R̃i}i∈N) are diagonalizable triplets.

Proof. We only prove that the triplet for Ej is a diagonalizable triplet. The case of PSPACE is
similar and easier, and left to the reader. We need to show that CEj

is complete for Ej, and that

{R̃i}i∈N is a uniform family of reductions satisfying the properties of definition 4.5. First of all we

show CEj
∈ Ej by giving an algorithm deciding CEj

in 2O(N
1
2j ) time. Let X ∈ {0, 1}∗ be the input.

The algorithm needs to check that the two following points hold: verify that X = (1i, 1k, x) for

some i ∈ N, with k = |x|2
i−1

i , and check that M(i, ·) accepts x in 2|x|
i−1
ij

. Here is an algorithm
accomplishing the task.

8We remind the reader that hereunder, Mi is the ith TM, c.f. section 2.
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1. Compute |x|2
i−1

i

2. Check that k = |x|2
i−1

i

3. Compute |x|
i−1
ij

4. Compute 2|x|
i−1
ij

5. Set an alarm clock to ring after 2|x|
i−1
ij

computation steps

6. Simulate the computation of M(i, x) until the alarm clock rings

7. Accept if M(i, x) has accepted

8. Reject if M(i, x) has rejected

or if the alarm clock rang before the simulation was finished

Let us look at the first point of the algorithm above. We need to compute the integer part

of |x|2
i−1

i . First, we compute |x| (in log(|x|) time), then we compute |x|i−1 in poly(i log(|x|))
time. Then we need to extract the i-th integer root of |x|2(i−1). The i-th root shifting algorithm
extracts k digits of the i-th root of an integer in O(k3i2) time. Since we want the integer part
of the i-th root of |x|2(i−1), we have to extract O(2i log(|x|)) bits, which can thus be done in
poly(i log(|x|)) = poly(|X |) time. The second point of the algorithm is done in k = O(|X |)
time. Remember that j is a constant, so point 3 is computable in poly(|X |) time, and since

BIN(2|x|
i−1
ij

) = 10|x|
i−1
ij

, point 4 is computable in |x|
i−1
ij < k ≤ |X | time. Points 5 to 8 necessarily

take time at most 2|x|
i−1
ij

= 2|x|
2

i−1
i

1
2j

= 2k
1
2j

≤ 2|X|
1
2

1
j
. From this time complexity analysis, we see

that CEj
qualifies as a member of Ej. To show the completeness of CEj

, it remains to see that it is hard
for Ej: let L ∈ Ej. We need to show that L reduces logspace manyone to CEj

. L ∈ Ej ⇒ ∃i s.t. L

is decided by Mi in 2N
i−1
ij

time. Hence L ≤ CEj
via R̃i, which is easily seen to be a logspace

manyone reduction. (The only difficult thing to compute R̃i(x) = (1i, 1|x|
2 i−1

i , x) is 1|x|
2 i−1

i and

more precisely (the integer part of) |x|2
i−1

i , which is accomplished in O( i−1
i

log(|x|)) = O(log(|x|))
space (i is a constant!) by the i-th root shifting algorithm).

We next look at the family {R̃i}i∈N and verify that it satisfies the conditions required by
definition 4.5. Using the previous arguments and the definition of the family we see that Li ≤ CEj

via R̃i
9, the family is informally computable in poly(i log(n) + i) space, the images have a null

intersection and the inverse is easy to compute. Therefore, the only things left to show are
that the R̃i’s are length increasing, which trivially follows from their definition, and that there
is an algorithm Check which on input X ∈ {0, 1}∗ and i ∈ N checks whether X ∈ Im(R̃i) in
poly(i · log(|X |)) space. That is, besides trivial things, we should show that it is possible to verify

that an input X = (1i, 1k, x) satisfies k = |x|2
i−1

i in poly(i log(|X |)) space. This can be done in
poly(i log(|X |)) space using the i-th root shifting algorithm. ut

Since we have diagonalizable triplets, we can apply theorem 4.35 and obtain the following
result.

Lemma 5.4 PSPACE and SUBEXP have almost complete problems.

We give only informally this easy proof.
Proof. From lemma 5.3, we know that PSPACE and Ei can be embedded inside of diagonalizable
triplets. In order to apply theorem 4.35, we also need to show that PSPACE and Ei satisfy one
of two closure properties (c.f. the statement of the theorem). Informally, the closure properties
say that the complexity classes considered should be closed under multiplication by a logarithmic
term, and that it should contain QP in the case of time bounded complexity classes, and for
space bounded classes, it should only be that they contain POLYLOGSPACE, (which is a very weak
condition). This is true for our two complexity classes. The final condition to satisfy is that the
success sets of Γs(polyloglog) martingales should be null sets, for some RBM on the complexity

9In fact it holds that ∀i∃i2 s.t. Li = Li2 and Li ≤ CEj
via R̃i2 .
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class considered. This last condition is satisfied as follows from lemmas 3.13 and 3.14 (and trivial
space-time tradeoffs). ut

From corollary 4.36, we also get the following result for free.

Corollary 5.5 The sets of complete problems for PSPACE and for SUBEXP are null sets (in PSPACE

and SUBEXP respectively).

5.2 Other Applications and Possible Improvements

Our quest in this research has been to prove almost completeness results for small complexity
classes, for which we consider PSPACE and P to be prototypes (for space and time bounded compu-
tations respectively). To some extend, we have thus succeeded in the case of space bounded compu-
tations. This is not quite so for the case of time bounded computations, where we could only prove
the existence of almost complete for for SUBEXP, when having almost complete sets for P would be
nicer. In this section we shall discuss why we could not improve on this, more precisely, we shall
explain the difficulties encountered while trying to use our scheme to prove the existence of almost
complete problems for P or, less ambitiously, for QP. Roughly speaking, in order to obtain almost
complete sets for PSPACE and SUBEXP, what we did was the following. We fixed C to be PSPACE or

(a slice of) SUBEXP . We let CEj
= {(1i, 1M , x) | [M = |x|2

i−1
i ] and [Mi accepts x in 2M

1
2 time ]},

CPSPACE = {(1i, 1M , x) | [M = N i] and [Mi accepts x in M space ]}, R̃i(x) = (1i, 1|x|
2

i−1
i , x) and

R̃′
i(x) = (1i, 1|x|

i

, x) and show that (Ej, CEj
, {R̃i}i∈N) and (PSPACE, Cpspace, {R̃′

i}i∈N) are diagonal-
izable triplets.

What happens if we try to apply this scheme to P, the class of efficiently solvable problems?
First, we construct a canonical complete language and an associated family of canonical reductions
identically: CP = {(1i, 1M , x) | [M = |x|i] ∧ [Mi accepts x in time M ]} and R̃i(x) = (1i, 1|x|

i

, x)
(which is computable in O(N i) time and O(i log N) space). Sadly, we cannot go any further, since
lemma 4.22 does not permit to conclude that the language ACP

(constructed using the general
scheme of section 4) is in P, and thus we cannot apply theorem 4.35 to deduce the existence of an
almost complete set for P, since P does not satisfy the closure property required in its statement.
Furthermore, although we did not formally give the definition of an RBM for P, it would not
be true that the success set of Γs(polyloglog) martingales are null sets in P as required to apply
theorem 4.35. These two reasons make it look impossible to prove the existence of an almost
complete set for P by adapting the proof(s) we used for PSPACE and SUBEXP: P seems really out of
reach with this approach. What about QP, which is a class intermediate between P and SUBEXP?
On analysis, at first sight the two obstacles encountered while looking at P seem to vanish when
looking at QP: the 2polylog(N) lower bound on the complexity of ACQP

from theorem 4.22 (which
was an obstacle in the case of P) does not disqualify ACQP

from being in QP, and Γs(polyloglog)
martingale have null measure success sets in QP10 . Sadly, another difficulty arises from the fact
that it seems impossible to find a canonical complete language for QP under logspace manyone
reductions. Indeed, the natural canonical complete language (and its canonical reductions) for QP

are the following: CQP = {(1i, 1M , x) | [M = 2logi(|x|)] ∧ [Mi accepts x in M time ]} andR̃i(x) =

(1i, 12logi(|x|),x), which is computable in O(2logi(N)) time and O(logi(N)) space. The reductions
are not logspace manyone, but rather polylogspace manyone. This means that (QP, CQP, {R̃i}i∈N)
has no chance of being a diagonalizable triplet, but mainly because the definition was not thought
of with this somehow strange case to mind. Naturally, we considered modifying this scheme, in
order to adapt it to the case of QP and its canonical polylog manyone reductions. Once again,
this approach fails for at least the following reason: suppose we want to compute ACQP

(x), with

x ∈ Ii. From the definition of ACQP
, this will require computing R̃i(x), but this time (in the

modified scheme), R̃i is not computable in i log(N) + i space, but in logi(N) + i space, and thus

in 2logi(N)+i time in the worst case, which disqualifies once again ACQP
from being in QP (since it

would require 2logi(N)+i to be smaller than 2logk(N)+k, where i is an increasing function of N , and

10We give no formal justification of this fact, since anyway we fail to prove the almost completeness result for QP.
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k is a constant integer). That is, even if we modify it, we can still not guarantee that AC would
be in QP for C = QP.

We claimed earlier on that we were quite satisfied with having reached, when considering
space bounded computations, the granularity of PSPACE. This is true, but looking at corollary
4.34 and the proof of lemma 5.4, we see that we can in fact cover the span P ≤

m(AC) of the
almost complete set constructed for PSPACE with a very efficient martingale. In fact, this high
efficiency is what permitted us to apply it to time complexity classes, through the appliance of
trivial space-time tradeoffs, and to still have a reasonably enough efficient martingale to go down
to SUBEXP, and to flirt with QP. This brings hope of applying theorem 4.35 to smaller space
bounded complexity classes then PSPACE, probably as little as PLOGSPACE. We do not investigate
this problem here, most of all because many awkward technical complications spring in mind,
one of them being the fact that constructing an RBM for polylogspace is not trivial and would
require many detailed verifications. Looking in a completely different direction, our theorem can
also be applied to bigger complexity classes, such as E or EXP by choosing (e.g. in the case of E)
the following diagonalizable triplet: CE = {(1i, 1M , x) | [M = i|x|] ∧ [Mi accepts x in time 2M ]}
and R̃i(x) = (1i, 1i|x|, x) (which is computable in O(iN) time and O(log(iN)) space). Theorem
4.35 then yields the following corollary:

Corollary 5.6 There exist almost complete sets for the classes E and EXP of problems decidable
in exponentially linear and exponentially polynomial time.

We should specially emphasize that this result holds for logspace manyone reductions, since
[ASMRT03] prove that this holds for polynomial time manyone reductions. Also, the fact implied
by corollary 4.36 that the set of complete problems for these two classes is small is already known
(following a result of [RSyC95]), so we can in no way claim it as ours.

6 Conclusion

The parametrized form in which we stated our main result (theorem 4.35) makes it sensible to
foresee other applications to it. In perticular we see the very efficient algorithm exhibited to
compute the martingale(s) covering the complementary of the constructed almost complete set(s)
(corollary 4.34) as an encouraging sign that improvement is possible in the case of space compu-
tations, (in the sense that the theorem would be applicable to smaller space bounded complexity
classes then PSPACE). It is possibly sufficient to construct an RBM for PLOGSPACE and to verify (a
possibly unpleasant bunch of) details to obtain an almost logarithmic improvement from PSPACE

to PLOGSPACE by direct use of our construction.
The case of time bounded complexity classes is probably more challenging and harder to

improve. Most of our algorithms were optimized in terms of space complexity. It could be that
focusing on P from the start succeeded (though we see no trivial adaptation from our results) in
proving the existence of almost complete problems for P. On the other hand we would not be
surprised that it would be easier to adapt our results to the case of QP, which only stays out of
reach for reasons which seem to come from a strangeness inherent to QP: it admits no complete
problems under logspace manyone reductions.

Finally, let us point out that this line of research (the study of RBM related notions of com-
pleteness in small complexity classes) is rich in many more concepts to study: the existence of
weakly complete problems, the size (in terms of RBM) of the set(s) of complete problems and
the different notions of completeness coming from other reductions than the ones we have strictly
restrained ourselves too: logspace manyone reductions.
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